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Abstract

Low-crystalline hydroxyapatite was synthesized from an aqueous solution of calcium
chloride (CaCl,), and a mixed-anionic (HPO4?~ u CO3%7) aqueous solution prepared
from potassium hydrophosphate trihydrate (K, HPO,-3H,0), and potassium carbonate
(K2CO3). The interaction of K,CO3 and KoHPOy salts during synthesis from a mixed-
anionic solution in the reaction zone without additional regulation provided the pH level
necessary for the synthesis of hydroxyapatite. For comparison, as references, powders
were also synthesized from an aqueous solution of CaCl, and from aqueous solutions of
either KyHPO4 or K,CO3. The phase composition of the powder synthesized from aqueous
solutions of CaCl, and KoHPO, included brushite (CaHPO4-2H,0). The phase composition
of the powder synthesized from aqueous solutions of CaCl, and K;COj included calcite
(CaCQOg). The phase composition of all synthesized powders contained potassium chloride
(sylvine, KCl), as a reaction by-product. After heat treatment at 1000 °C of the powder
containing low-crystalline hydroxyapatite and KCI, powder of chlorapatite (Ca1o(PO4)sCl2)
was obtained. After heat treatment of a powder containing brushite (CaHPO,4-2H;0)
and KCl at 800 and 1000 °C, a powder with the phase composition including 3-calcium
pyrophosphate (3-CayP,0y), 3-calcium orthophosphate (3-Caz(POy);), and potassium-
calcium pyrophosphate (K,CaP,O7) was obtained. Heat treatment of calcite (CaCO3)
powder at 800 °C, as expected, led to the formation of calcium oxide (CaO). Synthesized
powders, including biocompatible minerals such as hydroxyapatite, chlorapatite, brushite,
monetite, calcium pyrophosphate, calcium potassium pyrophosphate, tricalcium phosphate,
and calcite, can be used for the creation of biocompatible inorganic materials or composite
materials with a biocompatible polymer matrix. The potassium chloride present in the
synthesized powders can act as one of the precursors of biocompatible minerals, such
as chlorapatite or calcium potassium pyrophosphate, or it can be treated as a removable
inorganic porogen.
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1. Introduction

Fine powders with a given chemical and phase composition and high uniformity of
component distribution are required for the creation of inorganic materials or composite
materials with unique functional properties [1-3]. The simplest and most obvious is the
method of mechanical homogenization of powder mixtures, which is carried out using
special equipment, such as a planetary mill [4]. High-temperature solid-phase synthesis
from a homogeneous mixture of salts obtained by drying a solution of these salts at
subzero temperatures is more difficult for implementation [5]. The maximum level of
homogenization is achieved in mixed-anionic compounds, which are produced using
high-temperature and low-temperature reactions [6]. High-temperature reactions for the
preparation of mixed-anionic compounds can take place during synthesis in the solid
phase, in synthesis by interaction of gas and solid phases, and synthesis in conditions using
pressure. Low-temperature reactions for the preparation of mixed-anionic compounds can
take place in topochemical synthesis, solvothermal synthesis, and synthesis in thin films.
Precipitation of hydroxides [7], carbonates, or oxalates is also used to obtain homogeneous
precursors of oxide powders [8]. Synthesis of inorganic powders consisting of small
particles with a high specific surface area and activity via precipitation from solution is the
most convenient for implementation [9].

High uniformity of the distribution of components in a powder intended for the
production of biocompatible materials can be achieved using synthesis from both mixed-
cationic [10] and mixed-anionic solutions, for example, containing HPO,2~ /P,04 [11],
HPO,?~ /CO32™ [12-14], P,O7*~ /CO3*~ [15], HPO4*~ /Si03%~ [16], and HPO4?~ /S04~ [17].
High uniformity of the distribution of components in powder can be reached in case of
similarity of crystal structures of minerals, for example, brushite (CaHPO4-2H,0), gypsum
(CaSO4-2H,0), and ardealite (Ca(HPO4)x(SO4)1_x-2H,0) [17]. In previous investigations,
it was shown that the simultaneous presence of different anions (HPO,42~ /CO32~ [12],
P,0,% /CO52~ [15], and HPO42~ /SiO3%~ [16]) in the reaction zone causes the formation of
a quasi-amorphous phase. And this phenomenon can be not only a sign of high uniformity
of the distribution of components but also a sign of the presence of defects in the crystal
lattice of the precipitated minerals, which then can provide high activity of the synthesized
powders in sintering or in chemical interaction.

The mineral component of bone tissue is mainly represented by carbonate-substituted
hydroxyapatite [18]. Calcium hydroxyapatite (Ca1o(PO4)s(OH),) is a well-known and
unique ion exchanger [19-21]; therefore, various cations such as Na*, K*, Mg2+, Zn%*,
BaZ*, or Sr?* [22] and anions such as CO3%~ or SiO4*~, F~ or C1~ can be included in the
composition of bone tissue [23,24].

Various powders obtained by one of the methods of chemical synthesis are used
for the manufacture of bone implants, both based on calcium phosphates [25-28] and
calcium carbonates [29-31]. Precipitation from solutions including a hydrophosphate ion,
a carbonate ion, and a calcium ion is preferable due to the possibility of obtaining powders
similar in chemical and phase composition to natural bone tissue [12-14,32]. Powders of
calcium phosphates with a molar ratio Ca/P < 1.67 and calcium carbonates are used to
create materials for temporary bone implants. At the same time, hydroxyapatite-based
materials (molar ratio Ca/P = 1.67) are resistant to dissolution and can be used as implants
for long-term substitution [33].

