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Abstract: Distributed throughout the environment are various microorganisms such as bacteria, fungi,
parasites, and viruses. Although many are part of the human microbiome, many are pathogenic and
cause infections ranging from mild to severe. In recent years, the identification of multidrug-resistant
microorganisms has become a serious public health problem. The resulting infections call into
question the therapeutic capacity of health systems and lead to approximately 70,000 deaths annually
worldwide. The progressive resistance to antibiotics and antifungals has been a major challenge
for the medical and pharmaceutical community, requiring the search for new compounds with
antimicrobial properties. Several studies have demonstrated the potential of natural and synthesized
flavonoids, especially the dimers of these molecules. In this review are presented many examples
of dimeric flavonoids that have demonstrated antimicrobial activity against viruses, like influenza
and Human Immunodeficiency Virus (HIV), protozoal infections, such as Leishmaniasis and Malaria,
fungal infections by Candida albicans and Cryptococcus neoformans, and bacterial infections caused, for
example, by Staphylococcus aureus and Escherichia coli. In the pursuit to find potential safe agents for
therapy in microbial infections, natural dimeric flavonoids are an option not only for the antimicrobial
activity, but also for the low toxicity usually associated with these compounds when compared to
classic antimicrobials.

Keywords: flavonoids; dimeric flavonoids; antimicrobial activity; antiviral; antifungal; antibacterial;
antiparasitic

1. Introduction

During the last few decades, the incidence of microbial infections has increased sig-
nificantly, which culminates in high morbidity and mortality rates [1]. This is due to the
existence of more immunocompromised individuals (due to HIV infection, chemotherapy,
and radiotherapy treatments), use of immunosuppressants, an increased number of hospi-
talized patients, invasive devices and procedures in medical practice and the evolution of
virulence and resistance mechanisms to antimicrobial agents [2–4].

Although antibiotics and antifungals have a wide spectrum and different mechanisms
of action, their incorrect and indiscriminate use has had the consequence of the increase
in resistance mechanisms developed by microorganisms [5]. The medical community has
limited options for resolving bacterial and fungal infections [6,7].

Parasitic diseases affect over 1 billion people all over the world, specifically, parasitic
diseases such as malaria and schistosomiasis, leading to approximately 1 million deaths
throughout the world [8]. Drug resistance associated with the treatment of these infections
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are widespread and, even with some genes already found related to resistance for available
therapy, the mechanisms are not completely understood [9].

Antiviral resistance has been widely studied and is commonly related with factors
that involve a decrease in host immunity and prolongs the duration of treatment [8].
Consequently, there is an increase in side effects due to the toxicity caused using second-
line antivirals and, in cases of serious illness, death due to progressive viral infection when
there is no cure available [10].

The efficacy of a therapeutic agent may be affected by the development of withdrawal
mechanisms from the first time it is applied [11]. The increasing resistance to antifungals
and antibiotics available for clinical practice has been a major challenge for the medical and
pharmaceutical communities, requiring the search for new compounds with antimicrobial
properties (e.g., of plant origin). Besides that, this strategy may involve the search for new
compounds to counteract resistance mechanisms or make it possible to reduce the dose of
the antimicrobial and, consequently, its toxicity and adverse effects [11,12].

Several studies have proven the individual or synergistic antimicrobial potential of
natural and synthetic flavonoids, against drug-resistant fungi [13], bacteria [14], virus [15]
and parasites [16].

Flavonoids are a versatile group of phenolic compounds produced as secondary
metabolites by plants and, therefore, existing in the human diet (e.g., present in fruit,
vegetables, cereals, wine, and various teas) [17]. These compounds are responsible for the
coloration of leaves, flowers and fruits, and have a fundamental role in the protection of
plants as oxidizing and microbial agents [18]. As a class of polyphenols, flavonoids can be
divided in flavones (apigenin), flavanones (naringenin), flavans (catechin), flavonoid glyco-
sides, flavonols (quercetin), flavonolignan (silibinin), chalcones (butein), isoflavones (genis-
tein), aurones (aureusidin), leucoanthocynidins (leucopelargonidin) and neoflavonoids
(neoflavones) [19–21].

Flavonoids were described in the literature as processing anti-allergic [22–25],
anti-inflammatory [25–30], immunomodulatory [31–33], antitumor [33–36] and
antimicrobial [15,21,37–41] properties, which are the reasons explaining their great interest
in the food, pharmaceutical and medical industries. Their toxicity levels are greatly reduced
and are therefore currently critical for the development of new medicines [11,13,21,42–44].

