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Abstract: Energy harvesting from the ambient environment can be a beneficial and promising
source for powering micro- and nanodevices. Triboelectric nanogenerator (TENG) technology has
been proved to be a simple and cost-effective method to harness ambient mechanical energy. The
performance of the TENG device mainly depends on the careful selection of the material pair. So
far, metals and polymer materials have dominated TENG technology. Recently, there have been
few reports on metal–organic framework (MoF)-based TENGs. MoFs are very interesting and offer
excellent chemical and thermal stability, besides their unique properties, such as tunable pore size and
high surface area. Herein, we report a zeolitic imidazole framework (ZIF-67)-based TENG device for
self-powered device applications. We used ZIF-67 as one tribolayer, and PET and PMMA as opposite
tribolayers. The output performance of the TENG device fabricated with the PMMA/ZIF-67 pair
showed values of 300 V, 47.5 µA, and 593 mW/m2 of open-circuit voltage, short-circuit current, and
power density, respectively. To the best of our knowledge, these are the highest reported values so far
for ZIF-67-based TENG devices. The fabricated TENG device lit up 250 LEDs and was employed to
explore different self-powered device applications.

Keywords: triboelectric nanogenerator; metal–organic frameworks; mechanical energy harvesting;
self-powered devices; ZIF-67

1. Introduction

In recent years, new technologies that harvest energy from the ambient environment
as clean and sustainable energy at a low frequency have attracted a lot of attention. The
need for alternative energy sources has become extremely important with the increased
usage of sensor systems, wireless networks, and IoT-based devices. In 2018, the IoT-
based systems in use were estimated at 50 billion, and they are expected to reach around
200 billion by 2025 [1]. All these network systems use many sensors and electronic circuits
for different applications, such as health monitoring, wearable sensors, and self-powered
devices. The minimum required power in the range of microwatts is essential to operate
these electronic items [2,3]. Therefore, the ideal solution for providing sustainable, green,
portable self-power to these large-scale sensors is scavenging energy from the ambient
surroundings with energy-harvesting technologies. Scavenging energy from the ambient
environment not only reduces the use of a large number of batteries but also provides an
alternative solution for the size constraints of micro- and nanoscale IoT-based devices [4,5].
Several mechanical energy-harvesting methods, such as piezoelectric, triboelectric, and
electromagnetic nanogenerators, already exist in the literature. Among all, triboelectric
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nanogenerators have been proved to be a cost-effective, highly efficient, flexible, and
portable technique for the cleanest and most sustainable energy source to power these
devices. Z.L. Wang’s research group introduced the TENG concept in 2012 [6]. The
TENG works with the coupled effect of contact electrification (triboelectrification) and
the electrostatic induction phenomenon [7–9]. In the triboelectrification process, charges
are produced upon the physical contact between two dissimilar materials with opposite
electron affinity [10]. Typical triboelectrification can only generate the accumulation of
charges, but current is not generated, because there is no discharge process [2]. However,
the TENG device uses the coupled effect of an electrostatic phenomenon with contact
electrification to generate current. The triboelectric effect can be observed in a wide variety
of materials, and there is no limitation on the material of choice. Therefore, researchers
have been working on different suitable pairs of tribomaterials to generate maximum
power efficiencies.

The search for new materials in TENG device design has recently grown considerably
to improve the power density. The output performance parameters, such as voltage, short-
circuit current, power density, and stability, are crucial parameters for optimizing a suitable
TENG device. Currently, materials such as polymers and metals with known tribocharge
density, dielectric constant, and other relevant parameters are widely used as triboelectric
layers. However, these are just a small fraction of the existing materials [11]. The search for
new materials gave surprising results, such as cellulose acetate, which was traditionally
believed not to be a good tribomaterial until 2019 [12]. Other than cellulose, there are
biopolymers [13], natural materials [14], bio-waste [15], plant-based materials [16], carbon-
derived materials [17], 2D-layered materials [18], metal-oxide-based materials [19], and
metal–organic frameworks [20] for exploring the energy-harvesting-based TENG devices.
Among all the materials mentioned above, metal–organic framework (MoF)-based TENGs
are not explored to their full potential in the literature. Recently, a large number of MoFs
with zeolitic architectures have been successfully prepared as hybrid frameworks. Among
them, zeolitic imidazole frameworks (ZIFs) have recently gained considerable attention
due to their outstanding chemical and thermal stability. They possess a large surface area,
an easily functional pore surface, adjustable pore size, and high crystallinity. ZIFs are
a subclass of MoF materials with a special 3D network formed by coordination bonds
between the metal ion (metal clusters) and an organic ligand. The unique properties of ZIFs
have attracted numerous applications, such as gas storage, separation, liquid separation,
catalysis, electrochemical sensing, storage, and battery applications [21–26]. Apart from
direct applications, ZIFs are used as precursors and templates to derive functional and
next-generation materials [27–30].

