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Abstract: Introduction: Cerebellum cortex fractional anisotropy is a proxy of the integrity of the
cerebellum cortex. However, less is known about how it is shaped by race and socioeconomic status
(SES) indicators such as parental education and household income. Purpose: In a national sample
of American pre-adolescents, this study had two aims: to test the effects of two SES indicators,
namely parental education and household income, on cerebellum cortex fractional anisotropy, and to
explore racial differences in these effects. Methods: Using data from the Adolescent Brain Cognitive
Development (ABCD) study, we analyzed the diffusion Magnetic Resonance Imaging (dMRI) data of
9565, 9–10-year-old pre-adolescents. The main outcomes were cerebellum cortex fractional anisotropy
separately calculated for right and left hemispheres using dMRI. The independent variables were
parental education and household income; both treated as categorical variables. Age, sex, ethnicity,
and family marital status were the covariates. Race was the moderator. To analyze the data, we used
mixed-effects regression models without and with interaction terms. We controlled for propensity
score and MRI device. Results: High parental education and household income were associated
with lower right and left cerebellum cortex fractional anisotropy. In the pooled sample, we found
significant interactions between race and parental education and household income, suggesting
that the effects of parental education and household income on the right and left cerebellum cortex
fractional anisotropy are all significantly larger for White than for Black pre-adolescents. Conclusions:
The effects of SES indicators, namely parental education and household income, on pre-adolescents’
cerebellum cortex microstructure and integrity are weaker in Black than in White families. This
finding is in line with the Marginalization-related Diminished Returns (MDRs), defined as weaker
effects of SES indicators for Blacks and other racial and minority groups than for Whites.

Keywords: socioeconomic position; parental education and household income; brain development;
pre-adolescents; MRI; cerebellum cortex

1. Introduction

Our ability to study the microstructure and integrity of brain regions and struc-
tures [1,2] has drastically improved since the development of diffusion tensor imaging
(DTI) and diffusion magnetic resonance imaging (dMRI) [3–5]. Diffusion tensor imaging
(DTI) and dMRI assess the direction of the movement of the water molecules in brain
tissue as a result of exposure to a moving electromagnetic field. Diffusion magnetic res-
onance imaging (dMRI) and DRI can measure fractional anisotropy that reflects white
and gray matter diffusivity, density, integrity, and micro-structure [2,6,7]. Such fractional
anisotropy can capture some of the developmental abnormalities in the brain cerebellum
cortex and other structures [8–10]. Altered fractional anisotropy of various brain structures
such as the thalamus, amygdala, hippocampus, cerebral cortex, and cerebellum cortex
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are well-documented in clinical and subclinical anomalies [6,11–13] associated with brain
injury, psychosis, depression [14–16], autism [17–19], and attention deficit hyperactive dis-
order (ADHD) [20–22]. Altered fractional anisotropy across brain structures are linked to
poor processing speed [23,24] motor dysfunction [25,26], learning [27–29], executive func-
tion [24,30–32], emotion regulation [33–37], inhibitory control [38–40], and even memory
formation [41–43].

Parental education and household income are two main socioeconomic status (SES)
factors [44] that correlate with adolescents’ brain development and associated behavioral
and emotional outcomes. Parental education and family income are inversely associated
with adolescents’ odds of antisocial behaviors [45], school problems [46], learning disor-
ders [47], attention deficit and hyperactivity disorder [48–51], aggression [52], early sexual
initiation [53], and use of tobacco [54,55], alcohol [56,57], and drugs [58]. The SES effects
on brain structures and function are believed to be one of the reasons why we see connec-
tion between various family SES indicators and adolescents’ behavioral and emotional
profile [59–61]. While all SES indicators are important, parental education and household
income reflect two complementary aspects of the home and social environment [62]. While
high family income reduces the risk of food and housing insecurity and overall stress,
high parental education reflects an aspect of SES that is not covered by the availability of
financial resources. Parental education is more reflective of effective and involved parent-
ing [63–65], intellectually enriched environment and psychosocial rather than economic
environment [66–68]. It is particularly important to study racial differences in the effects of
parental education and household income because research suggests that while income
generates more equal outcomes across racial groups [69,70], parental education may exert
far fewer influences for families of color [71]. This difference is because parents of color
with high education are likely to be discriminated against in the labor market [72] and
parental education generates less income and wealth in non-White families [73–75]. How-
ever, by the time that income reaches the pocket of families, many of these environmental
and structural barriers are already bypassed, so income can generate more equal outcomes
across diverse racial groups.

Most of the existing knowledge on the brain effects of SES indicators are focused on
structure (e.g., size) and the function (e.g., response to threat) of brain structures [76–80]
such as the cerebral cortex, hippocampus, amygdala, and thalamus [81]. While we know
altered size and function of such brain structures correlate with psychosis, depression,
anxiety, ADHD, and learning disorder [82–89], less is known about the role of the micro-
structure of the cerebellum cortex. Thus, there is a need to test if what is relevant to
other brain structures [81] such as the hippocampus, amygdala, thalamus, and cerebellum
cortex [48,66,77,79,90–96], also holds for microstructure and integrity of the cerebellum
cortex. As such, to fill the existing gap in the literature, there is a need to compare racial
groups for the effects of two major SES indicators (parental education and household
income) on the cerebellum cortex fractional anisotropy.

