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Abstract: Flavylium/Chalcone-based molecular switches comprise features such as pH-gated pho-
tochromism and fluorescence properties that make them attractive for many applications, ranging
from stimuli-responsive materials to photopharmacology. However, in contrast to other common
photoswitches, the application of flavylium compounds in these areas remains largely unexplored.
Among other possible reasons, this may be due to the lack of general strategies to attach these
molecules to substrates such as polymers, nanoparticles, biomolecules, or surfaces. In this work,
we have shown that a copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) can be employed
to obtain a chalcone conjugate. We used an isosorbide carbohydrate to demonstrate this strategy
and investigated the photochemical properties of the chalcone-isosorbide conjugate. The obtained
results show that the photochemical properties of this new compound are similar to other equivalent
flavylium/chalcone photoswitches, confirming the feasibility of the conjugation strategy.

Keywords: photoswitches; flavylium salts; photochromism; azide-alkyne click reaction

1. Introduction

Flavylium salts comprise a large family of dyes that includes both synthetic and natu-
ral (e.g., anthocyanins) compounds [1,2]. These dyes are believed to play important roles in
plant biology, not only because of their tunable color palette but also due to their antioxi-
dant and photoprotective properties [1–6]. Furthermore, synthetic and natural flavylium
compounds find several applications that range from fluorescent probes, photoswitches, or
dye-sensitive solar cell photosensitizers, to provide some examples [7–22]. Despite being
generally isolated as (and identified by) the flavylium cation (2-phenylbenzopyrylium)
form, this electrophilic species is only stable at very acidic pH values (pH < 1) undergoing
a series of reversible reactions (often designated as the flavylium network of chemical
reactions) at slightly acidic, neutral, or basic conditions that lead to the disappearance of
the flavylium cation to form different species, including the quinoidal base, hemiketal, cis-
and trans-chalcone species (see Scheme 1), and their respective ionized species depending
on the pH of the solution [23]. Since all these reactions are reversible, the flavylium can
be recovered upon reacidification of the solution. Additionally, irradiation of the trans-
chalcone species with light of the appropriate wavelength, at carefully selected moderately
acidic pH values, leads to the formation of the flavylium cation as a metastable species
that revert to the trans-chalcone in the dark, accounting for the well-known photochromic
properties of flavylium compounds [24]. Even though at weakly acidic, neutral, or basic pH
values, the flavylium cannot be formed upon irradiation of the trans-chalcone, other species
such as hemiketal, cis-chalcone, or the quinoidal base can be observed as outputs of the
photochemical stimulation. Due to these properties, flavylium compounds are considered
multi-stimuli-responsive/multistate molecular switches [25–29].
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Scheme 1. General reaction network displayed by flavylium cations under acidic to neutral condi-
tions. 

On account of the above-mentioned properties, flavylium compounds hold great po-
tential to be employed as stimuli-responsive/fluorescence-reporting molecular compo-
nents of functional (supra)molecular materials [30–35]. However, their application in 
these contexts remains underexplored. This can be due, in part, to the fact that flavylium 
compounds pose some challenges regarding their functionalization: Ideally, the desired 
functional groups attached to aldehyde, ketone, or phenols precursors must be stable un-
der the very acidic/basic conditions used to obtain the corresponding flavylium salt or 
chalcone, respectively. Furthermore, quantitative reactant conversions are often desirable, 
especially when dealing with highly polar/charged functional groups that can be chal-
lenging to separate from the desired flavylium product [1,36–41]. Post-functionalization 
of flavylium dyes (without modifying their electronic properties), on the other hand, of-
fers an alternative and potentially attractive strategy to attach them to different molecules 
and materials such as polymers, biomolecules, surfaces, nanoparticles, etc. However, to 
the best of our knowledge, post-functionalization strategies aiming at the attachment of 
flavylium compounds to different molecules and materials remain largely unexplored 
[42]. In this work, we report the synthesis and spectroscopic characterization of a chal-
cone-isosorbide conjugate showing that the copper-catalyzed azido-alkyne click reaction 
can be effectively applied for the post-functionalization of flavylium compounds (via the 
trans-chalcone species). 