Researchers have started exploring energy-harvesting applications based on ZIFs.
Khandelwal et al. reported ZIF-8-, ZIF-7-, ZIF-9-, ZIF-11-, ZIF-12-, and ZIF-62-based
triboelectric nanogenerators [20,31–33]. G. Khandelwal et al. reported most of ZIF-based
TENGs in the literature. In all the reports, ZIF films were created by attaching ZIF powder
to the conducting glue placed on the aluminum substrate. The excess ZIF powder was
removed using an argon air gun. Rayyan Ali et al. recently reported an MoF-5-based
TENG device, and PTFE was used as an opposite triboelectric layer [34]. Chao Huang et al.
reported a bimetallic Zn/Co-MoF-based TENG device with PVDF as a negative triboelectric
layer [35]. Sugato Hajra et al. reported a ZIF-67-based TENG with different negative
triboelectric layers, such as Teflon, PDMS, and paper [36]. They used a multi-unit S-shaped
device prepared with ZIF-67 particles. The device with Teflon as another triboelectric layer
showed a peak-to-peak output voltage of 118 V, a current of 1.7 µA, and a power density
of about 150 mW/m2. The low output power density may have been due to the pressed
ZIF-67 powder on the copper tape, and the pressed ZIF-67 film may have provided a less
effective contact area during the TENG operation. Furthermore, the opposite triboelectric
layer with ZIF-67 is also a crucial parameter in deciding the TENG performance.

The performances of TENG devices based on different MoFs are summarized in Table 1.
In this work, we report a TENG device based on ZIF-67 as a positive triboelectric layer
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and PMMA as a negative triboelectric layer. To the best of our knowledge, this tribopair
is reported for the first time. The novelty of the manuscript lies in the study of ZIF-67
and PMMA in TENG applications for the first time and in reporting the highest power
density so far. The ZIF-67 and PMMA pair showed an outstanding power output and
excellent stability. Compared with other reports, the simple ZIF-67- and PMMA-based
TENG device showed an output voltage of 300 V, a current of 47.5 µA, and a power density
of 593 mW/m2.

The improvement in the output performance of the device may be attributed to
the large surface area of the ZIF-67 thin film. We deposited ZIF-67 powder as a thin
film on the aluminum substrate rather than using ZIF-67 powder directly as reported
by Hazara et al. Thin-film deposition dramatically enhanced the surface characteristics
and contact points for the electrification process and improved the device stability [37].
This manuscript adopted a cost-effective, straightforward, single-step approach for TENG
fabrication compared with the existing complex and expensive 3D-printing-based ZIF-67
TENG devices reported. The obtained power density of the ZIF-67/PMMA-based TENG
device is the highest so far among all ZIF-based devices.

Table 1. Comparison of ZIF-based TENG device performances reported in the literature.

S. No.
Positively Charged

Material
Negatively

Charged Material
Output Performance

Reference
Voltage Current Power Density

1 ZIF-67 Teflon 118 V (peak to peak) 1.7 µA 150 mW/m2 [36]
2 MIL-88A FEP 80 V 2.2 µA 16.2 mW/m2 [32]
3 ZIF-8 Kapton 164 V 7 µA 392 mW/m2 [20]
4 ZIF-62 Teflon 62 V 1.4 µA 9.68 mW/m2 [33]

5 ZIF-8 (HG) Kapton 150 V 3.6 µA 6 µW
(power) [38]

6 ZIF-11 Kapton 27 V 0.3 µA ~1.3 mW/m2 [31]
7 ZIF-12 Kapton 42 V 1 µA ~2.3 mW/m2 [31]
8 ZIF-9 Kapton 29 V 0.5 µA ~0.9 mW/m2 [31]
9 ZIF-7 Kapton 60 V 2 µA ~5.6 mW/m2 [31]

10 Alpha cyclodextrin Teflon 152 V (peak to peak) 1.2 µA 8 µW/cm2 [39]
11 Beta cyclodextrin Teflon 90 V (peak to peak) 0.52 µA - [39]
12 Gamma cyclodextrin Teflon 116 V (peak to peak) 1.7 µA - [39]
13 ZIF-67 PMMA 300 V 47.5 µA 593 mW/m2 This work

In this work, ZIF-67-based TENGs were fabricated with a simple and cost-effective
method. The fabricated TENGs were explored for self-powered device applications.