Dimeric flavonoids are a class of flavonoids that consists of the same or diverse
flavonoid units connected by C-C bonds or by C-O-C bonds. These dimers are joined in a
symmetrical or unsymmetrical manner through an alkyl or an alkoxy-based linker of vary-
ing length [45,46]. Mostly, dimeric compounds are formed by dimers of flavone–flavone,
flavone–flavonone, and flavonone–flavonone subunits, as well as dimers of chalcones and
isoflavones [45]. These compounds are called bis-flavonoids when they have two equal
units or biflavonoids when there are two different units in the dimer structure. Since several
dimeric compounds have been identified, the scientific community have been interested in
their antimicrobial properties [45,46].

The main goal of this review is summarizing the remarks of several published studies
on the use of dimeric flavonoids as antimicrobial agents, analyzing their role in aiding or
resolving fungal, bacterial, parasitic, and viral infections. Thus, this review aims to outline
the potential mechanism of actions of dimeric flavonoids studied in vitro and in vivo, and
the perspectives of their use as multi-targets agents or conjugated with antimicrobials
already known and applied in the treatment of infections.

A thorough search of the relevant scientific databases, including Web of Science,
ScienceDirect, Scopus, PubMed, and Google Scholar, was conducted. The keyword combi-
nations used in all databases were as follows: (antimicrobial resistance AND antibacterial
resistance) OR (antimicrobial resistance AND antifungal resistance) OR (antimicrobial resis-
tance AND antiparasitic resistance); (flavonoids AND biological properties) OR (flavonoids
and antimicrobial activity) OR (flavonoids AND (dimeric flavonoids OR dimeric com-
pounds); (dimeric flavonoids AND antimicrobial activity) OR (dimeric flavonoids AND
antiviral activity) OR (dimeric flavonoids AND antifungal activity) OR (dimeric flavonoids
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AND (antiprotozoal OR anthelmintic activity) OR (dimeric flavonoids AND antibacterial
activity); (dimeric flavonoids AND (clinical studies OR in vivo studies OR pre-clinic tests
OR assays in animal models).

Preliminary reading and analysis allowed the selection of several studies published be-
tween 2000 and 2023, which were later thoroughly analyzed. Studies written in Portuguese,
Brazilian and English were selected.

Abstracts of selected titles were reviewed based on some inclusion and exclusion
criteria. The articles that described the antimicrobial assays but did not state the respective
control experiments, as well as studies describing it in a contradictory or unclear manner,
were excluded from the review.

2. Dimeric Flavonoids

In 1929, ginkgetin, the first dimeric flavonoid, was separated from Ginkgo biloba
by Furukawa and opened a new path for the discovery of more than 500,000 of those
compounds, such as amenthoflavone, agatisflavone, cupressoflavone, hynoquiflavone and
robustaflavone [47]. Due to their chemical and biological properties, there has been a
great evolution regarding phytochemical chemical studies for the manipulation, molecular
rearrangement strategies, identification, and synthesis of new bioactive dimeric flavonoids
with potentiated characteristics [46].

Dimeric flavonoids are extensively studied for their pharmacological properties, as
they have low toxicity in human cells [46,48–51], which has opened new routes to find and
synthetize new drugs against pathogens.

Recently, research has extensively reported that the biologic activity of these com-
pounds is higher than monomeric flavonoids, due to the high number of hydroxyl groups
that reduce hydrophobicity [46,52–56].

Despite being very promising compounds, there are very few that are completely
studied, with elucidated mechanisms of action and with their toxicity investigated [46].

2.1. Antiviral Activity of Dimeric Flavonoids

Dimeric flavonoids can act against many RNA and DNA viruses by blocking different
stages of virus life cycle: fixation and entry in the cells, interference with replication and
formation, maturation, and liberation of new mature viral particles [46]. In addition, these
compounds might be indirect inhibitors by interacting with immune cells of the host [46].

Due to resistance to antiviral drugs, it has become vital to search for more compounds
that can reduce the side effects, viral latency, and recurrence of infections. Nonetheless,
the emergence of new viruses brings many obstacles to medicine [46]. These dimeric
compounds seem to be more promising than flavonoids due to their greater physical–
chemical stability during tests of pharmacokinetic parameters [57].

