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Abstract: The formation of a pair of co-crystals based upon isosteric halogen-bond donors, namely
1,4-diiodoperchlorobenzene and iodoperchlorobenzene, along with the acceptor 4,4-bipyridine is
reported. As expected, the components in each co-crystal engage in halogen bonding interac-
tions resulting in a one-dimensional chain-like structure. In particular, the co-crystal containing
1,4-diiodoperchlorobenzene is primarily held together by I···N halogen bonds while the solid based
upon iodoperchlorobenzene forms both I···N and Cl···N interactions. Structural diversity is achieved
between these co-crystals based upon the type of secondary interactions involving the chlorine atoms
on each halogen-bond donor even though they are isosteric in nature.
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1. Introduction

Halogen bonding is an attractive interaction between an electrophilic region on a
halogen atom, namely a σ-hole, and a nucleophilic region on a different atom [1–3]. In
particular, a σ-hole is a positive electrostatic area found at the tip of a carbon-bound halogen
atom that can interact with an electron rich group such as a lone pair [4,5]. The σ-hole
is most pronounced on iodine and is enhanced by neighboring electronegative atoms,
particularly fluorine [6–9]. Solid state chemists utilize halogen bonding interactions since
they are similar in strength and directionality when compared to hydrogen bonds. A
continuing challenge in crystal engineering is how small and incremental changes, to either
component of the co-crystal, can lead to structural diversity between these solids [10–13]. In
these systems, the variations occur due to the type of secondary interactions that ultimately
influence the resulting crystal structure, along with chemical and physical properties, even
in the presence of the stronger halogen bond [14].

An ongoing focus in our research groups is to develop halogen-bond donors that
contain chlorine rather than fluorine as the electron-withdrawing group. In particular, we
have investigated the halogen bonding propensity of 1,4-diiodoperchlorobenzene (C6I2Cl4)
where it has shown to reliably form I···N halogen bonds when coupled with various accep-
tor molecules [15–19]. To understand the formation of these halogen bonds, a molecular
electrostatic potential calculation was performed on C6I2Cl4 and a σ-hole was located on
the iodine atoms with a value of 146 kJ/mol which is well within range for a halogen-
bond donor (Scheme 1) [19]. With a similar goal, we have also reported on the ability
of iodoperchlorobenzene (C6ICl5) to engage in I···N halogen bonds with many of these
same acceptors [20]. The para-chlorine atom on C6ICl5, in reference to the iodine, forms an
unexpected Cl···N halogen bond which generated a one-dimensional chain-like structure
when combined with appropriate ditopic acceptors. In a similar calculation, the σ-hole on
both the iodine and para-chlorine atoms on C6ICl5 supported halogen bond formation with
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values of 157 and 78 kJ/mol, respectively (Scheme 1) [20]. Curiously, these co-crystals are
all isostructural to related solids containing C6I2Cl4 as the halogen-bond donor.

Compounds 2022, 2, FOR PEER REVIEW 2 
 

 

these same acceptors [20]. The para-chlorine atom on C6ICl5, in reference to the iodine, 
forms an unexpected Cl···N halogen bond which generated a one-dimensional chain-like 
structure when combined with appropriate ditopic acceptors. In a similar calculation, the 
σ-hole on both the iodine and para-chlorine atoms on C6ICl5 supported halogen bond 
formation with values of 157 and 78 kJ/mol, respectively (Scheme 1) [20]. Curiously, these 
co-crystals are all isostructural to related solids containing C6I2Cl4 as the halogen-bond 
donor. 

Using this as inspiration, we report here the formation and structure of a pair of 
halogen-bonded co-crystals based upon 4,4-bipyridine (4,4-BP) along with two isosteric 
donors, namely C6I2Cl4 and C6ICl5 (Scheme 1). As expected, the resulting co-crystals 
(C6I2Cl4)·(4,4-BP) and (C6ICl5)·(4,4-BP) are primarily held together by the combination of 
I···N and Cl···N halogen bonds which generate a one-dimensional chain structure for each 
solid. Even though these co-crystals contain isosteric donors, which have previously 
yielded isostructural solids, the resulting materials have drastically different crystal 
structures. This structural diversity is based upon the type of secondary non-covalent 
interactions observed between the components involving chlorine atoms on a particular 
halogen-bond donor. 

 
Scheme 1. Rendering of the components of these co-crystals: (a) halogen-bond donors C6I2Cl4 and 
C6ICl5 along with (b) the halogen-bond acceptor 4,4-BP. The electrostatic potential values for the 
σ-hole on selected atoms on the halogen-bond donors are shown as previously reported [19,20]. All 
indicated values are in kJ/mol. 