While there is a very well-established body of literature on SES effects on the
brain [78–80,90,91,95,97,98], and some of this literature shows that SES also impacts brain
microstructure and brain tissue integrity [1,99,100], we need more research in this area.
First, most of the literature on SES effects on adolescents’ brain development are on
brain structures other than the cerebellum cortex [59,62,101,102]. Second, the existing
research has mainly studied the additive rather than multiplicative effects of race and
SES, because race and SES are seen as overlapping proxies of trauma, stress, and adver-
sities [59,62,101,102]. Although additive effects of race and SES on brain function and
structure are known [59,101,102], recent research has suggested that SES indicators may
show diminished effects on the brain development of Black relative to White adoles-
cents [103] and adults [104]. Despite these recent developments in the literature, we are
not aware of any studies focusing on racial differences in the effects of SES indicators on
children’s cerebellum cortex fractional anisotropy.
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According to the Marginalization-related Diminished Returns (MDRs) framework [69,105],
due to racism, marginalization, stratification, and discrimination, SES indicators (partic-
ularly parental education) tend to generate fewer effects on health outcomes, including
adolescents’ brain development, in racial minority families compared to White families.
Similar MDRs are shown for the effects of parental education on Black pre-adolescents’
attention [106], impulse control [107], inhibitory control [108], depression [109], suici-
dality [63], anxiety [110], social and behavioral problems [111,112], and attention deficit
hyperactive disorder (ADHD) [49]. As a result of these MDRs, we observe poor develop-
ment and behavior in high family SES only because they are Black and treated differently
by society [62]. However, very little, if any, is known on such MDRs for cerebellum cortex
fractional anisotropy.

Aims

In a national sample of 9–10-year-old pre-adolescents, this study had two aims: first,
to explore the effects of parental education and household income on cerebellum cortex
fractional anisotropy as a proxy of cerebellum cortex microstructure and tissue integrity,
and second, to explore racial variation in such effects. While we expected overall effects of
parental education and household income on cerebellum cortex fractional anisotropy, in line
with the MDRs literature, we expected these effects to be weaker for Black than for White
pre-adolescents. That means we hypothesized pre-adolescents’ cerebellum cortex fractional
anisotropy to remain similar in high SES and low SES Black pre-adolescents, while the
difference in cerebellum cortex fractional anisotropy is expected to be large between low
SES and high SES White pre-adolescents. If we find support for our hypothesis, we will
attribute the observed racial differences to MDRs-generating processes such as racism,
discrimination, and segregation (as opposed to biological and genetic differences).

2. Methods
2.1. The ABCD Study Design and Setting

This secondary data analysis had a cross-sectional methodological design. This investi-
gation used data from the Adolescent Brain Cognitive Development (ABCD) study [113–117].
This cross-sectional study used wave 1 data from the ABCD study. ABCD is a national
brain imaging study of pre-adolescents’ brain structure and function [113,118].

2.2. Ethics

The ethics review board of the University of California in San Diego approved the
ABCD study. While youth signed assent, parents signed consent [118]. Given the de-
identified nature of the data, our secondary analysis was exempt from the Charles R Drew
University of Medicine and Science ethics review board.

2.3. Samples and Sampling

The ABCD study participants were drawn from schools in various cities across various
US states. The subject recruitment was mainly conducted through local school systems.
Schools were selected based on characteristics such as race, ethnicity, SES, sex, and urbanic-
ity [119]. This paper’s analytical sample was 9565 pre-adolescents who were between 9
and 10 years old. Inclusion in this analysis was limited to 9–10-year-old pre-adolescents
who had complete data on race, ethnicity, parental education, household income, and
cerebellum cortex fractional anisotropy.

2.4. Image Acquisition and dMRI

The ABCD study has captured T1 and T2 weighted structural, functional, and diffusion
MRI data using General Electric 750, 3 tesla (T) Siemens Prisma, and Phillips multi-channel
coiled scanners. All these MRI devices have been capable of multiband echo-planar
imaging (EPI) acquisitions [114]. A localizer has been implemented to maximize the image
acquisition harmonization before the scanning process starts. The T1 and T2 weighted scan
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sequences were optimized for cortical and subcortical segmentation. This was done using
a magnetization-prepared rapid acquisition gradient-echo. Casey et al. have provided a
detailed description of MRI acquisition in the ABCD study [120]. Although in the ABCD
study, task-based and resting-state functional, structural, and diffusion MRI are used, the
current analysis only used dMRI data [120]. The scan sessions in the ABCD study consist
of a fixed order of scan types. These start with a localizer followed by the acquisition
of 3D T1-weighted images, 2 runs of resting state fMRI, diffusion weighted images, 3D
T2-weighted images, resting-state fMRI, and finally three task-based fMRIs [120].

Before scans are preformed, all participants undergo a detailed MR screening ques-
tionnaire for ruling out existence of any MRI contraindication. These include braces,
pacemakers, and other metal in the body including piercings, medical screw, pins, etc. This
MR screening is conducted three times: at the time of recruitment to the study when MRI
is being scheduled and prior to the scans [120].