Dimeric flavonoids, such as amentoflavone, have become compounds of interest due
to their important antiviral effects, mainly as protease inhibitors [58]. Several reports
describe the activity of natural products against coronaviruses (CoV), with the main target
being viral replication. Of these, numerous flavonoids, such as quercetin, generated strong
antiviral activity, affecting SARS-CoV, MERS-CoV, and SARS-CoV-2 proteases [57]. In
addition to the characteristic symptoms of COVID-19, SARS-CoV-2 infection can also result
in complications, one of the most worrying being cytokine storm that can lead, in the
worst-case scenario, to multiple organ failure and death [59,60].

Bearing this in mind, it is also necessary to use drugs to treat these diseases which,
in addition to having a direct antiviral effect, also can modulate the immune response
triggered by the infection. Because of their diverse biological activities, dimeric flavonoids
may be used in combination with antivirals currently used in the clinic [46]. Table 1
lists some of the compounds that are referred in the literature as possessing effective
antiviral activity.
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Table 1. Antiviral activity in vitro of dimeric flavonoids.

Virus Compound Conclusions Literature
Reference

SARS-CoV-2
Agathisflavone Replication block by Mpro protease inhibition.

Reduces TNF-α (tumor necrosis factor-alpha) levels in infected cells. [57]

5,6,7-trihydroxy-2-phenyl-4H-
chromen-4-one

Interruption of viral RNA replication by blocking the
Chymotrypsinlike protease [61]

Influenza
Ginkgetin Inhibits sialidase activity. [62]

Hinokiflavone [63]
Agathisflavone Inhibits neuraminidase activity. [64]

Human
immunodeficiency

virus (HIV)

Robustaflavone and hinokiflavone Blocks reverse transcriptase activity. [65]
Morelloflavone Activity against HIV-1.

Epstein−Barr
virus (EBV)

Garcinianin and talbotaflavone Inhibit the 12-O-tetradecanoylphorbol-13-acetate-(TPA)-induced
Epstein−Barr virus early antigen (EBV-EA) activation in Raji cells. [66]

3′ , 4′ , 5, 7-tetrahydroxyflavone Inhibit the reactivation of EBV through early genes (Zta and Rta) block
and interfering with binding of transcription factor Sp1. [67]

Dengue virus

Hinokiflavone and Amentoflavone Inhibits RNA-dependant RNA polymerase (DV-NS5 RdRp). [48,68]
Sotetsuflavone and

robustaflavone Inhibits dengue virus NS5 RNA dependent RNA polymerase. [68]

Agathisflavone Inhibits NS2B-NS3 protease. [69]
Podocarpusflavone A Inhibits the DV-NS5. [48]

Hepatitis B virus
(HBV)

Robustaflavone Inhibits the DNA polymerase. [70]
Sikokianin A Reduces HBsAg secretion. [71]

Hepatitis C virus
(HBC) Amentoflavone Deregulates all the virus life cycle, including viral entry, replication, and

translation. Inhibitor of NS5A. [72]

Herpes simplex
virus (HSV)

Amentoflavone Affects the expression of UL52 (early gene), UL54 (immediate-early
gene) and UL27 (late gene). More active against HSV-1. [73]

Agathisflavone Active against HSV-1 and HSV-2. [74]

Strychnobiflavone Interferes with the initial stages of viral infection and reduces HSV-1
protein expression. [75]

Ginkgetin Activity against HSV-1 and HSV-2. Inhibits the transcription step in the
protein synthesis of HSV-infected cells. [76]

Coxsackievirus B3 Amentoflavone Inhibits fatty acid synthase. [77]

Abbreviations: TNF-α, tumor necrosis factor-α; RNA, ribonucleic acid; HIV, Human immunodeficiency virus;
DNA, deoxyribonucleic acidHBV, Hepatitis B virus; HBC, Hepatitis C virus; HSV, Herpes simplex virus.

Chaves, O. et al. used not only the dimeric flavonoid agatisflavone, but also its natural
monomer apigenin, and demonstrated that the dimeric form increased the antiviral capacity
of flavonoids, which might be explained by the top number of hydrophobic contacts by the
number of aromatic rings [57]. The study of Y. Lin et al. also showed that the presence of a
greater number of hydroxylated groups and at least one flavone unit in dimeric flavonoid
compounds are essential for their antiviral activity. On the other hand, the compounds
studied can become inactive when the hydroxyl groups are methylated [65].