2. Materials and Methods 
2.1. Materials 

The acceptor 4,4-bipyridine (4,4-BP) and reagent grade toluene were both purchased 
from Sigma-Aldrich Chemical (St. Louis, MO, USA) and used as received. Both of the 
donors, 1,4-diiodoperchlorobenzene (C6I2Cl4) [21] and iodoperchlorobenzene (C6ICl5) 
[22], were synthesized by a previously reported method. All crystallization experiments 
were performed in 20 mL scintillation vials. 

2.2. Formation of (C6I2Cl4)·(4,4-BP) 
Co-crystals of (C6I2Cl4)·(4,4-BP) were formed by dissolving 25.0 mg of C6I2Cl4 in 2.0 

mL of toluene, which was combined with a separate 2.0 mL toluene solution containing 
8.3 mg of 4,4-BP (1:1 molar equivalent). The resulting solution was allowed to slowly 
evaporate and within two days, crystals suitable for X-ray diffraction were realized. 

2.3. Formation of (C6ICl5)·(4,4-BP) 
In a similar manner, co-crystals of (C6ICl5)·(4,4-BP) were achieved by taking 25.0 mg 

of C6ICl5 and dissolving it in 2.0 mL of toluene. Then, a separate 2.0 mL toluene solution 
of 10.4 mg of 4,4-BP was combined with the previous solution (1:1 molar equivalent). 
Again, the combined solution was allowed to slowly evaporate and within three days, 
single crystals suitable for X-ray diffraction were formed. 

  

Scheme 1. Rendering of the components of these co-crystals: (a) halogen-bond donors C6I2Cl4 and
C6ICl5 along with (b) the halogen-bond acceptor 4,4-BP. The electrostatic potential values for the
σ-hole on selected atoms on the halogen-bond donors are shown as previously reported [19,20]. All
indicated values are in kJ/mol.

Using this as inspiration, we report here the formation and structure of a pair of
halogen-bonded co-crystals based upon 4,4-bipyridine (4,4-BP) along with two isosteric
donors, namely C6I2Cl4 and C6ICl5 (Scheme 1). As expected, the resulting co-crystals
(C6I2Cl4)·(4,4-BP) and (C6ICl5)·(4,4-BP) are primarily held together by the combination of
I···N and Cl···N halogen bonds which generate a one-dimensional chain structure for each
solid. Even though these co-crystals contain isosteric donors, which have previously yielded
isostructural solids, the resulting materials have drastically different crystal structures. This
structural diversity is based upon the type of secondary non-covalent interactions observed
between the components involving chlorine atoms on a particular halogen-bond donor.

2. Materials and Methods
2.1. Materials

The acceptor 4,4-bipyridine (4,4-BP) and reagent grade toluene were both purchased
from Sigma-Aldrich Chemical (St. Louis, MO, USA) and used as received. Both of the
donors, 1,4-diiodoperchlorobenzene (C6I2Cl4) [21] and iodoperchlorobenzene (C6ICl5) [22],
were synthesized by a previously reported method. All crystallization experiments were
performed in 20 mL scintillation vials.

2.2. Formation of (C6I2Cl4)·(4,4-BP)

Co-crystals of (C6I2Cl4)·(4,4-BP) were formed by dissolving 25.0 mg of C6I2Cl4 in
2.0 mL of toluene, which was combined with a separate 2.0 mL toluene solution containing
8.3 mg of 4,4-BP (1:1 molar equivalent). The resulting solution was allowed to slowly
evaporate and within two days, crystals suitable for X-ray diffraction were realized.

2.3. Formation of (C6ICl5)·(4,4-BP)

In a similar manner, co-crystals of (C6ICl5)·(4,4-BP) were achieved by taking 25.0 mg
of C6ICl5 and dissolving it in 2.0 mL of toluene. Then, a separate 2.0 mL toluene solution of
10.4 mg of 4,4-BP was combined with the previous solution (1:1 molar equivalent). Again,
the combined solution was allowed to slowly evaporate and within three days, single
crystals suitable for X-ray diffraction were formed.

2.4. Single-Crystal X-ray Diffraction

X-ray data were collected on a Rigaku XtaLAB Synergy-i Kappa diffractometer (Rigaku
Americas Corporation, The Woodlands, TX, USA) equipped with a PhotonJet-i X-ray source
to generate Cu Kα radiation. Suitable single crystals were transferred to a glass slide in type
NVH immersion oil. Each co-crystal was then mounted on a MiTeGen 50 µm MicroLoop
and placed on the diffractometer under a cold nitrogen stream at 100 K. After data collection,
the unit cell was redetermined using a subset of all the collected data. The intensity data
were corrected for Lorentz, polarization, and background effects using CrysAlisPro (Rigaku
Americas Corporation, The Woodlands, TX, USA). A numerical absorption correction
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was applied based on a Gaussian integration over a multi-faceted crystal then followed
by a semi-empirical correction for adsorption. The program SHELXT [23] was used for
the initial structure solution while SHELXL [24] was used for the refinement of each co-
crystal. These programs were utilized within the OLEX2 software (OlexSys Ltd, Durham,
UK) [25]. Hydrogen atoms bound to carbons were geometrically constrained using the
appropriate AFIX commands. Selected crystallographic and refinement parameters for
(C6I2Cl4)·(4,4-BP) and (C6ICl5)·(4,4-BP) are listed in Table 1.