Materials based on calcium carbonates [34-36] and calcium phosphates with a mo-
lar ratio of Ca/P < 1.67 [37,38] are able to dissolve gradually during implantation, and,
therefore, they are used in regenerative methods of bone defect treatment [39]. Synthetic
powders of calcium carbonate (CaCQOg3), and calcium phosphates with a molar ratio of
Ca/P < 1.67 can be used as fillers in biocompatible and biodegradable composites with
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polymer [40] or mineral (obtained as a result of chemical bonding reactions) matrices [41].
In addition, these powders can also be used to produce biocompatible ceramic materials,
with the phase composition belonging to oxide systems, including calcium oxide and
phosphorus oxide [42].

The aim of the present work consisted of preparing and investigating powders synthe-
sized from an aqueous solution of calcium chloride (CaCly), and a mixed-anionic solution
containing orthophosphate and carbonate ions. Potassium hydroorthophosphate (K;HPOy),
was used as the source of orthophosphate ions, and potassium carbonate (K,CO3), was
used as the source of carbonate ions. For comparison, as references, powders were also
synthesized from an aqueous solution of calcium chloride (CaCl,), and aqueous solutions
including either potassium hydrophosphate (K,HPOy), or potassium carbonate (K;COs3).
Synthesis from aqua solution of CaCl, and a mixed-anionic solution containing orthophos-
phate and carbonate ions can provide the preparation of a powder of high quality as a
starting point for the creation of different biocompatible materials and materials with other
specific properties. To the best of our knowledge, synthesis from a mixed-anionic solution
containing K,HPO, and K,COj3 and an aqua solution of CaCl, has not been considered in
the scientific literature.

2. Materials and Methods

For the synthesis of powders, calcium chloride (CaCly) (CAS No. 10043-52-4, an-
alytical pure grade, Rushim, Moscow, Russia), potassium hydrophosphate trihydrate
(KoHPO4-3H,0) (CAS No. 16788-57-1, analytical pure grade, Rushim, Moscow, Russia),
and potassium carbonate (K,CO3) (CAS No. 584-08-7, chemical pure grade, Rushim,
Moscow, Russia), were used.

The following reactions were used to calculate the amounts of starting salts and
expected products:

CaClz + KZHPO4'3H2O — CaHPO4'2H20 + 2KCI + H20 (1)
CaCl, + 0.5K,HPO,4-3H,0 + 0.5K,CO3 — 0.5CaCO3 + 0.5CaHPO,4-2H,0 + 2KCl + 0.5H,0  (2)

CaCl, + K,CO3 — CaCOs + 2KCl 3)

The labeling and synthesis conditions of the powders from CaCl, and K,HPO, and/or
K,COj5 are shown in Table 1.

Table 1. The labeling and synthesis conditions of the powders.

Labeling of Powders PO4 PO4_CO3 CcO3
The molar ratio of Ca/(HPO42~ + CO327) 1 1 1
CaCl,, mol 0.25 0.25 0.25
V of solution CaCl,, L 0.5 0.5 0.5
C (CaClp), mol/L 0.5 0.5 0.5
K,HPO,4-3H,0, mol 0.25 0.125 -
K,CO3, Mmoab - 0.125 0.25
V of solution, containing anions (HPO4%™)
and /or (CO2-), L 0.5 0.5 0.5
C(K,HPO4-3H,0), mol/L 0.5 0.25 -
C(K>CO3), mol/L - 0.25 0.5

A total of 500 mL of 0.5 M aqueous solution of K,HPO,4 (PO4 powder), 500 mL of 0.5 M
aqueous solution of K,CO3 (CO3 powder), 500 mL aqueous solution containing 0.125 M
of K;HPOy, and 0.125 M of K,CO3 (PO4_CO3 powder) were added to 500 mL of 0.5 M
aqueous CaCl, solutions. The resulting suspensions were kept on a stirrer (MAG C Hs7 IKA
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(IKA-Werke GmbH & Co. KG, Staufen, Germany)) for 30 min. The resulting precipitates
were separated from the mother liquor using vacuum filtration. The synthesized powders
were dried in a thin layer at room temperature for a week. After drying, the powders
were crushed using an agate mortar and pestle and then passed through a polyester sieve
with a mesh size of 200 microns. For the isolation of salts dissolved in the mother liquors,
they were dried at 40 °C for a month. The synthesized powders and isolated reaction
by-products were weighed to determine their mass and to estimate the yield of synthesized
powders and reaction by-products relative to the theoretically possible amounts. Table 2
shows the initial quantities, expected target products, and reaction by-products calculated
in accordance with reactions (1-3).

Table 2. Quantities of initial reagents, as well as expected target products and reaction by-products.