2. Materials and Methods
2.1. Synthesis of ZIF-67 Powder

All the chemicals used for synthesizing the ZIF-67 metal–organic framework were
purchased from Sigma Aldrich and used without further modification. We followed
the ZIF-67 synthesis procedure reported in the literature [40]. To summarize, 450 mg of
cobalt nitrate hexahydrate [Co(NO3)2·6H2O] was first dissolved in 3 mL of deionized
water, which we labeled solution 1. Solution 2 was independently prepared by dissolving
5.5 g of 2-methylimidazole (Hmim) in 20 mL of deionized water. These two solutions were
vigorously mixed for 6 h at room temperature; then, the resultant purple-colored precipitate
was collected after centrifuging at 8000 rpm and washed carefully with water and methanol
three times. Finally, the precipitant was vacuum-dried at 80 ◦C for 24 h to obtain ZIF-67
powder. The detailed procedure of ZIF-67 powder synthesis is depicted in Figure 1a.
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method, (c) TENG device fabrication steps.

2.2. Preparation of ZIF-67 Films

ZIF-67 was deposited on aluminum (Al) substrate using the doctor blade coating
technique. Before the deposition of ZIF-67, the Al substrate was cleaned with acetone and
deionized water in an ultrasonication bath for 5 min. The as-prepared ZIF-67 powder was
mixed (0.2 g) in Polyvinyl alcohol (PVA) (5 mL), and the mixture was stirred continuously
for one hour to obtain a homogeneous solution. The mixed solution was initially dropped
on the Al substrate, and a spreader was driven through the solution at a blade speed
of 30 mm/sec to obtain ZIF-67 thin films on the Al substrate. The schematic of the film
preparation, actual photographs of the ZIF-67 solution dissolved in PVA, and ZIF-67 thin
film on Al substrate are shown in Figure 1b.

2.3. Characterization of ZIF-67

The obtained ZIF-67 powder was characterized using X-ray diffraction (XRD; Bruker
D8), and the surface functional groups were confirmed with FTIR spectroscopy (FTIR
Bruker alpha II); the morphology of ZIF-67 was studied using scanning electron microscopy
(SEM, ZEISS), and the thickness of ZIF-67 was measured using an optical microscope
(Olympus BX53).

2.4. Fabrication of TENG Device

The schematic of TENG device fabrication is shown in Figure 1c. The aluminum and
ITO substrates were used for the top and bottom electrodes. The ZIF-67 film on the Al
substrate and the PET surface of ITO/PET substrate were used as two frictional layers
and attached to a cardboard/acrylic base, as shown in Figure 1c. Four sponge spacers
were placed between the supporting bases to maintain the distance of ~ 1cm between the
frictional layers. The overall structure of the TENG device was Al/ZIF-67/PET/ITO. The
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output voltage of the TENG device was recorded using a digital oscilloscope (Tektronix
TBS1102) with the aid of interface software (Tekvisa) using a computer. The short-circuit
current of the TENG was measured using a low-noise current amplifier (Stanford Research
SR570). The TENG device was tested at a hand-tapping frequency of ~3–4 Hz. Furthermore,
we investigated the effect of hand-tapping frequency, different dimensions of the device,
and different frictional layers while keeping ZIF-67 constant on the TENG performance.
Finally, the stability and durability of the TENG devices were tested over a long period and
with a large number of test cycles.