2.2. Antifungal Activity of Dimeric Flavonoids

The antifungal activity and, respectively, mechanisms of action of dimeric flavonoids
were investigated against several pathogenic fungal strains, such as Candida albicans, Cryp-
tococcus neoformans, Aspergillus fumigatus, Penicillium marneffei, Alternaria alternata, Fusarium
culmorum, and Cladosporium oxysporum [46]. The diagram of Figure 1 shows the main targets
of dimeric flavonoids against fungi described in the literature.

Dimeric flavonoids can form complexes with soluble proteins in fungal cell walls
and the lipophilic nature of these compounds makes them capable of disrupting fungal
membranes [46,78,79].

Regarding these two types of fungus, there have been dimeric flavonoids, like
isoginkgetin, that have demonstrated antifungal activity against Cryptococcus neoformans
and Aspergillous fumigatus, a yeast, and a filamentous fungus, respectively. These data show
that these types of compounds have a large spectrum of action [80].

According to the literature, one of the main characteristics of these compounds is
their ability to inhibit the growth and multiplication of fungus, like Candida albicans and
Alternaria alternata, and the growth of spores [81,82].
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When evaluating a possible interference of dimeric flavonoid compounds with virulence
factors that determine the pathogenicity of fungi, studies have shown that amentoflavone
enables Candida albicans to make a dimorphic transition due to a stress response by the
accumulation of trehalose and bilobetin, which is able to inhibit the growth of germinating
tubes from Cladosporium oxysporum and Fusarium culmorum [82,83]. As far as the production
of toxins is concerned, the compounds amentoflavone, 7,7′′-Dimethoxyagastisflavone,
6,6′′-bigenkwanin, and tetramethoxy-6,6′′-bigenkwanin, isolated from the Ouratea species,
inhibited the production of aflatoxins B1 and B2 from Aspergillus flavus, and the maximum
effect happened at 10 µg/mL [84].

In the case of Alternaria alternata, ginkgetin and 7-O-methylamentoflavone provoked
cell wall changes by an hydrophobic interaction [82].

Since biofilms are an enormous obstacle against antifungal agents, Freitas et al. tested
if proanthocyadnidin polymeric tannins from the Stryphnodendron adstringens stem bark
with antifungal activity against Candida albicans were also active during biofilm formation
and on pre-formed biofilms for Candida spp. The best results for Candida spp. were for
C. albicans, with MICs of 3.91 and 0,48 mg/L, that represented the inhibition of planktonic
and dispersion cells, respectively [85]. In conclusion, their study highlighted the potential
of those dimeric compounds to inhibit the formation of those communities of yeasts [85].

Additionally, some synthetic antifungal dimeric flavonoids were generally more active
against Aspergillus niger (MICs of 0.2, 0.0013 and 0.4 µmol/mL of dimers) when compared
to correspondent monomeric compounds of apigenin [55].

Considering all these findings, dimeric flavonoids that possess inherent antifungal
activity (Table 2) could be a strategy for future antifungal therapy [86].

Interestingly, dimeric flavonoids, like amentoflavone and other compounds consisting
of flavanone–flavone units (like 2,3-dihydrosciadopitysin) with a methoxyl group absent,
were inactive or weakly effective [58].
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Table 2. Dimeric flavonoid antifungal activity.

Fungus Compound Conclusions Literature
Reference

Candida
albicans

Amentoflavone
Fungistatic. Affects cell cycle progress during S-phase. [81]

Interrupts dimorphic transition.
Enhances the intracellular trehalose level, which induces a stress

response in fungal cells.
[87]

Quercetin Inhibits fungal adherence and biofilm formation. [83]
Kaempferol-3,40-dimethylether Activates macrophages and increases lysosomal activity. [88]

Kaempferol, canthin-
6-one, and morin) Cell membrane damage. [89]

Proanthocyanidin Inhibits proliferation and dispersion cells from pre-formed biofilms. [85]

Aspergillus
flavus

Amentoflavone, 7,7′′-
Dimethoxyagastisflavone, 6,6′′-bigenkwanin,

and tetramethoxy-6,6′′-bigenkwanin
Reduces the production of aflatoxin B1 (AFB1) and B2 (AFB2). [84]

Aspergillus
fumigatus Isoginkgetin Growth inhibition. [80]

Cryptococcus neoformas Isoginkgetin Growth inhibition. [80]
Podocarpusflavone

Fusarium
culmorum Bilobetin Inhibits the growth of germinating tubes. [82]

Cladosporium
oxysporum Bilobetin Inhibits the growth of germinating tubes. [82]

Alternaria
alternata Ginkgetin and 7-O-methylamentoflavone Inhibits the growth of fungal spores.