The next steps before actual scan sessions are simulation and motion compliance
training. As MRI parameters are highly sensitive to noise and their reliability and validity
are susceptible to movement artifacts, especially in pediatric populations [121], before the
scan, a simulator is used to desensitize participants to the scanner environment. Simulation
occurs in dedicated mock scanners, which have prerecorded scanner sounds and collapsible
play tunnels equal to the diameter of the scanner bore (55–60 mm). As head motion is a
major threat to the validity of pediatric MRI, behavioral shaping techniques are applied as
a part of motion compliance training [122]. Commercial simulators or Wii devices that are
fixed to the child’s head monitor head motion and provide feedback to the participating
child. Following the performance of simulation and motion compliance, participants
practice three fMRI tasks to be sure they understand the instructions.

In addition, during the 3D T2 and diffusion weighted imaging acquisitions and during
acquisition of the localizer and 3D T1 scans, a child-friendly movie is being played while the
child is in the scanner [120]. The 3D T1-weighted magnetization-prepared rapid acquisition
gradient echo scan is obtained for cortical and subcortical segmentation of the brain [120].
The high angular resolution diffusion imaging (HARDI) scan, with multiple b-values, and
fast integrated B0 distortion correction reversed polarity gradient (RPG) method [123,124],
is acquired for segmentation of white matter tracts and measurement of diffusion [120].

As described in detail by Hagler and colleagues [125], the T1-weighted acquisition in
the ABCD study is a 3D T1w inversion-prepared radio-frequency (RF)-spoiled gradient
echo scan that was 1 mm isotropic [126,127]. The dMRI acquisition uses multiband echo
planar imaging and was 1.7 mm isotropic [128,129]. The dMRI acquisition uses a slice
acceleration factor of 3. It has 96 diffusion directions, seven b = 0 frames, and four different
b-values. The 96 directions included 6 directions with b = 500, 15 directions with b = 1000,
15 directions with b = 2000, and 60 directions with b = 3000 [120].

The processing of the dMRI data is also described in detail elsewhere [125]. Briefly,
distortions due to eddy currents are corrected, outliers are removed from the data, head
motion is corrected using rigid body registration, spatial and image intensity distortion
from B0 field inhomogeneities are corrected, and the b = 0 images are registered to the T1-
weighted images using mutual information. Then, the ABCD dMRI processing pipelines
measure a number of different properties of white matter data, including FA, an index of the
directionality of water diffusion within a voxel. Other properties include mean diffusivity
(MD), a mean of the eigenvalues, longitudinal diffusivity (LD), the first eigenvalue, and
transverse diffusivity (TD), the mean of the second and third eigenvalues [130]. These
dMRI metrics were calculated for white and gray matter structures and segments as well
as fiber tracts based on the brain atlas. These are standard methods for segmenting gray
and white matter based on brain atlas [131]. While other dMRI were also available, in this
study we only used cerebellum cortex fractional anisotropy [120].

Head motion is a significant concern for pediatric imaging. In the ABCD study, real-
time motion detection and correction for the structural scans are implemented by the
ABCD DAIC hardware and software. Specifically, anatomical 3D T1- and 3D T-2 weighted
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images are collected using prospective motion correction (PROMO) on the General Electric
(GE) [127], Volumetric Navigators (vNav) for prospective motion correction and selective
reacquisition on the Siemens and when available on the Philips platform [126].

A real-time head motion monitoring system called FIRMM (fMRI Integrated Real-time
Motion Monitor [121], collaboratively developed at Washington University, St. Louis and
Oregon Health Sciences University, is implemented for motion detection in resting state
fMRI scans at the Siemens sites. FIRMM allows scanner operators to adjust the scanning
paradigm based on a participant’s degree of head motion (i.e., the worse the motion, the
less usable data and greater the need for more data to be acquired). The ABCD also used
an arousal questionnaire. Immediately following scanning, participants were administered
the ABCD arousal state questionnaire again.

2.5. Variables
2.5.1. Dependent Variable

Using dMRI data, the outcome in this study was right and left cerebellum cortex
fractional anisotropy. Fractional anisotropy is a proxy of the integrity and tissue microstruc-
ture of the brain’s tissue (cerebellum cortex in this study). Cerebellum cortex fractional
anisotropy was calculated for right and left hemispheres, based on the brain atlas. We
operationalized this variable as a continuous measure. The ABCD data set already in-
cludes pre-calculated and available right and left cerebellum cortex fractional anisotropy
(Appendix A.2).

2.5.2. Independent Variable

Parental education: The independent variable was parental education, measured by self-
reported educational attainment of both parents. ABCD study has calculated this variable
based on the highest level of educational attainment of both parents. This variable was a
categorical variable with the following categories. (1) <HS Diploma, (2) HS Diploma/GED,
(3) Some College, (4) Bachelor, and (5) Post Graduate Degree.