Labeling of Synthesized Powders

Reagents/Products
PO4 PO4_CO3 COs3
Starting Reagents
CaClp, mol 0.25 0.25 0.25
KzHPO4~3H20, mol 0.25 0.125 -
K,CO3, mol - 0.125 0.25
Target products
CaHPO4-2H,0, mol 0.25 0.125 -
Mass of CaHPO4-2H,0, g 43.0 21.5 -
CaCO3, mol - 0.125 0.25
Mass of CaCOs3, g - 12.5 25.0
Labeling of by-products
By-product
PO4_by PO4_CO3_by CO3_by
KCl, mol 0.5 0.5 0.5
Mass of KCl, r 37.3 37.3 37.3
Total mass of expected products * 80.3 73.1 62.3

* The total mass of the expected products is defined as the sum of the mass of target products (CaHPOy4-2H,0O
and/or CaCOj3) and mass of reaction by-products (KCI).

To study the thermal evolution of the phase composition of the synthesized powders,
they were placed in porcelain boats and heated at a heating rate of 5 °C/min, followed by
exposure for 2 h at various temperatures in the range of 200-1000 °C. The labeling of the
powders after heat treatment used in the figures is shown in Table 3.

Table 3. Labeling of powders obtained after heat treatment.

Temperature of Labeling of Synthesized Powders

Heat Treatment PO4 PO4_CO3 CO3
200 °C PO4_200 PO4_C0O3_200 CO3_200
400 °C PO4_400 PO4_C0O3_400 CO3_400
600 °C PO4_600 PO4_CO3_600 CO3_600
800 °C PO4_800 PO4_C0O3_800 CO3_800
1000 °C PO4_1000 PO4_CO3_1000 -

The phase composition of powders after synthesis and after heat treatment was
performed by X-ray powder diffraction (XRD) analysis using CuKa radiation (A = 1.5418 A,
step 26—0.02°) using Rigaku D/Max-2500 diffractometers (Rigaku Corporation, Tokyo,
Japan) in the angle range 20 from 2 to 70° or Tongda TD-3700 (Dandong Tongda Science
& Technology Co., Ltd., Dandong, China) in the angle range 20 from 3 to 70°. The X-ray
patterns were analyzed using the WinXPOW program (Version 1.06) using the ICDD PDF-2
(https:/ /www.icdd.com/pdf-2/, accessed on 18 August 2025) [43] databases and the
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Match! program ((Version 3.15), https:/ /www.crystalimpact.com/, accessed on 18 August
2025). The quantitative ratio of the target and related products in the obtained powders was
determined using the Match! Program ((Version 3.15), https://www.crystalimpact.com/,
accessed on 18 August 2025). The infrared (IR) spectra were collected in the wavelength
range 500-4000 cm ! using the Spectrum Three IR spectrometer (Perkin Elmer, Waltham,
MA, USA) in the mode of disturbed total internal reflection using the Universal ATR
accessory (crystal diamond/KRS-5). The bands in the spectra were assigned based on
the literature data [44]. Synchronous thermal analysis (TA), including thermogravimetric
analysis (TGA) and differential scanning calorimetry (DSC), was performed on a NETZSCH
STA 449 F3 Jupiter thermal analyzer (NETZSCH, Selb, Germany) in air in the temperature
range of 40-1000 °C at a heating rate of 10 °C/min, using pre-thermostating at 40 °C
for 30 min. The mass of the sample was at least 10 mg. The composition of the gas
phase was monitored using a Netzsch QMS 403 Quadro quadrupole mass spectrometer
(NETZSCH, Selb, Germany) combined with a NETZSCH STA 449 F3 Jupiter thermal
analyzer (NETZSCH, Selb, Germany). Mass spectra (MS) were recorded for m/z = 44 (CO,).
The microstructure of the powders was studied by scanning electron microscopy (SEM)
using a scanning electron microscope with an auto emission source JEOL JSM-6000PLUS
Neoscope II (JEOL Ltd., Tokyo, Japan). For the study, the samples were glued onto a
copper substrate using carbon tape, and a layer of gold ~15nm was sprayed. The survey
was carried out in vacuum mode. The accelerating voltage of the electron gun was up to
5 kV. The images were obtained in secondary electrons at magnifications up to 1000x and
recorded in digitized form on a computer.

3. Results and Discussion
The XRD data of the synthesized powders are shown in Figure 1.

3.0
2.5 c
1
2.0
2
D
& 151 PO4_CO3
E 1 MW_‘ o o
1.0 v
0.5
b PO4
0.04 P oy b b oy b opo
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0 10 20 30 40 50 60 70
20, ...°

Figure 1. XRD data of synthesized powders: c—calcium carbonate (calcite, CaCO3) (PDF card No
5-586; No 96-210-0190); o—potassium chloride (sylvine, KCI) (PDF card No 41-1476; No 96-900-
8652); *—hydroxyapatite (Cajg(PO4)s(OH)z) (PDF card No 9-432, No 96-900-1234); b—brushite
(CaHPO,4-2H,0) (PDF card No 9-77; No 96-231-0527).

The phase composition of powder synthesized from water solutions of CaCl, and
K>CO3 included calcite (CaCO3). The phase composition of powder synthesized from
water solutions of CaCl, and K,;HPO, included brushite (CaHPOy4-2H,0O). The phase
composition of powder synthesized from a water solution of CaCl, and mixed-anionic
solution containing K,CO3 and K;HPOj, included a low-crystalline product with the main
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peaks corresponding to hydroxyapatite (Cajg(PO4)s(OH);). All synthesized powders
included potassium chloride (sylvine, KCl), as a reaction by-product. XRD data of reaction
by-products isolated from mother liquors are presented in Figure 2. The phase composition

of the by-products isolated from the mother liquors was presented by potassium chloride
(sylvine, KCI).