Small changes in the cell wall. [82]

Abbreviations: AFB1, Aflatoxin B1; AFB2, Aflatoxin B2.

2.3. Antiparasitic Activity of Dimeric Flavonoids

Parasitic infections are responsible for a great strain on health systems and affect
millions of people around the world [90].

According to the literature, some dimeric flavonoids, such as morelloflavone and
strychnobiflavone, show activity against both promastigote and amastigote forms [91].
Considering virulence factors of Leishmania spp., studies showed that the dimeric flavonoids
lanaroflavone, podocarpusflavone A, amentoflavone, and podocarpusflavone B, inhibited
the action of a zinc-dependent metalloprotease, existing in amastigote and proamastigote
forms of L. major and L. panamensis, which reduces the ability of parasites to adhere to
macrophages by interaction with fibronectin [46,92].

As for malaria disease, although there are medications such as chloroquine, vector
control, and vaccines (about 40% effective) capable of controlling transmission, it remains a
serious parasitic infection [46]. Dimeric flavonoids, such as lanaroflavone, methylenebis-
santin and 3′′,4′,4′′′,5,5′′,7,7′′-heptahydroxy-3,8-biflavanone, demonstrated high activity
against Plasmodium falciparum, in some cases by inhibiting important enzymes [51,93,94].
Weniger et al. and Kunert et al. stated that the patter of methylation of the compounds are
determinants for antiplasmodial activity [94,95].

Other dimeric compounds, such as 2′′,3′′-Dihydroochnaflavone and brachydins B
and C, showed important antiparasitic activity against Trypanosoma cruzi amastigotes and
trypomastigotes forms, and inhibited its capacity to invade [96,97].

During this review, no dimeric compounds were found with antiparasitic activity
against helminths.

Table 3 summarize some dimeric flavonoids that demonstrated ability to act
against protozoa.
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Table 3. Activity of dimeric flavonoids against protozoa.

Protozoa Compound Conclusions Literature
Reference

Plasmodium falciparum

3′′ ,4′ ,4′′′ ,5,5′′ ,7,7′′-heptahydroxy-3,8-
biflavanone Inhibition of α-glucosidase and aromatase. [51]

Lanaroflavone Mechanism of action unknown. [94]
7,4′ ,7′′-tri-O-methylamentoflavone Mechanism of action unknown. [95]

Methylenebissantin Inhibits enoyl-ACP reductase. [93]
3,3′′-di(7,4′′-dihydroxyflavanone-3-yl) Mechanism of action unknown. [98,99]

Leishmania panamensis

Lanaroflavone
Podocarpusflavone A
Podocarpusflavone B

Amentoflavona

Interact with Glycoprotein 63. [92]

Leishmania
infantum

Strychnobiflavone Causes depolarization of parasitic mitochondria. [100]
Amentoflavone Activity against intracellular amastigotes. [95]

Leishmania donovani 2,3-Dihydrohinokiflavone Tested on axenic amastigotes. [91]

Leishmania mexicana Morelloflavone and
Acetate Interact with recombinant cysteine protease type 2.8 [91]

Leishmania amazonensis

Amentoflavone and
robustaflavone

Effective antioxidant activity by increasing nitric oxide (NO)
production in macrophages. Strong activity against promastigote

and amastigote forms.
[91]

7-O-methyl ochnaflavone Activity against promastigote forms. [101]

Brachydin
Reduces the number of amastigotes and infected macrophages.

Presents a synergic effect with amphotericin B. Also showed ability
to induce damage in Golgi apparatus by accumulation of vesicles.

[102]

Trypanosoma cruzi
2′′ ,3′′-Dihydroochnaflavone

Kills approximately 62% of amastigote forms and 100% of
trypomastigotes in infected murine macrophages. The mechanism

is unknown. It is also able to inhibit topoisomerase I and
topoisomerase II-α, which may be the cause of mitochondrial

alterations in the parasitic form.

[96]

Brachydin B and C Inhibits the parasite invasion and its intracellular multiplication in
host cells, reducing parasitemia. [97]

Abbreviations: NO, nitric oxide.

The fact that dimeric flavonoids tested with commonly used anti-parasitic drugs
revealed the absence of competition/interaction may represent an important strategy that
allows reducing the dose, adverse effects, time, and cost of treatments, overcoming the
weak activity of some medications when administered individually [103].