Household income: The second independent variable was family income, a three-
level categorical measure: Parents were asked about their overall household income.
The item read as “What is your total combined family income for the past 12 months?
This should include income (before taxes and deductions) from all sources, wages, rent
from properties, social security, disability and veteran’s benefits, unemployment benefits,
workman”. Responses included 1 = Less than USD 50,000; 2 = USD 50,000–100,000;
3 = USD 100,000+.

2.5.3. Covariates

Age: Parents were asked to report pre-adolescents’ age. Age was in months passed
since birth.

Sex: A dichotomous variable, sex, was coded as male = 1 and female = 0.
Family marital status: Family marital status, a dichotomous variable, was coded as

married = 1, non-married = 0 (reference).
Ethnicity: Parents were asked if they were from a Latino background. Ethnicity was

coded as Latino = 1 and = 0.

2.5.4. Moderator

Race: Race was a self-identified variable: Black, Asian, Mixed/Other, and White (refer-
ence category). Multiracial respondents were included in the survey and were categorized
as Mixed/Other.

2.6. Data Analysis

Using Data Exploration and Analysis Portal (DEAP), we reported mean (SD) and
frequency tables (%) for our variables overall and by race. Then, we calculated Chi-square
and Analysis of Variance (ANOVA) to explore bivariate associations between our study
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variables. To run multivariable analyses, three mixed-effects regression models were run for
each outcome (Appendix A.1). The first model did not include race by parental education
or household income interaction term. Model 2 included the race by parental education
interaction terms. Model 3 included the race by household income interaction terms. To
test our modeling assumptions, we ruled out collinearity between study variables. We also
tested the distribution of our outcome variables and error terms (residuals) (Appendix A.2).
The predictor variables were parental education and household income. The outcomes
were right and left cerebellum cortex fractional anisotropy. Confounders included ethnicity,
sex, age, and parental marital status. The moderator was race. We controlled for propensity
score and MRI device. Regression coefficient, standard errors (SEs), and p-values were
reported. A p-value of less than 0.05 was significant.

3. Results
3.1. Descriptives

This secondary analysis included 9565 9–10-year-old pre-adolescents. Pre-adolescents
were either White (n = 6436), Black (n = 1343), Asian (n = 203), or other/mixed race
(n = 1583). Table 1 shows the summary statistics of the study variables in the overall sample
and by race. The difference between racial groups in terms of right and left cerebellum
cortex fractional anisotropy was statistically significant.

3.2. Model Fits

Table 2 shows a summary of the fit statistics for all our eight models. As this table
shows, the models better explained the outcomes when they included the interactions
terms between race and SES. That means interactions between race and parental education
and household income help the model to better explain the variance of the right and left
cerebellum cortex fractional anisotropy.

3.3. Parental Education and Right and Left Cerebellum Cortex Fractional Anisotropy

Table 3 shows the results of regression models in the total sample with race, parental
education, and household income as the predictors and right and left cerebellum cortex
fractional anisotropy as the outcome. In the pooled sample, parental education was
associated with right and left cerebellum cortex fractional anisotropy (net of confounders).

3.4. Household Income and Right and Left Cerebellum Cortex Fractional Anisotropy

Table 4 shows the results of regression models in the total sample with parental ed-
ucation as the predictor and right and left cerebellum cortex fractional anisotropy as the
outcome. In the pooled sample, parental education was associated with right and left cere-
bellum cortex fractional anisotropy (net of confounders). These effects were significantly
larger for White than for Black pre-adolescents, documented by significant interactions
between race and parental education on the right and left cerebellum cortex fractional
anisotropy.
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Table 1. Descriptive data by race.

Level All White Black Asian Other/Mixed p

Weighted Weighted Weighted Weighted Weighted

n 9565 6436 1343 203 1583

Age (Month) 119.07 (7.47) 119.34(7.49) 119.12 (7.49) 119.38(7.49) 119.10 (7.22) 119.39(7.24) 119.83 (7.80) 120.16(7.80) 118.70 (7.54) 118.86(7.62) 0.097 0.102

Right mean cerebellum
cortex fractional
anisotropy

0.26 (0.05) 0.27(0.05) 0.26 (0.05) 0.26(0.05) 0.26 (0.05) 0.26(0.05) 0.28 (0.05) 0.27(0.05) 0.28 (0.06) 0.28(0.06) <0.001 <0.001

Left mean cerebellum
cortex fractional
anisotropy

0.27 (0.05) 0.27(0.05) 0.26 (0.05) 0.26(0.05) 0.26 (0.06) 0.26(0.06) 0.28 (0.05) 0.27(0.05) 0.28 (0.06) 0.28(0.06) <0.001 <0.001

Parental education

<HS Diploma 339 (3.5) (4.4) 130 (2.0) (2.8) 104 (7.7) (9.0) 4 (2.0) (1.5) 101 (6.4) (9.4) <0.001 <0.001
HS Diploma/GED 760 (7.9) (9.6) 288 (4.5) (6.1) 301 (22.4) (25.0) 3 (1.5) (1.7) 168 (10.6) (15.2)

Some College 2429 (25.4) (29.8) 1348 (20.9) (26.6) 533 (39.7) (41.4) 16 (7.9) (8.7) 532 (33.6) (40.6)
Bachelor 2546 (26.6) (25.1) 1926 (29.9) (28.5) 201 (15.0) (13.4) 52 (25.6) (26.5) 367 (23.2) (18.4)