3. Results and Discussion

The crystalline and structural properties of as-prepared ZIF-67 film were characterized
with XRD studies, and the corresponding XRD spectrum is shown in Figure 2a. The sharp
and highly intense peaks suggest the highly crystalline nature of the synthesized ZIF-67.
The experimental data were fitted with the Rietveld refinement method using Full-Prof
software by assuming the cubic crystal structure to have a space group of I43 m. The refined
lattice and Rietveld parameters are given in Table S1 (see Supplementary Information (SI),
S1). The observed crystal structure was in single-phase formation, and no impurity phases
were detected. The obtained ZIF-67 film XRD pattern was consistent with those in the
previously reported literature [41–43].
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The as-synthesized ZIF-67 and organic linker 2-methyl imidazole (MIM) were charac-
terized with FTIR to determine the material’s chemical composition and bonding informa-
tion and are presented in Figure 2b. The peak observed in the MIM spectrum at 1842 cm−1

was due to the -N-H group; the same was absent in the ZIF-67 spectra, strongly suggesting
the successful coordination of Co and the -N-H group of MIM [44]. Moreover, a broad peak
ranging from 3400 cm−1 to 2200 cm−1 centered at 2600 cm−1 was attributed to the presence
of the N-H-N hydrogen bond. The FTIR spectrum of ZIF-67 showed the absence of the
broad hump, also confirming ZIF-67 structure formation and the completely deprotonated
MIM linkers [45]. The intense bands ranging from 1300 cm−1 to 1500 cm−1 were attributed
to the characteristic imidazole ring stretching. The peaks appearing at 1596 cm−1 and
757 cm−1 were attributed to the C = N stretching vibrations and out-of-plane bending
modes, respectively [46]. The new absorption peak arising at 426 cm−1 attributed to the
Co-N stretching vibration of ZIF-67 was consistent with the previously reported literature
results [47]. Figure 2d–f show the surface morphology of as-synthesized ZIF-67 film at
high and low magnifications. The sphere-shaped ZIF-67 particles were observed uniformly
all over the substrate. The observed morphology of ZIF-67 particles was similar to the
reported literature results [48,49].

The mechanical energy conversion of the fabricated TENG (10 × 10 cm2) was tested
against hand tapping. The TENG device size was 10 × 10 cm2; the spacing between the
two triboelectric layers was maintained at 1 cm, and the tapping frequency was maintained
at ~3–4 Hz. Figure 3a,b show the open-circuit output voltage and short-circuit current of
a ZIF-67-based TENG device in the switching polarity test. In the switching polarity test,
the TENG device connections were interchanged at the input of the measuring instrument
to confirm whether the response came from the device or instrument noise [50,51]. It is
clear from Figure 3a,b that the electrical output came from the TENG device. The TENG
device generated the average voltage and current of ~100 V and ~35 µA, respectively, in
both forward and reversed connections. The working mechanism of the ZIF-67-based
TENG in vertical contact separation mode is presented in Supplementary Information S2.
The TENG device electrical output was recorded for different load resistance values to
find out the maximum power density. The behaviors of the TENG output voltage and
current are presented in Figure 3c. The output voltage increased with the increase in load
resistance and saturated after 60 MΩ. This behavior was consistent with the other reported
literature results [52–54]. At the same time, the current decreased with the increase in the
external load due to ohmic losses. Furthermore, the instantaneous power density was
calculated from Figure 3c and presented in Figure 3d. The instantaneous power density
was calculated using the P = (VI/A) formula, where I = current, V = voltage, and A = active
area of the device [55–57]. Initially, the instantaneous power density increased with load
resistance and reached the maximum value of ~81.9 mW/m2 at a 4 MΩ load resistance and
then decreased at greater load resistances. The observed maximum instantaneous power
density at 4 MΩ load resistance can be understood with the maximum power transfer
theorem [58,59]. When the TENG device’s internal resistance matched the load resistance,
it exhibited the maximum power density. The stability of the TENG device was tested
for 15,000 cycles using a linear motor at a tapping frequency of ~4 Hz. The stability of
the device was tested continuously for 60 min with the linear motor (1 min, ~240 cycles).
The response of the TENG device was recorded every 10th min for 1 h, and the results
are presented in Figure 4a (see Supplementary Video, S1). The TENG output voltage
exhibited a stable response for 15,000 cycles, showing the device’s exceptional durability
and mechanical stability.
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The device’s effective size (size of frictional layers) plays a vital role in the output
performance of a TENG device. We chose three sizes for the TENG device: 5 × 5, 7 × 7,
and 10 × 10 cm2 (effective area). The short-circuit current and open-circuit output voltages
increased with the device size, as shown in Figure 4b,c. The current value increased from
~10.5 µA to ~35 µA, and the voltage increased from 35 V to 100 V. The increase in the
current and voltage was attributed to the enhanced contact area. The increase in the contact
area produced a greater triboelectrification of charges, which resulted in greater current
and voltage. The behavior of TENGs with the different active areas is well supported
by the reported literature [60–62]. It is necessary to convert the AC output of a TENG
to the DC output to store in a capacitor. We used an IC DB 107 full-wave rectifier to
convert the AC output into the DC output and charged different load capacitors with the
continuous operation of the TENG for 5 min. Figure 4d illustrates the charging voltage
curves of different load capacitors (CL) of 1 µF, 2.2 µF, 47 µF, 100 µF, 220 µF, and 470 µF. We
investigated the stored voltage, charge, and energy as a function of different load capacitors.
As shown in Figure 4d, the 1 µF capacitor showed excellent charging capability, and it
charged up to 13.4 V within 20 s and then increased slowly to the saturated voltage of
19.7 V in 220 sec, a behavior which is in agreement with earlier reports [31,33,51]. With a
smaller CL, the charging pace was faster, and the time until the voltage reached saturation
was shorter. The charge stored on these varied capacitors was estimated by multiplying the
charged voltage (V) by the capacitance (CL), and the results are presented in Figure 4e. In
Figure 4f, the values of charged voltage and stored charge are illustrated as functions of
various load capacitance values. With respect to the load capacitor, the behavior of charged
voltage and stored charge was opposite in nature. Furthermore, we calculated the energy
stored in the capacitors as follows: E = 1