Additionally, Ichino et al. and Boniface and Ferreira used the liquiritigenin dimer
3,3′′-di(7,4′′-dihydroxyflavanone-3-yl) and the monomeric liquiritigenin and stated that
the monomeric form did not have antiplasmodial activity [98,99]. Also, Thévenin et al.
found that the synthetic compounds of methylenebis(chalcone)s were more active against
parasites [104]. These extra data comparing dimeric and monomeric forms enhance the
potential of dimeric flavonoid investigation for antiparasitic effects [104].

2.4. Antibacterial Activity of Dimeric Flavonoids

Antibacterial resistance has become a problem of public health recognized all around
the globe [5]. To find alternatives for resolving infections caused by multi-drug-resistant
bacteria, the medical and pharmacological industry need to search for new products that
have functions like those of available antibiotics [41].

Although the mechanism of action of antibacterial dimeric flavonoids might not be
elucidated, some authors may assume that they may act in a similar way to monomeric
compounds, as show in Figure 2 [46].

In general, these compounds are more potent in Gram-positive rather than Gram-
negative bacteria, due to the differences between the cell wall of those two groups of
bacteria, especially due to the repulsive effect of lipopolysaccharides present in Gram-
negative bacteria [80]. One of the mechanisms characterized is the disruption of plasma
membranes [46,80,105,106]. For example, isoginkgetin and podocarpusflavone MICs for
S. aureus and E. faecalis were 60.0 µg/mL, which showed a moderate activity; for Gram-
negative E. coli and P. aeruginosa, isoginkgetin MICs were 130 µg/mL and podocarpus-
flavone were 250 and 60 µg/mL, respectively, which represented a lower activity [86].
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have functions like those of available antibiotics [41]. 

Although the mechanism of action of antibacterial dimeric flavonoids might not be 
elucidated, some authors may assume that they may act in a similar way to monomeric 
compounds, as show in Figure 2 [46]. 
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Other compounds, like macrophylloflavone, can interfere with nucleic acid syn-
thesis and other dimeric flavonoids [105]. Additionally, and just like the compound
3′′,4′,4′′′,5,5′′,7,7′′-heptahydoxy-3-8′′-biflavone, they can also interfere with the metabolism
of the bacterial cell and uptake of crucial nutrients, like glucose [105,107].

As already shown for fungus, dimeric flavonoids like agatisflavone, amentoflavone,
tetrahydroamentoflavone (THAF) and fukugiside can inhibit the bacterial growth and in-
hibit the biofilm formation, such as Bacillus subtilis, Staphylococcus carnosus and Streptococcus
pyogenes [108,109].

The investigation of Linden et al. investigation a remarkable antibacterial activity
of THAF against Gram-positive microorganisms: B. subtilis, with an MIC and MBC of
0.063 mg/mL and a bactericidal effect of 0.125 mg/mL for S. carnosus. In this case, the
results stated for the first time that dimerization and a reduced C–ring in dimeric flavonoids,
such as in THAF, may be the answers to justify the highest antibacterial activity. Regarding
biofilm inhibition, THAF was able to inhibit the biofilm formation of methicillin-resistant
S. aureus (MRSA) [108].

The findings of Nandu et al. on fukugiside showed that a concentration of 80 µg/mL
reduces an S. pyogenes biofilm by 91% by minimizing the cell surface hydrophobicity, which
do not rely on bacterial viability [109]. Furthermore, this dimeric flavonoid was also able to
interfere with an important virulence factor—M proteins—that have antiphagocytic func-
tions, enhancing S. pyogenes rate survival in human tissues and fluids. These proteins are
encoded by the emm gene, which is positively regulated by mga. Fukugiside downregulated
mga, which represented the possible prevention of systemic spread [109].

In short, Table 4 summarizes dimeric flavonoids that have antibacterial activity and
the mechanism of action, when elucidate.

The study of Lee et al. showed that the dose-dependent killing of M. aeruginosa
KW could be due to another variety of flavonoids in the S. tamariscina extract. For ex-
ample, in that work, apigenin, a monomer of amentoflavone, also had cyanobacterial-
killing effects. However, those effects were insufficient compared to the ones obtained for
amentoflavone [106].
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Table 4. Activity of dimeric flavonoids in bacteria.

Bacteria Compound Conclusions Literature
Reference

Staphylococcus
aureus

7, 4′ , 7′′ , 4′′′-Tetramethoxy amenthoflavone

The lipophilic nature of the molecules and the
external porous peptide cell wall structure of

Gram-positive bacteria determined their effect. In
Gram-negative bacteria, growth inhibition is lower.