3.5+
3.04
2.5 k CO3_by
E A R Q R Q
> 2.0
‘»
c
2 45
S PO4_CO3_by
1 L S ° 9 )
1.0 0
0.5 4
] i PO4_by
0.0 4 B N 2 R
T T T T T T T T T T T T T
10 20 30 40 50 60 70

20,...°

Figure 2. XRD data of products isolated from mother liquors after synthesis: o—potassium chloride
(sylvine, KCI) (PDF card No 41-1476; No 96-900-8652).

It should be noted that in this investigation, the stage of reaction by-product removal
from all synthesized powders via precipitate washing was not implemented. The first
reason consisted of the necessity to carry out the same synthesis conditions for all powders.
The second reason consisted of the intended choice of pairs of resources providing the
formation of biocompatible salt (KCI) as a reaction by-product. The third reason consisted of
the possibility for KCl to be used as an inorganic porogen when it is present in synthesized
powders and which can be removed from created composite materials with inorganic or
polymer matrices via washing. To play the role of an inorganic porogen, the substance
(inorganic salt) has to be soluble in water when other constituents of materials do not have
such a possibility [45-47]. KCl as a component of the starting powder mixture used for the
calcium phosphate ceramics preparation can be treated as a temporary sintering additive
with a low melting point, which can be removed during stage of sintering at temperatures
above its melting point [48-50].

The formation of brushite (CaHPO,-2H,0), and calcite (CaCO3), can be caused by
reactions (1) and (3), respectively. During the preparation of the mixed-anionic aqua
solution from K,;HPO, and K,;COj taken in an equimolar ratio, not only the release of
CO, was observed, but also the formation of potassium orthophosphate (K3PO,), occurred.
Reaction (4) indicates that when mixing solutions of these two salts, the presence of
potassium carbonate, K,COj3, also persists.

2K2HPO4 + K2C03 — 2K3PO4 + HQO + C02 (4)

So, due to hydrolysis (reactions 5 and 6), the mixed-anionic solution had an alkaline
pH, characteristic of aqua solutions of salts formed by a strong base and a weak acid:

K,CO3 + H,O — KHCO3; + KOH (5)
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K3PO4 + H,O — KzHPO4 + KOH (6)

The formation of a specific calcium phosphate is determined by the pH level in the
reaction zone. Formation of hydroxyapatite takes place at pH > 6 in the reaction zone. The
same phenomenon took place, for example, when the mixed-anionic solution of Na,SiOs
and Nap,HPOy, having an alkaline pH, interacted with a water solution of Ca(NO3), [51].
The synthesis of hydroxyapatite from mixed-anionic solution of K;HPO,4 and K,COj3 can
be represented formally as reaction (7), taking into account the molar ratio of the salts used
for synthesis, as it was described in Materials and Methods (reaction 2):

12CaC12 + 6K2HPO4 + 6K2CO3 — Calo(PO4)6(OH)2 + ZCaC03 + 24KClI + 2H20 + 4C02 (7)

In this case, the theoretically possible amount of hydroxyapatite (Ca;9(PO4)s(OH)7)
(0.0208 mol = 20.9 g) can be calculated as 1/6 of the amount of potassium hydrophosphate
(KoHPOy4) (0.125 mol) used for preparation of a mixed-anionic solution (Table 1). Taking
into account the possibility of the formation of CaCOj3, the mass of the precipitate can be
calculated as the sum of the possible amounts of hydroxyapatite and calcium carbonate.
The amount of CaCOs3 (0.0417 mol = 4.17 g) can be calculated as 1/6 of the amount of CaCl,
(0.25 mol). Thus, the mass of the precipitate in the synthesis of PO4_CO3 powder can
be calculated as 25.07 g. Theoretically calculated (expected) and experimentally obtained
masses of target products and by-products, as well as their comparison, are presented
in Table 4.

Table 4. The expected and obtained masses of synthesized powders and reaction by-products.

Labeling PO4 PO4_COs3 COo3
The expected quantities of target products and by-product:
CaHPO,4-2H,0, g 43.0 - -
Cayp(PO4)s(OH); + CaCO3, g - 25.1 -
CaCO;3, g - - 25.0
KCl, g 37.3 373 373
Total mass of expected products *, g 80.3 62.4 62.3
The obtained masses of the synthesized powders and the extracted by-products:

Mass of the powders after drying, g 43.0 33.5 17.4
1E/}I,eils:’sr (c))fl ;}(1;3’ egxtracted reaction 30.6 5.5 371
Total mass of prepared products **, g 73.6 59.0 54.5
The yield of synthesized products 91.7% 94.5% 87.5%
The yield of reaction by-product 82.0% 68.4% 99.4%
Nebphe e g o
ggg:ﬁg:igi?y_pmdud in powders 15.6% 35.2% 1.1%
Content of by-product in powders 28% 30.9% 1.8%

(estimation according to Match!)

* Total mass of expected products was determined as sum of target product (CaHPO,-2H,0O and/or CaCOj3) and
reaction by-product (KCl). ** Total mass of prepared products was determined as sum of mass powder after
drying and mass of the product extracted from the mother liquor.