Post Graduate Degree 3491 (36.5) (31.1) 2744 (42.6) (36.1) 204 (15.2) (11.3) 128 (63.1) (61.6) 415 (26.2) (16.5)

Household income
<50,000 2680 (28.0) (37.7) 1151 (17.9) (28.4) 882 (65.7) (74.7) 31 (15.3) (18.5) 616 (38.9) (54.9) <0.001 <0.001

>=100,000 4147 (43.4) (31.2) 3338 (51.9) (37.4) 162 (12.1) (6.2) 124 (61.1) (51.4) 523 (33.0) (17.6)
>=50,000 and <100,000 2738 (28.6) (31.2) 1947 (30.3) (34.2) 299 (22.3) (19.0) 48 (23.6) (30.1) 444 (28.0) (27.5)

Married family No 2848 (29.8) (36.6) 1288 (20.0) (28.2) 944 (70.3) (77.1) 31 (15.3) (15.6) 585 (37.0) (46.3) <0.001 <0.001
Yes 6717 (70.2) (63.4) 5148 (80.0) (71.8) 399 (29.7) (22.9) 172 (84.7) (84.4) 998 (63.0) (53.7)

Sex
Female 4608 (48.2) (49.2) 3040 (47.2) (48.2) 680 (50.6) (51.8) 103 (50.7) (50.4) 785 (49.6) (51.0) 0.062 0.142
Male 4957 (51.8) (50.8) 3396 (52.8) (51.8) 663 (49.4) (48.2) 100 (49.3) (49.6) 798 (50.4) (49.0)

Hispanic No 7762 (81.2) (77.7) 5355 (83.2) (80.3) 1276 (95.0) (92.5) 184 (90.6) (94.6) 947 (59.8) (45.6) <0.001 <0.001
Yes 1803 (18.8) (22.3) 1081 (16.8) (19.7) 67 (5.0) (7.5) 19 (9.4) (5.4) 636 (40.2) (54.4)

Outcomes: right and left cerebellum cortex fractional anisotropy.
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Table 2. Variance explained by our models.

Education Income

Right Left Right Left

All
Main

Effects

All
Interaction

Effects

All
Main

Effects

All
Interaction

Effects

All
Main

Effects

All
Interaction

Effects

All
Main

Effects

All
Interaction

Effects

n 9565 9565 9565 9565 9565 9565 9565 9565
R-squared 0.01158 0.01122 0.01634 0.01691 0.01158 0.01122 0.01474 0.0137
∆R-
squared

0.00044
(0.04%)

0.00046
(0.05%)

0.01216
(1.22%)

0.01272
(1.27%)

1 × 10−4

(0.01%)
0.00011
(0.01%)

0.0103
(1.03%)

0.00921
(0.92%)

Table 3. Regressions in the overall sample and by race with right and left cerebellum cortex fractional anisotropy as the
outcomes.

Right Left

b SE p sig b SE p Sig

Parental education (HS
Diploma/GED) −0.0054 0.0035 0.124 −0.0048 0.0035 0.167

Parental education (Some
College) −0.0057 0.0032 0.073 # −0.0060 0.0032 0.057 #

Parental education (Bachelor) −0.0069 0.0034 0.041 * −0.0069 0.0034 0.041 *
Parental education (Post
Graduate Degree) −0.0066 0.0034 0.053 # −0.0068 0.0034 0.048 *

Household income (>=100 K) 0.0019 0.0020 0.320 0.0018 0.0020 0.366
Household income (>=50 K
and <100 K) 0.0010 0.0017 0.554 0.0005 0.0017 0.782

Race (Black) −0.0051 0.0019 0.008 ** −0.0040 0.0019 0.038 *
Race (Asian) 0.0120 0.0035 0.001 ** 0.0114 0.0035 0.001 **
Race (Other/Mixed) 0.0110 0.0017 < 0.001 *** 0.0112 0.0017 < 0.001 ***
Married Family −0.0042 0.0015 0.004 ** −0.0040 0.0015 0.008 **
Age (Months) −0.0003 0.0001 < 0.001 *** −0.0003 0.0001 < 0.001 ***
Sex (Male) 0.0012 0.0011 0.260 0.0011 0.540

Outcomes: right and left cerebellum cortex fractional anisotropy. # p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 4. Regressions on the association between parental education with right and left cerebellum cortex fractional
anisotropy.