[80]

Macrophylloflavone 18
Inhibits nucleic acid synthesis, cytoplasmic

membrane function, energy metabolism, and
porins in cell membranes.

[105]

Isoginkgetin Growth inhibition. [80]
Podocarpusflavone—A Mechanism of action unknown. [80]

Manniflavanone Mechanism of action unknown. [110]

Escherichia coli
Macrophylloflavone 18

Inhibits nucleic acid synthesis, cytoplasmic
membrane function, energy metabolism, and

porins in cell membranes.
[105]

Isoginkgetin Growth inhibition. [80]
Ericoside Mechanism of action unknown. [111]

Bacillus subtilis
and

Staphylococcus
carnosus

Agatisflavone 2, amentoflavone 1, and
Tetrahydroamentoflavone (THAF)

Inhibition of biofilm formation. Dimerization and
a reduced C ring contribute to greater activity of

the compounds.
[108]

Streptococcus
pyogenes Fukugiside

Exhibited concentration-dependent biofilm
inhibition by destabilizing the biofilm matrix and

by inhibiting M proteins.
[109]

Pseudomonas
aeruginosa Ochnaflavone and ochnaflavone 7-O-methylether 15c Mechanism of action unknown. [112]

Microcystis
aeruginosa Amentoflavone

Bacteria lose their round shape and eventually
succumb completely. Affects the peptidoglycan
layer and reduces pressure, which ends with the

leaking of cell contents. Effects are
dose-dependent.

[106]

Enterococcus faecalis

Podocarpusflavone—A Mechanism of action unknown. [80]
Manniflavanone Mechanism of action unknown. [88]

Isoginkgetin Growth inhibition. [80]
Ochnaflavone and ochnaflavone 7-O-methylether 15c Mechanism of action unknown. [112]

Actinomyces
naeslundii, Porphyromonas

gingivalis,
Streptococcus

mutans,
Streptococcus

mitis and
Streptococcus downeii

3′′ ,4′ ,4′′′ ,5,5′′ ,7,7′′-heptahydoxy-3-8′′-biflavone
Inhibition of glucan synthesis, glucose uptake

and metabolism.
Induces bacterial aggregation.

[107]

Klebsiella
pneumoniae Ericoside Mechanism of action unknown. [111]

Abbreviations: THAF, Tetrahydroamentoflavone.

Interestingly, Bitchagno et al. found that the antibacterial activity of the dimeric
flavonoid ericoside was higher for drug-resistant E. coli AG100 (MIC = 64 µg/mL) and
for Klebsiella pneumoniae ATCC11296 (128 µg/mL) than for monomeric taxifolin 3-O-
rhamnopyranoside, in which the MICs found were >128 µg/mL [111].

2.5. Potential of Dimeric Flavonoids as Antimicrobials: Form Lab to Clinics

In the literature, it is easy to find studies that have tested many flavonoids compounds
in vivo, using animal models, to assess their antimicrobial activity and toxicity levels, and
the results are starting to be potentiated in clinical trials [41].

Recent studies demonstrate that topically applied flavonoids, specially flavonols and
flavanols are effective when used via oral and vaginal mucosa routes [44]. The work of
Araújo et. al, showed that the in vivo tests in mice with a vaginal cream with an extract
from Syngonanthus nitens scapes (having flavonoids as the bioactive compounds) eliminated
vaginal Candida albicans, with only signs of inflammatory infiltrate and ulcerations that
indicated a previous infectious process in the local mucosa [113]. Simonetti et al. also
tested in vivo grape seed extract polymeric flavan-3-ols that inhibited C. albicans load in
vaginal candidiasis in mice [114]. Furthermore, research from Seleem et al. showed that the
compound lichochalcone-A, applied topically in the oral cavities of immunosuppressed
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mice, not only resulted in an extensively reduced fungal load, but also did not have
significantly toxicological effects, with the absence of tissue necrosis [115].

Regarding in vivo activity against parasites, according to Marín et al., none of the
nine flavonoids tested in mice infected with T. cruzi had significant toxicity and the par-
asitic charge was extensively lower when compared with a benznidazole control [116].
Additionally, those compounds changed the levels of the anti-T. cruzi antibody during the
chronic stage [116]. An in vivo study with 2′-Hydroxyflavanone showed that this flavonoid
reduced the lesion size and L. amazonensis load in a murine model of cutaneous leishmania-
sis [117]. Pereira et al. stated the in vivo schistosomicidal activities of oral treatment with
chalcones against Schistosoma mansoni worms, and the results showed that in mice there
occurred a total worm reduction [118].