The data presented in Table 4 indicate that the total yield of synthesis products was
close to ~90% in all cases. According to the estimation obtained using the Match! program,
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the content of the reaction by-product (KCI) was maximal (30.9%) in the powder synthesized
from a mixed-anionic solution. The amount of KCI in the PO4 powder was determined as
2.8%, and in the CO3 powder, it was determined as 1.8%. The estimation of the amount
of by-product in synthesized powders obtained using the Match! program is consistent
with the estimation of the amount of by-product retained in PO4_CO3 and CO3 powders
(Table 4). A small particle size and a significant specific surface area may determine the
ability of the synthesized PO4_CO3 powder to retain (occlude) mother liquors and the
by-product dissolved in it, as it has been shown in other studies [52].
Figure 3 shows the FTIR spectroscopy data of the synthesized powders.

§(P-OH)

v(PO) | §(PO)

PO4

PO4_CO3

3(CO%)

CO3

n(CO%Y)

! I ’ T T T T I T I ’ I ’ I T I
4000 3500 3000 2500 2000 1500 1000 500
v, CM
Figure 3. FTIR spectra of synthesized PO4, PO4_CO3, and CO3 powders.

The FTIR spectroscopy data (Figure 3) is consistent with the X-ray diffraction data,
since the appearance of the curves corresponds to the reference and literature data for
brushite (SpectraBase Spectrum ID 9u0yn3G2]J6i https:/ /spectrabase.com/spectrum/9u0
yn3G2J6i (accessed on 23 August 2025) [53-55]), calcite (SpectraBase Compound ID
YYVCfbcpX1) https:/ /spectrabase.com/compound /YYVCtbcpX1 (accessed on 23 Au-
gust 2025) [56-58]), hydroxyapatite (SpectraBase Spectrum ID BxeLPnr9PTc https://
spectrabase.com/spectrum/BxeLPnr9PTc (accessed on 23 August 2025) [59] and carbonate-
hydroxyapatite [14,60,61]). On the spectra of PO4 and CO3 powders, there are valence
(v) and deformation () vibrations, which are characteristic of brushite, CaHPOy4-2H,O:
v(OH)—3539, 3473, 3270, 3153 cm~1; v(P-O-H)—1204 cm~1; v(PO)—1120, 1052, 980 cv
§(OH)—1645 cv1; 980 em1; §(P-OH)—871 ecm~1; and 8(PO)—(656, 575, 519 e~ 1) and
calcite CaCOj3: v(CO327)—1390 cm1; 7(CO327)—874 cm~1; and §(CO327)—(710 e 1).

Characteristic vibrations of the phosphate group PO,3~, which confirm the formation
of weakly crystallized hydroxyapatite, can also be seen on the spectrum of the PO4_CO3
powder. Vibrations of v(CO327)—1410 ey~ ! and m(CO32~)—874 cm~ ! in the spectrum
of PO4_CO3 powder suggest the presence of carbonate groups in the structure of the
synthesized low-crystalline hydroxyapatite. The presence of KCI, regardless of its content
in the synthesized powders, is not determined due to the absence of absorption bands in
the studied region [62,63].

Figure 4 shows micrographs of the synthesized powders.
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(b) PO4_CO3

Figure 4. Micrographs of synthesized PO4 (a), PO4_CO3 (b), and CO3 (c) powders.

The particles of PO4 powder (Figure 4a) with a size of 10-20 microns and a thickness
of 1-2 mm have a lamellar morphology characteristic of brushite (CaHPO,-2H,0) [64]. The
particles of CO3 powder (Figure 4c) with a size of 10-20 mm have the cubic shapes, which
is typical for calcite (CaCOg3) [65]. The PO4_CO3 powder (Figure 4b) is composed of large
aggregates of 5-60 mm in size, consisting of particles less than 1 mm in size. Hydroxyapatite
powders synthesized by precipitation from solutions, as a rule, consist of particles having a
size of less than a micron [66]. It was estimated that the mass (33.5 g) of the synthesized
PO4_CO3 powder after drying was 8.4 g higher than the expected (25.1 g) mass of the
powder (Table 4). The mass of reaction by-product (PO4_CO3_by) isolated from the mother
liquor was 11.8 g less than the expected (37.3 g) mass. Thus, after drying and grinding in a
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mortar, KCI (reaction by-product) retained in the synthesized powder acted as a binder,
binding hydroxyapatite particles in large aggregates visible in the micrographs (Figure 4b).

Phase composition of all synthesized powders included biocompatible phases of
hydroxyapatite (PO4_CO3 powder), brushite (PO4 powder), and calcite (CO3 powder).
For starting, all these powders can be recommended for the creation of composite materials
with a polymer [35,67—-69] or inorganic matrix [70]. Powders with a phase composition
including brushite and hydroxyapatite, after removing reaction by-products, can be used
for the preparation of ceramics with a phase composition in the CaO-P,0Os presented by
B-Cap P07 [71,72] or 3-Caz(POy); [73-75], and in the CaO-P,O05-H,O [76,77] oxide systems.
Powder with a phase composition presented by calcite can be used for the preparation
of biocompatible materials in the form of powder, granulate, or ceramics with phase
composition in different oxide systems (for example, as mentioned above) as a precursor of
CaO [42,78].