Right Left

b SE p sig b SE p sig

Parental education (HS
Diploma/GED) −0.0085 0.0054 0.117 −0.0086 0.0054 0.112

Parental education (Some
College) −0.0163 0.0048 0.001 *** −0.0185 0.0048 0.000 ***

Parental education (Bachelor) −0.0155 0.0049 0.002 ** −0.0172 0.0049 0.000 ***
Parental education (Post
Graduate Degree) −0.01405 0.0049 0.004 ** −0.0156 0.0049 0.001 **

Household income (>=100 K) 0.0026 0.0020 0.188 0.0025 0.0020 0.204
Household income (>=50 K and
<100 K) 0.0015 0.0017 0.371 0.0011 0.0017 0.531

Race (Black) −0.0331 0.0071 < 0.001 *** −0.03484 0.0071 < 0.001 ***
Race (Asian) 0.0428 0.0238 0.072 # 0.0519 0.0238 0.029 *
Race (Other/Mixed) 0.0122 0.0068 0.072 # 0.0099 0.0068 0.145
Married Family −0.0043 0.0015 0.004 ** −0.0040 0.0015 0.006 **
Age (Months) −0.0003 0.0001 < 0.001 *** −0.0003 0.0001 < 0.001 ***
Sex (Male) 0.0013 0.0011 0.218 0.0008 0.0011 0.468
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Table 4. Cont.

Right Left

b SE p sig b SE p sig

Parental education (HS
Diploma/GED) × Race (Black) 0.0185 0.0082 0.024 * 0.0198 0.0082 0.016 *

Parental education (Some
College) × Race (Black) 0.0352 0.0075 < 0.001 *** 0.0396 0.0075 < 0.001 ***

Parental education (Bachelor) ×
Race (Black) 0.0359 0.0082 < 0.001 *** 0.0384 0.0082 < 0.001 ***

Parental education (Post
Graduate Degree) × Race (Black) 0.0263 0.0083 0.002 ** 0.0283 0.0083 0.001 ***

Parental education (HS
Diploma/GED) × Race (Asian) −0.0523 0.0365 0.152 −0.0591 0.0364 0.105

Parental education (Some
College) × Race (Asian) −0.0212 0.0266 0.425 −0.0281 0.0266 0.292

Parental education (Bachelor) ×
Race (Asian) −0.0228 0.0247 0.357 −0.0324 0.0248 0.191

Parental education (Post
Graduate Degree) × Race (Asian) −0.0369 0.0242 0.128 −0.0475 0.0243 0.050 #

Parental education (HS
Diploma/GED) × Race
(Other/Mixed)

−0.0046 0.0085 0.584 −0.0031 0.0085 0.716

Parental education (Some
College) × Race (Other/Mixed) 0.0045 0.0073 0.540 0.0073 0.0073 0.321

Parental education (Bachelor) ×
Race (Other/Mixed) −0.0042 0.0076 0.584 −0.0003 0.0076 0.970

Parental education (Post
Graduate Degree) × Race
(Other/Mixed)

−0.0064 0.0076 0.402 −0.0041 0.0076 0.591

Outcomes: right and left cerebellum cortex fractional anisotropy. # p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Household Income and Right and Left Cerebellum Cortex Fractional Anisotropy

Table 5 shows the results of regression models in the total sample with household
income as the predictor and right and left cerebellum cortex fractional anisotropy as
the outcome. In the pooled sample, we found significant interactions between race and
household income on the right and left cerebellum cortex fractional anisotropy.

Table 5. Regressions on the association between household income with right and left cerebellum cortex fractional
anisotropy.

Right Left

b SE p sig b SE p sig

Household income (>=100 K) 0.0015 0.0022 0.490 0.0012 0.0022 0.590
Household income (>=50 K and
<100 K) 0.0009 0.0021 0.684 −0.0002 0.0021 0.941

Parental education (HS
Diploma/GED) −0.0047 0.0035 0.174 −0.0042 0.0035 0.223

Parental education (Some
College) −0.0056 0.0032 0.077 # −0.0060 0.0032 0.059 #

Parental education (Bachelor) −0.0069 0.0034 0.042 * −0.0069 0.0034 0.042 *
Parental education (Post
Graduate Degree) −0.0066 0.0034 0.055 # −0.0067 0.0034 0.050 *

Race (Black) −0.0094 0.0025 0.000 *** −0.0083 0.0025 0.001 ***
Race (Asian) 0.0146 0.0086 0.090 # 0.0125 0.0086 0.146
Race (Other/Mixed) 0.0154 0.0026 < 0.001 *** 0.0148 0.0026 < 0.001 ***
Married Family −0.0043 0.0015 0.004 ** −0.0040 0.0015 0.006 **
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Table 5. Cont.

Right Left

b SE p sig b SE p sig

Age (Months) −0.0003 0.0001 < 0.001 *** −0.0003 0.0001 < 0.001 ***
Sex (Male) 0.0012 0.0011 0.263 0.0007 0.0011 0.544
Household income (>=100 K) ×
Race (Black) 0.0110 0.0059 0.059 # 0.0110 0.0059 0.062 #

Household income (>=50 K and
<100 K) × Race (Black) 0.0142 0.0043 0.001 ** 0.0138 0.0043 0.001 **

Household income (>=100 K) ×
Race (Asian) 0.0033 0.0098 0.732 0.0036 0.0098 0.712

Household income (>=50 K and
<100 K) × Race (Asian) −0.0169 0.0109 0.124 −0.0117 0.0109 0.284

Household income (>=100 K) ×
Race (Other/Mixed) −0.0075 0.0041 0.068 # −0.0068 0.0041 0.099 #

Household income (>=50 K and
<100 K) × Race (Other/Mixed) −0.0094 0.0040 0.019 * −0.0072 0.0040 0.074 #

Outcomes: right and left cerebellum cortex fractional anisotropy. # p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.