2 CV2, where V is saturated charged voltage. The
variation in the maximum stored energy as a function of CL is shown in Figure 4g. At an
optimum load capacitance (CL) of 100 µF, the maximum stored energy was found to be
around 1800 µJ.

Furthermore, different TENG devices were prepared by keeping ZIF-67 as one constant
triboelectric layer, and other triboelectric layers such as Kapton, Teflon, Silicone, and over-
head projector (OHP) PET, and PMMA sheets were selected. Figure 4h shows the output
voltages of the fabricated TENG devices with different triboelectric layers in combination
with ZIF-67. It was observed that PMMA showed the highest output voltage (~300 V) with
ZIF-67 as a triboelectric pair. Furthermore, we studied the electrical characteristics of the
best TENG device (ZIF-67-PMMA) and explored its different applications. The open-circuit
output voltage and short-circuit current of Al/ZIF-67/PMMA/Al was tested by switching
the polarity of the geometry, and we found the same response as shown in Figure 4i,j,
respectively. Furthermore, the TENG load characteristics and instantaneous power density
are presented in Figure 4k,l. The highest power density of 593 mW/m2 at 8 MΩ was
observed, and it is the highest reported value so far for a metal–organic-framework-based
TENG device to the best of our knowledge (Table 1). The highest power density may have
been due to the triboelectric pair of ZIF-67 and PMMA. The power density of the TENG
strongly depended on the triboelectric pair selection, which is evidenced in Figure 4h. Tribo-
electric films with a large work function difference can be expected to have a higher power
density [63,64]. In addition to the above, the effective contact area between triboelectric
films plays a significant role in deciding the TENG performance [65–67].

4. Applications of the TENG (ZIF-67-PMMA)

Self-powered electronic device applications were explored with the TENG (ZIF-
67/PMMA). Figure 5a,b show the photographs of portable electronic devices (calculator,
digital watch, and digital thermometer), a series connected 250 LEDs, an electrolumines-
cence (EL) device, and a commercial hygrometer connected to the TENG in the OFF and ON
conditions, respectively. The electroluminescence (EL) device was fabricated with the help
of two conducting tin-doped indium oxide electrodes used for contact, and luminescent
active materials (ZnS-Cu, Al) were sandwiched between two ITO electrodes. The output of
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the TENG was sufficient to turn on the calculator, the digital watch, the digital thermome-
ter, the connected series of 250 LEDs, and the EL device (see Supplementary Information
Videos S2–S4). However, the hygrometer was not turned on with the TENG output due
to the high power required by a large LCD. We stored energy provided by the TENG in a
capacitor, which was used to switch on the hygrometer (see Supplementary Information
Video S6).
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