Figure 5 shows the TA data of the synthesized powders. According to the TGA data
(Figure 5a), the total weight loss at 1000 °C for PO4 powder was 27.9%. The change
in the weight of the PO4 powder is possible due to the removal of physically bound
water, dehydration of brushite (CaHPO,4-2H,0), and the formation of monetite (CaHPO,)
(reaction 8), and the conversion of monetite (CaHPOy) into pyrophosphate (CayP,07)
(reaction 9).

CaHPO,4-2H,O — CaHPO,4 + 2H,0 (8)

2CaHPO4 — CarP,O7 + H,O (9)

The theoretically possible mass loss during reactions 8 and 9 is 26.16%, which is close
to the value of the total mass loss for PO4 powder determined by the TGA method. All the
processes indicated for the PO4 powder, leading to weight loss, occur with heat absorption
in the ranges 87-168 °C, 168-243 °C, and 375477 °C (Figure 5b). It can be assumed
that the presence of KCI in the PO4 powder, as well as the stage of thermostating the
sample at 40 °C for 30 min before heating at a set rate (10 °C/min), causes decomposition
of the metastable brushite at lower temperatures in the range of 87-168 °C (reaction 8).
In [79], the authors conclude that two-stage conversion of brushite into monetite was
possible with the formation of an amorphous phase at the first stage. The range 168-243 °C
should be considered as characteristic of the monetite (CaHPOy) formation from brushite
(CaHPO4-2H,0) [80], and the range 375477 °C should be considered as characteristic of
the calcium pyrophosphate (CayP>Oy) from monetite (CaHPO,) formation [81,82]. In the
range of 477-840 °C, the smooth change in mass was 3%, while it is difficult to identify the
intervals for processes that occur with heat absorption or release.

According to the TGA data (Figure 5a), the total weight loss at 1000 °C for the CO3
powder was 44.9%. The theoretically possible mass change for calcite during thermal
decomposition in accordance with reaction (10) is 44%. The change in the mass of the CO3
powder occurred with heat absorption in the range 622-844 °C, amounted to 42.9% due to
the decomposition of calcite and was accompanied by the release of CO, (reaction 10).

CaCO;3 — CaO + CO, (10)

The graph of the mass change of the CO3 powder (Figure 5a) and the dependence of the
ion current on temperature (Figure 5c) have the forms characteristic of calcite CaCOj3 [83].
In Figure 5¢, for the CO3 powder, one can see a graph of the dependence of the ion current
on temperature for m/z = 44 (CO,), typical for CaCOs. It should be noted that in the range
844-949 °C, a loss (2%) of mass is observed, which is most likely associated with both the
removal of CO; and the removal of that insignificant amount of KCl (Table 4), which could
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be captured by the synthesized CO3 powder, above the melting point of KCl (776 °C [84]
or 769 £ 2 °C (1042 £ 2 K) [85]).
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Figure 5. TA data of synthesized powders: TGA (a), DSC (b), MS for m/z = 44 (CO5) (c).
According to the TGA data (Figure 5a), the total weight loss at 1000 °C for PO4_CO3

powder was 16.2%. Three sections can be distinguished on the curve of mass versus
temperature for PO4_CO3 powder: removal of physically bound water (7.5% mass loss),
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which proceeds with heat absorption in the range of 43-240 °C; a section of smooth weight
reduction (2.6%) in the range of 240-829 °C; and a section of mass loss (6.1%), apparently
related to the removal of KC, in the range of 829-1000 °C. The endothermic peak at 765 °C,
clearly seen on the DSC curve (Figure 5b), can be attributed to the melting of KCI, since
according to the estimation (Table 4), the mass of the retained reaction by-product (KCl) in
the PO4_CO3 powder was the maximum. No endothermic peaks that could be attributed
to the KCl melting process were found in the DSC graphs for PO4 and CO3 powders
synthesized for comparison. Significantly lower values of the ion current can be seen on
the curve m/z = 44 (CO2) for PO4-CO3 powder (Figure 5c¢) in wide ranges of 460-800 °C
and 900-940 °C than for CO3 powder.

Figure 6 shows the XRD of the CO3 powder synthesized from aqueous solutions of
CaCl; and K,COs after heat treatment at various temperatures.

5 x l I CO3_800
] ] i
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1 ¢ o S o f__fF . 03600
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Figure 6. XRD data of CO3 powder after synthesis and after heat treatment at different tempera-
tures. c—calcium carbonate (calcite, CaCOj3) (PDF card No 5-586; No 96-210-0190); o—potassium
chloride (sylvine, KCI) (PDF No 41-1476; No 96-900-8652); x—calcium oxide (CaO) (PDF No 37-1497,
No 96-101-1096).

According to the XRD data, the phase composition of the CO3 powder synthesized
from aqueous solutions of CaCl, and K,COs, after heat treatment at various temperatures
in the range of 200-600 °C for 2 h, was represented by calcite (CaCOs). And after heat
treatment at 800 °C, the phase composition of the CO3 powder was represented by calcium
oxide (CaQ) (reaction 10).

Figure 7 shows micrographs of CO3 powders after heat treatment for 2 h at various
temperatures in the range of 200-600 °C. The particle size and shape of the powder particles
after heat treatment did not significantly differ from the particle size and shape of the
synthesized powder. It is difficult to detect particles with dimensions less than 2 mm and
more than 20 mm in the micrographs.