3.6. Parental Education and Right and Left Cerebellum Cortex Fractional Anisotropy Overall and
by Race

Figure 1 shows the associations between parental education and right and left cere-
bellum cortex fractional anisotropy overall. Figures 1a and 2a show associations between
parental education and right and left cerebellum cortex fractional anisotropy (net of con-
founders) in the pooled sample. Figures 1b and 2b show that these effects are significantly
larger for White than for Black pre-adolescents.

(a) Overall

Post-Graduate 

Bachelor's 

Some College 

HS Diploma/GED 

<= HS Diploma/GED 

Post-Graduate × Mixed/Other Race 
Bachelor's × Mixed/Other Race 

Some College × Mixed/Other Race 
HS Diploma/GED × Mixed/Other Race 

Post-Graduate × Asian 
Bachelor's × Asian 

Some College × Asian 
HS Diploma/GED × Asian 

Post-Graduate × Black 
Bachelor's x Black 

Some College × Black 
HS Diploma/GED × Black 

Post-Graduate 
Bachelor's 

Some College 
HS Diploma/GED 

<= HS Diploma/GED 

(b) by race

Figure 1. Association between parental education and right cerebellum cortex fractional anisotropy overall and by race.
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Post-Graduate × Asian 
Bachelor's × Asian 
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Figure 2. Association between parental education and left cerebellum cortex fractional anisotropy overall and by race.

3.7. Household Income and Right and Left Cerebellum Cortex Fractional Anisotropy

Figure 2 shows the associations between household income and right and left cerebel-
lum cortex fractional anisotropy overall. Figures 3a and 4a did not show any association
between household income and right and left cerebellum cortex fractional anisotropy
(net of confounders) in the pooled sample. Figures 3b and 4b show that the association
between household income and right and left cerebellum cortex fractional anisotropy are
significantly larger for White than for Black pre-adolescents.
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4. Discussion

The effects of higher parental education and household income on the right and left
cerebellum cortex fractional anisotropy are larger for White pre-adolescents than they are
for Black pre-adolescents. Racial differences in the effects of high parental education and
household income on the right and left cerebellum cortex fractional anisotropy is in line
with the MDRs.

Multiple previous studies have shown that high SES indicators such as parental
education and household income correlate with multiple functional and structural aspects
of the brain in adolescents and adults. Most of the past work, however, is on regions and
structures other than the cerebellum. For example, research has well-established links
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between higher family SES and the structure and function of the cerebral cortex, thalamus,
hippocampus, amygdala, and striatum. In fact, the effects of SES on these brain structures
and functions might be why SES is linked to adolescents’ cognitive function, emotions, and
behaviors [132].

We found similar results for household income and parental education. While parental
education and household income correlate, and have overlapping mechanisms of the effects,
they also have unique ways by which they influence brain development [133–136]. Parental
education and household income are linked to brain structure because they are proxies of
high-quality parenting [137–141] and lower parental risk behaviors [142–145] and low stress
across domains [146]. Parenting and parental behaviors have salient effects on adolescents’
brain development that are not all due to SES [147]. As such, both parental education
and household income and income represent the social environment in which the child’s
development is happening. This is particularly important because both parenting and SES
protect adolescents against psychopathologies [148–150], problem behaviors [45,151,152],
and poor cognitive performance [71,153–155]. At the same time, low family SES is a proxy
of the scarcity of resources, which can interfere with the healthy development of young
people’s brains.

The results reported here are in line with what we know about Marginalization-related
Diminished Returns (MDRs). MDRs can be defined as weaker effects of SES indicators
such as parental education and household income on various health outcomes for racial
minorities than for Whites. MDRs are documented for attention [106], impulsivity and
inhibitory control [107,156], depression [63,109,157–159], suicidality [63], anxiety [110],
social and behavioral problems [156,160], and ADHD [49] in Black adolescents.

Race and parental education and household income have multiplicative rather than
additive effects on fractional anisotropy of the cerebellum cortex. As a result, low SES
and high SES Black adolescents remain at high risk, regardless of their SES. This pattern
is in contrast to Whites for whom high SES reduces the risk. Fractional anisotropy of the
brain is shown to be linked to depression [14–16], autism [17–19], and attention deficit
hyperactive disorder (ADHD) [20–22] as well as poor processing speed [23,24] motor dys-
function [25,26], learning [27–29], executive function [24,30–32], emotion regulation [33–37],
inhibitory control [38–40], and even memory formation [41–43].

Future research should test how societal and structural conditions bound the boosting
effects of parental education and household income on adolescents’ white and gray matter
integrity in Black families. The results of such investigations may have useful implica-
tions for public policy, clinical practice, and public health. These findings suggest that a
true social and economic policy to tackle racial inequalities in brain development should
equalize SES and the marginal returns of SES. The results of such investigations may direct
our policymakers to promote brain health equity; they may achieve equity through two
complementary strategies: first to close the SES gap across racial groups, and second, to
equalize the returns of SES through enhancing social justice in the daily lives of diverse
racial groups.