Table 1. Crystallographic and refinement parameters for the co-crystals (C6I2Cl4)·(4,4-BP) and
(C6ICl5)·(4,4-BP).

Co-Crystal (C6I2Cl4)·(4,4-BP) (C6ICl5)·(4,4-BP)

Formula C16H8Cl4I2N2 C16H8Cl5IN2
Formula Mass (g·mol−1) 623.84 532.39

Crystal system triclinic monoclinic
Space group Pı̄ P21/n

a (Å) 4.0843(1) 14.3260(3)
b (Å) 9.4089(2) 3.8878(1)
c (Å) 12.8307(2) 17.0394(4)
α (◦) 68.543(2) 90
β (◦) 84.458(2) 113.747(3)
γ (◦) 87.780(2) 90

Z 1 2
V (Å3) 456.747(18) 868.68(4)

ρcalcd (g·cm−3) 2.268 2.035
T (K) 100 100

µ (mm−1) 32.436 21.570
F(000) 292.0 512.0

Radiation source Cu Kα Cu Kα
Reflections collected 8062 6948

Independent reflections 1800 1617
Data/restraints/parameters 1800/0/110 1617/204/151

Rint 0.0588 0.0573
R1 (I ≥ 2σ(I)) 0.0320 0.0673

wR (F2) (I ≥ 2σ(I)) 0.0840 0.1877
R1 (all data) 0.0326 0.0686

wR (F2) (all data) 0.0844 0.1895
Goodness-of-net on F2 1.080 1.074

CCDC deposition number 2,204,844 2,204,845

2.5. Computational Methods

To determine the different I···N and Cl···N halogen-bonding energies, a series of
Density Functional Theory (DFT) calculations were performed using the M06-2X density
functional in the Gaussian 16 program [26]. The aug-cc-pVTZ basis set, stored in the
Gaussian program, was used on all atoms except for iodine. In the case of iodine, the
basis set, which included a core potential that replaces the inner 28 electrons, was obtained
from the EMSL Basis Set Exchange Library [27]. This approach computes the binding
energy as the difference between the energy of the co-crystal and the energies of the
separated molecules. These DFT calculations used a single point energy computation
with convergence for the energy change of less than 1.00 × 10−6 Hartrees. All of these
binding energies were computed using the counterpoise method. The application of the
counterpoise correction always decreases the binding energies by typically five to ten
percent. In addition, these calculations were also carried out using non-augmented basis
functions. When removing the diffuse functions, a change of one to two percent in the
dissociation energy results.
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3. Results
3.1. X-ray Crystal Structure of (C6I2Cl4)·(4,4-BP)

The components of (C6I2Cl4)·(4,4-BP) crystallize in the centrosymmetric triclinic space
group Pı̄ (Table 1). Within the asymmetric unit is half a molecule of both C6I2Cl4 and 4,4-BP
where inverse symmetry generates the remainder of each fragment. As expected, C6I2Cl4
forms a series of I···N halogen bonds [I···N 2.904(6) Å; C–I···N 171.3(2)◦] with 4,4-BP which
generates a one-dimensional chain-like structure (Figure 1). Due to symmetry, the aromatic
rings within 4,4-BP are coplanar. In contrast, the aromatic rings between the donor and
acceptor within (C6I2Cl4)·(4,4-BP) are twisted with an angle of 56.61◦ (Figures 1 and 2). As
seen with other symmetric ditopic halogen-bond acceptors, molecules of C6I2Cl4 engage
in infinite homogeneous face-to-face π–π stacking (Figure 2). The parallel and slipped
orientation of the aromatic ring on C6I2Cl4 runs along the crystallographic a axis with a
centroid-to-centroid distance of 4.0843(1) Å equal to that axis. Similar π–π stacking patterns
were observed for C6I2Cl4 in both single- and mutli-component crystals that have been
previously reported by our groups [16,19].
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Figure 2. X-ray structure of (C6I2Cl4)·(4,4-BP) illustrating the infinite homogeneous face-to-face π–π
stacking arrangement of the aromatic rings.