Figure 8 shows the XRD of PO4 powder synthesized from aqueous solutions of CaCl,
and KoHPOy after heat treatment at various temperatures. After heat treatment at 200 °C
for 2 h, the phase composition of the PO4_200 powder was represented by monetite
CaHPOy (reaction 9). The phase composition of the PO4_400 and PO4_600 powders was
represented by y-calcium pyrophosphate (y-CayP>07) (reaction 10) after heat treatment at
400 °C and at 600 °C for 2 h. The phase composition of the PO4_800 and PO4_1000 powders
included B-tricalcium phosphate (3-Ca3(POy)2), B-calcium pyrophosphate (3-CayP20y7),
and calcium potassium pyrophosphate (K,CaP,0y7) after heat treatment at 800 °C and at
1000 °C for 2 h. According to data from Match! Software, after heat treatment at 1000 °C,
PO4_1000 powder consisted of 43.7% of 3-Caz(POy)2, 41.7% of 3-CaP707, and 14.6%
of KzCaP207.
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(c) 400 °C (d) 600 °C

Figure 7. Microphotographs of CO3 powder after synthesis (a) and after heat treatment at different
temperatures: 200 °C (b), 400 °C (c), 600 °C (d).
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Figure 8. XRD data of PO4 powder after synthesis and after heat treatment at different temperatures.
o—potassium chloride (sylvine, KCI) (PDF No 41-1476; No 96-900-8652); b—brushite (CaHPO,4-2H,0)
(PDF card No 9-77; No 96-231-0527); m—monetite (CaHPOy) (PDF card No 9-80; 96-210-6185);
y—y-calcium pyrophosphate (y-CapP,07) (PDF card No 17-499); p—f-calcium pyrophosphate
(B-CapP,07) (PDF card 9-346; No 96-100-1557); #—[-tricalcium phosphate (3-Ca3(POy);) (PDF card
No 9-169; No 96-151-7239); v—K,CaP, 0O (PDF card No 22-805; No 96-220-2941).
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Reaction (11) may reflect the formation of (3-calcium orthophosphate (3-Ca3(POy4)2)
and calcium potassium pyrophosphate (K,CaP,Oy):

2Ca2P207 + 2KCI + HzO — Ca3(PO4)2 + K2C3P207 + 2HCl1 (11)

Figure 9 shows micrographs of PO4 powders after thermal treatment for 2 h at various
temperatures in the range of 200-1000 °C. The particle size and shape of the powder parti-
cles after heat treatment at 200 and 400 °C practically do not differ from the particle size and
shape of the synthesized powder. After heat treatment in the range of 600-1000 °C, as the
temperature increases, the powder particles lose their lamellar morphology more and more.
And after heat treatment at 1000 °C, the PO4_1000 powder is composed of conglomerates
5-20 microns in size, consisting of particles 1-3 microns in size, sintered together.

(€) PO4_800 - (f) PO4_1000

Figure 9. Micrographs of PO4 powder after synthesis (a) and after heat treatment at various tempera-
tures: 200 (b), 400 (c), 600 (d), 800 (e), 1000 (f).
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Figure 10 shows the FTIR data for PO4 and PO4_1000 powders, along with the XRD
and SEM data, confirming the transformation of the synthesized powder after heat treat-
ment at 1000 °C. After heat treatment of the PO4 powder at 1000 °C, according to the FTIR
data, the presence of PO,3~ groups remains and a §(POP) 720 cm~! vibration appears,
which confirms the presence of the pyrophosphate ion P,O7*~ in both calcium pyrophos-
phate formed from brushite (reactions 8 and 9) and calcium potassium pyrophosphate
(reaction 11).

5(P-OH)

PO4

3(POP)

PO4_1000

r T T T T T T T T T T T T T T T
4000 3500 3000 2500 2000 1500 1000 500
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Figure 10. FTIR spectra of synthesized PO4 powder and PO4_1000 powder after heat treatment
at 1000 °C.

Figure 11 shows the XRD of the PO4_CO3 powder synthesized from aqueous solutions
of CaCly, KHPOy, and K,COj5 after heat treatment at various temperatures. The phase
composition of PO4_CO3 powders after thermal treatment in the range of 200-800 °C is
represented by weakly crystallized hydroxyapatite and potassium chloride (sylvine, KCl).
After heat treatment at 1000 °C, the phase composition of the PO4_CO3_1000 powder is
represented by chlorapatite (Cajg(PO4)¢Cly). The formation of chlorapatite can be reflected
by the reaction (12):

Calo(PO4)6(OH)2 + 2KCI — Calo(PO4)6C12 + 2KOH (12)

A similar formation of chlorapatite was observed at 1000 °C from weakly crystalline
hydroxyapatite of natural origin and sodium chloride (NaCl) [86], or in powder consisting
of CaHPO4-2H,0, CaHPOy4, and NaCl when heated at a range of 800-1100 °C [17].