The effects on acute lung injury induced by the influenza A virus in mice of an extract
from Scutellaria baicalensis root with bioactive flavonoids showed that oral administration
protected the infected animals by decreasing the lung virus load by affecting the production
of reduced haemagglutinin and inhibiting neuraminidase activity [119]. Based on the Ma
et al. study, the authors highlighted the in vivo activity of oxazinyl flavonoids against
tobacco mosaic virus [120].

The clinical test conducted with Plantago lanceolata extracts, with the in vitro antimicro-
bial activity of flavonoids, demonstrated that the individuals that had a P. lanceolata mouth
rinse presented a significant decrease in streptococci compared to the placebo group [121].
Even not significantly, the study stated a minor decrease for lactobacilli counts after the
treatment [121]. Another in vivo study with mice showed that an ethanolic extract had
a powerful antibacterial action against S. aureus, P. aeruginosa and Listeria monocytogenes,
attributed to the high content of catechin, epicatechin gallate and epicatechin, and may be
useful as an antiseptic solution [122].

Given these data, it is assumed that the study of flavonoids has increased. However,
there are few studies with animal models and clinical trials regarding the antimicrobial
activity of dimeric flavonoid compounds [46].

Rocha et al. performed a study in mice that showed that brachydin B, a dimeric
compound from Arrabidea Brachypoda, reduced the parasitemia in the infected animals with
L. amazonensis [102]. The oral administration suggested that the compound is absorbed
by the oral route and can reduce parasitemia [102]. The same compound was also tested
against T. cruzi in mice and was possible to highlight the low toxicity and decrease in
parasitemia and mortality [97,102]. Therefore, brachydin B appears to be a promising lead
for treating Leishmaniasis and Chagas disease [97,102].

In vivo analysis in C. elegans evinced low toxicity of the dimeric compound fukugi-
side and its anti-virulence potential against S. pyogenes [109]. A study with the dimeric
flavonoids amentoflavone and robustaflavone demonstrated their ability to reduce the
infection by L. amazonensis in mice [101].

3. Conclusions

Besides their nutritional value, flavonoid compounds have gained special interest,
given the numerous studies that have pointed out their potential in clinics [46,123]. Several
researchers have demonstrated the individual or synergistic anti-microbial potential of
natural and synthetic flavonoids against drug-resistant fungi [13], bacteria [14], viruses [15]
and parasites [16].

Currently, the dimeric flavonoids offer an opportunity for new therapeutic drugs,
as proven by the many compounds studied, not only for biological features, but also by
toxicity levels [46]. Regarding viruses, amentoflavone and agathisflavone have shown a
high spectrum of anti-viral activity against herpes simplex, influenza, dengue, and SARS-
CoV-2, with viral enzymes being the main targets of overall compounds [50,61,68,72,73].

In the group of fungi, dimeric flavonoids have more activity towards C. albicans, like
amentoflavone and proanthocyanidin, and the overall targets are enzymes, biofilm and
germinative tube formation [85,89].



Compounds 2024, 4 224

Amentoflavone and morelloflavone are compounds with promising effects against
Leishmania spp. by interacting with enzymes and enhancing antioxidant activity [96,106].
Brachydins discovered in Brazil from the plant Arrabidaea brachypoda have strong activity
against Trypanosoma cruzi by inhibiting the parasite invasion and its intracellular multipli-
cation in host cells [101,102]. In bacteria, many compounds, such as macrophylloflavone,
isoginkgetin and ericoside, have shown activity against Staphylococcus aureus and Es-
cherichia coli. Although some of the mechanisms of action are unknown, major dimeric
compounds with antibacterial activity are showing the ability to interfere with nucleic
acid synthesis, cytoplasmic membrane function, energy metabolism, and porins in cell
membranes [80,105,111].

Future work on the long road to implement the clinical use of these dimeric compounds
is needed to clarify their mechanisms of action and toxicity levels. In vitro findings open
great possibility for carrying out tests on animal models and clinical trials [46,97,102,118].

Even with several complicated steps, such as natural isolation, synthesis and modifica-
tions, these molecules may be important to fight emergent microbial diseases and especially
the threat of antimicrobial resistance [41].
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