These halogen-bonded chains interact with their nearest neighbors by Type I Cl···Cl
interactions [28,29] [Cl···Cl 3.240(2) Å; C–Cl···Cl 165.8(2)◦; |θ1 − θ2| = 0◦] which results in
a two-dimensional sheet (Figure 3). Type I interactions are not considered halogen bonds
but instead they are symmetric close contacts between halogen atoms where the difference
in bond angles will be equal to zero. In particular, half of the chlorine atoms on C6I2Cl4 are
found to interact in this type of secondary interaction. Lastly, the remaining chlorine atoms
are found to engage in an offset Cl···π interactions with 4,4-BP (Cl···π 4.092 Å) measured
from the chlorine atom to the centroid of the 4-pyridyl ring. The closest distance for this
Cl···π interactions is found between a chlorine and carbon atom with a distance of 3.212(5)
Å along with an angle of 170.7(2)◦.

3.2. X-ray Crystal Structure of (C6ICl5)·(4,4-BP)

The components of (C6ICl5)·(4,4-BP) crystallize in the centrosymmetric monoclinic
space group P21/n where a half of both molecules are found in the asymmetric unit
(Table 1). Again, inversion symmetry generates the remainder of each molecule. Unlike
before, molecules of 4,4-BP are found to be disordered over two positions where after a
free variable refinement returned a final value of .51/.49 for the major/minor components.
In addition, the iodine and para-chlorine atoms, with respect to the iodine, are equally
disordered over two positions and were modeled with a .50/.50 occupancy for each atom.
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The ability of C6ICl5 to form both I···N [I···N 2.956(7) Å; C–I···N 162.6(3)◦] and Cl···N
halogen bonds [Cl···N 3.205(20) Å; C–Cl···N 158.1(9)◦] to the major site for 4,4-BP results in
a one-dimensional chain (Figure 4). In drastic contrast to (C6I2Cl4)·(4,4-BP), the aromatic
rings, namely the halogen-bond donor and acceptor, within (C6ICl5)·(4,4-BP) are nearly
co-planar with an angle of 7.24◦ with regard to the major orientation (Figure 5). Again,
molecules of C6ICl5 engage in a face-to-face π–π stacking arrangement that results in an
infinite column of the donor that runs along the crystallographic b axis (Figures 5 and 6).
These donors stack in a parallel and slightly offset pattern with a centroid-to-centroid
distance of 3.8878(1) Å which is equal to that axis (Table 1).

Unlike (C6I2Cl4)·(4,4-BP), the secondary interaction between neighboring C6ICl5 stacks
within (C6ICl5)·(4,4-BP) is an infinite chain of Cl···Cl contacts. These are similar to the
trifurcated X3 synthon recognized in the structures of perhalobenzenes and trihalome-
sitylenes [21,30]. In this structure, however, the infinite array of these non-covalent contacts
[Cl···Cl 3.528(3) Å; C–Cl···Cl 148.1(3)◦ and 121.8(3)◦; |θ1 − θ2| = 26.3(3)◦] appears be-
tween adjacent stacks of the donor along the crystallographic b axis (Figure 6). This closest
chlorine–chlorine distance cannot be classified as either Type I or Type II due to the ob-
served C–Cl···Cl bond angles [29]. In particular, Type I interactions should have a difference
in bond angles equal to 0◦ while for Type II, the pair of angles should be close to 180◦

and 90◦. Only half of the chlorine atoms on C6ICl5 are found to interact in this type of
Cl···Cl interaction.
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3.3. Halogen Bond Energies Using Density Functional Theory Calculations

To enumerate the strength of both I···N and Cl···N halogen bonds within each co-
crystal, a series of theoretical investigations using Density Functional Theory (DFT) cal-
culations were performed. In particular, the M062X density functional was employed
along with an aug-cc-pVTZ basis set. These halogen-bond strengths were calculated by
using atomic positions determined from single-crystal X-ray diffraction data. The I···N
halogen-bonding energy within (C6I2Cl4)·(4,4-BP) was determined to be −22.0 kJ/mol.
In contrast, the I···N halogen bonding value for (C6ICl5)·(4,4-BP) yielded a lower value
of −17.9 kJ/mol. In a similar approach, the strength of the Cl···N halogen bond within
(C6ICl5)·(4,4-BP) was determined to be −7.4 kJ/mol. Interestingly, both of these energies
are slightly lower than the published values for the co-crystal containing C6ICl5 and trans-
1,2-bi(4-pyridyl)ethylene which had values of −19.0 and −8.5 kJ/mol for the I···N and
Cl···N halogen bonds, respectively [20]. These calculated binding energies support the
presence of halogen bonds within these co-crystals.

4. Conclusions

In this contribution, we report the structural diversity between a pair of co-crystals
that differ only by the isosteric halogen-bond donor. This diversity is achieved by the type
of secondary non-covalent interactions formed by the chlorine atoms on the given donor.
In particular, these one-dimensional halogen-bonded chains either interact with neighbors
via Type I Cl···Cl interaction or an infinite Cl···Cl contact that gives rise to the particular
crystal packing. Currently, we are investigating the structures of related co-crystals with
these donors and other symmetric bipyridine acceptors.
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