Micrographs of PO4_CO3 powder after synthesis and after heat treatment at various
temperatures are presented in Figure 12. The microstructure of PO4_CO3 powders, after
thermal treatment in the range of 200-800 °C, does not significantly differ from the mi-
crostructure of the powder after synthesis and drying. Powders consist of sufficiently large
agglomerates (up to 100-200 mm) consisting of particles of weakly crystallized hydroxya-
patite bonded with reaction by-product KCl. The microstructure of the PO4_CO3_1000
powder after heat treatment at 1000 °C differs significantly from the microstructure of
powders after heat treatment in the range of 200-800 °C. The PO4_CO3_1000 powder after
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heat treatment at 1000 °C consists of particles with a prismatic shape 5-20 mm long and
a transverse dimension of 2-5 mm. In the micrograph (Figure 12e, left side) with a lower
magnification, one can see loose aggregates up to 100 microns in size, consisting of the
prismatic particles mentioned above.

3
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Figure 11. XRD data of PO4_CO3 powder after synthesis and after heat treatment at different
temperatures. *—hydroxyapatite (Ca;o(PO4)s(OH),) (PDF No 96-901-4314); o—potassium chloride
(sylvine, KCl) (PDF No 41-1476; No 96-900-8652); o—chlorapatite (Ca;g(PO4)sCly) (PDF No 73-1728;
No 96-101-0917).

Figure 13 shows the FTIR spectroscopy data for PO4_CO3 powder after synthesis and
after heat treatment at 1000 °C. In the spectrum of the PO4_CO3_1000 powder, there are
no peaks that could be attributed to v(OH), v(CO327), or (CO327). The FTIR spectrum
for the PO4_CO3_1000 powder corresponds to the reference data for chlorapatite (Spectra-
Base Compound ID KKRjtSFM3Pp, https://spectrabase.com/spectrum /KKRjtSFM3Pp
(accessed on 23 August 2025)).

Powder with the phase composition in the K,O-CaO-P,Os5 system, including
-calcium pyrophosphate (3-CayP>0y7), B-calcium orthophosphate (3-Ca3(POs),), and
potassium calcium pyrophosphate (K,CaP,O7) can be prepared from synthesized powder
PO4 consisting of brushite and KCl. Phase composition after heat treatment at temperatures
800 and 1000 °C for PO4 powder included such biocompatible phases as 3-calcium py-
rophosphate (3-CapP,0y7) [62] and (-calcium orthophosphate (3-Ca3(POy),) [87]. Minerals
in the K,O-CaO-P,05 system are under consideration as biocompatible [88,89]. Neverthe-
less, potassium calcium pyrophosphate (K,CaP,0O7), according to the scientific literature, is
known as a matrix for luminescent materials [90], or it was mentioned as the most promis-
ing fertilizer material [91]. Taking into account the possibility for K;CaP;Oy to be used
as fertilizer material and the relatively low (14.6%) content of K,CaP,Oy7 in the PO4_1000
powder, it is possible to expect that materials that can be created based on PO4_1000
powder will be treated as biocompatible after ordinary tests in vitro and in vivo. Powder of
chlorapatite (Cag(PO4)sCly) can be prepared from synthesized PO4_CO3 powder consist-
ing of hydroxyapatite (Cajo(PO4)s(OH);) and KCl at 1000 °C. Chlorapatite (Ca1o(PO4)sCl2)
can also be used both as a matrix for the creation of luminescent materials [92] and as a
component of biocompatible materials [93].
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Figure 12. Micrographs of PO4_CO3 powder after heat treatment at various temperatures: 200 (a),
400 (b), 600 (c), 800 (d), 1000 (e).
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Figure 13. FTIR spectra of PO4_CO3 powder after synthesis and after heat treatment at 1000 °C.

4. Conclusions

Powders with the phase composition including target products such as brushite
(CaHPO4-2H;0), and calcium carbonate (calcite, CaCO3), as well as potassium chloride
(sylvine, KCl), as a reaction by-product, were synthesized from aqueous solutions of
calcium chloride (CaCl,), potassium hydrophosphate (K;HPOj,), and potassium carbonate
(K2CO3). The interaction of an aqueous mixed-anionic solution including HPO,?>~ and
CO3%~ anions and an aqueous solution of calcium chloride (CaCl,), made it possible
to obtain a powder that combined weakly crystallized hydroxyapatite and a significant
amount (estimated to be up to 30-35% by weight) of potassium chloride (sylvine, KCl), in its
phase composition. The XRD, SEM, and FTIR data confirmed the possibility of synthesizing
chlorapatite (Cajp(PO4)sCly) from this powder via heat treatment at 1000 °C for 2 h.

After heat treatment of the synthesized powder containing brushite (CaHPO,4-2H,0),
and potassium chloride (sylvine, KCI), at 800 and 1000 °C, powders with the phase
composition including -calcium pyrophosphate (3-CapP,0y7), 3-calcium orthophosphate
(B-Ca3(POy4)2), and potassium calcium pyrophosphate (K,CaP,0O7) were obtained. Heat
treatment of calcite (CaCOs3) powder at 800 °C, as was expected, led to the formation of
calcium oxide (CaO).

Powders including phases such as hydroxyapatite, chlorapatite, brushite, monetite,
calcium pyrophosphate, calcium potassium pyrophosphate, tricalcium phosphate, and
calcite can be used for the creation of biocompatible inorganic materials or composite
materials with a biocompatible polymer matrix. Powders of chlorapatite can be used
as a matrix for the creation of luminescent materials. Potassium chloride (sylvine, KCI),
present in synthesized powders can act as one of the precursors of chlorapatite or calcium
potassium pyrophosphate, or it can act as a removable inorganic porogen.
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