Our study findings suggested a significant risk for both high- and low- SES Black
pre-adolescents. For White pre-adolescents, low SES is a risk factor, and high SES is a
protective factor. However, for Black pre-adolescents, both those from low SES or high
SES backgrounds remain at high risk in terms of cerebellum cortex integrity. The smaller
protective effects of SES for Black families may be due to environmental (not biological)
aspects of race that are not due to SES. These may be because of race-related stressors
like racism, discrimination, segregation, and blocked opportunities. Racial discrimination,
stress, trauma, and adversities have all been shown to impact Blacks’ brain development
across all SES levels [161–163]. Similar patterns are reported for various brain regions and
functions [164].

Race and SES have multiplicative and complex effects as social determinants of
children’s brain development. Thus, programs and interventions should be in place to
alleviate the risk and promote the brain development of middle-class Black pre-adolescents.
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Early childhood programs and after-school programs are shown to be effective and may
promote the brain development of underserved communities [165–168]. We argue that
multi-level social and economic policies should reduce the environmental and structural
adversities in Black families’ lives across the full SES spectrum.

Again, there is a need to emphasize that all the MDRs literature including this paper
has conceptualized race as a social, not as a biological, determinant of pre-adolescents’
brain development. In our study, race is a proxy of racism that reduces the effects of SES,
even for families who have access to economic and human resources. Racial differences
reported here are not shaped by genes but the differential treatment of society. Labor market
discrimination, segregation, low school quality, and differential policing are examples of
racism in the US. This view is different from any alternative argument that links race as an
innate, unchangeable, biological marker to brain function and structure [169].

5. Limitations

This study has at least seven methodological limitations. The first is the cross-sectional
design. Due to this limitation, no causal inferences are made between race, parental
education, household income and brain microstructure. The second limitation is that the
analyses also have only a few independent variables. It would be reasonable to expect
that the results would be different if more explanatory variables were included. Our SES
indicators were limited, and we did not include a comprehensive list of SES indicators such
as wealth or home ownership. For example, the data do not include information on the
occupational status of parents, an important indicator of SES. Another missing confounding
variable was the type of residence (urban vs. rural) which can affect the dependent variable
through unequal access to healthcare. All of our SES indicators were measured at the family
level. Neighborhood-level SES indicators such as home value, residential-area income,
and area-level education level were not included. The third limitation was the lack of
data on the current medical conditions. Altered cerebellum cortex fractional anisotropy
can be indicative of several conditions. Among them might be schizophrenia, attention
deficit/hyperactivity disorder (ADHD), and autism. These disorders are determined by
genetic factors as well as environmental conditions. Given that we did not control for
current medical conditions and/or family history of these disorders, our results should
be interpreted with caution. Altered fractional anisotropy of various brain structures has
been linked to deficits in working memory, attention, and general cognition by earlier
research, which were not assessed here. Fourth, we only focused on overall fractional
anisotropy, without mapping it by regions of interest and cerebellum sub-regions. Fifth,
we only described one aspect of the brain and we could compare it with other functional
and structural features such as size, volume, diffusivity and density. Sixth, this study only
described the differential effects of parental education and household income without
investigating why such differences exist. Seventh, the sample size was imbalanced, and a
larger proportion of the sample was White, with less than 20% being Black. Despite these
limitations, this was one of the first studies on the intersections of race, SES, and cerebellum
microstructure.

6. Conclusions

While SES indicators such as parental education and household income are associated
with right and left cerebellum cortex fractional anisotropy, these effects are stronger for
White than for Black American pre-adolescents. These Marginalization-related Diminished
Returns (MDRs) are probably due to the differences in the living experiences of Black
and White middle-class families, which reduces the utility of SES indicators in Black
communities. Future research should investigate whether racism, social stratification,
and segregation reduce the effects of parental education and household income in Black
communities when compared to their White counterparts.
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Appendix A

Appendix A.1. Model Formula

Model 1 (All, Overall Effect)

dmri_dti.fa_subcort.aseg_cerebellum.cortex.rh ~ high.educ.bl + household.income.bl +
race.4level + married.bl + age + sex + hisp

Random: ~(1|rel_family_id)
dmri_dti.fa_subcort.aseg_cerebellum.cortex.lh ~ high.educ.bl + household.income.bl +
race.4level + married.bl + age + sex + hisp

Random: ~(1|rel_family_id)
dmri_dti.fa_subcort.aseg_cerebellum.cortex.rh ~ high.educ.bl + household.income.bl +
race.4level + married.bl + age + sex + hisp + high.educ.bl * race.4level

Random: ~(1|rel_family_id)
dmri_dti.fa_subcort.aseg_cerebellum.cortex.lh ~ high.educ.bl + household.income.bl +
race.4level + married.bl + age + sex + hisp + high.educ.bl * race.4level

Random: ~(1|rel_family_id)

https://abcdstudy.org
https://nda.nih.gov/abcd
https://nda.nih.gov/abcd
https://abcdstudy.org/principal-investigators.html
https://abcdstudy.org/principal-investigators.html
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Appendix A.2. Distribution of Study Variables and Models Assumptions
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