2. Materials and Methods 
2.1. General 

All commercially available reagents were bought from Sigma-Al-
drich/Fluka/TCI/Alfa Aesar and were used as received. Spectroscopic experiments were 
carried out using 1 cm quartz or plastic cells on a Cary100bio or 5000 (Varian, Palo Alto, 
CA, USA). The solutions (3 mL) were irradiated at 365 nm, under continuous stirring, in 
a SPEX Fluorolog 1681 0.22 m 150 W Xe-Hg lamp (HORIBA, Kyoto, Japan). The light flux 

Scheme 1. General reaction network displayed by flavylium cations under acidic to neutral condi-
tions.

On account of the above-mentioned properties, flavylium compounds hold great
potential to be employed as stimuli-responsive/fluorescence-reporting molecular com-
ponents of functional (supra)molecular materials [30–35]. However, their application in
these contexts remains underexplored. This can be due, in part, to the fact that flavylium
compounds pose some challenges regarding their functionalization: Ideally, the desired
functional groups attached to aldehyde, ketone, or phenols precursors must be stable
under the very acidic/basic conditions used to obtain the corresponding flavylium salt or
chalcone, respectively. Furthermore, quantitative reactant conversions are often desirable,
especially when dealing with highly polar/charged functional groups that can be chal-
lenging to separate from the desired flavylium product [1,36–41]. Post-functionalization of
flavylium dyes (without modifying their electronic properties), on the other hand, offers
an alternative and potentially attractive strategy to attach them to different molecules and
materials such as polymers, biomolecules, surfaces, nanoparticles, etc. However, to the best
of our knowledge, post-functionalization strategies aiming at the attachment of flavylium
compounds to different molecules and materials remain largely unexplored [42]. In this
work, we report the synthesis and spectroscopic characterization of a chalcone-isosorbide
conjugate showing that the copper-catalyzed azido-alkyne click reaction can be effectively
applied for the post-functionalization of flavylium compounds (via the trans-chalcone
species).

2. Materials and Methods
2.1. General

All commercially available reagents were bought from Sigma-Aldrich/Fluka/TCI/Alfa
Aesar and were used as received. Spectroscopic experiments were carried out using 1 cm
quartz or plastic cells on a Cary100bio or 5000 (Varian, Palo Alto, CA, USA). The solu-
tions (3 mL) were irradiated at 365 nm, under continuous stirring, in a SPEX Fluorolog
1681 0.22 m 150 W Xe-Hg lamp (HORIBA, Kyoto, Japan). The light flux at λirr = 365 nm (I0)
was determined using a ferrioxalate actinometer [43]. The photochemical quantum yields
were determined from Equation (1), where ∆A/∆t is the slope of line obtained by measuring
the absorbance of the product or reactant against the initial irradiation time (linear region),
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V is the irradiated volume, ε is the molar extinction coefficient of the photoproduct, and
Airr is the absorbance at the irradiation wavelength. This equation is only valid when the
reactant is the only species absorbing at the irradiation wavelength. Otherwise, a correction
for the fraction of absorbed light must be made. In the present case, no corrections are
needed because, at the initial irradiation time, the reactant is the only species absorbing
light at the irradiation wavelength.

φ =
n moles of product per time units

n moles of absorbed photons per time units
=

∆A
∆t·ε ·V

I0(1− 10−Airr )
(1)

The pH of the solutions was measured using a Crison basic 20+ (Crison Instruments,
Barcelona, Spain) or a Radiometer Copenhagen PHM240 pH meter (Copenhagen, Den-
mark). NMR spectra were acquired using a Bruker Avance III (Billerica, MA, USA) oper-
ating at 400 MHz (1H) or 101 MHz (13C). Infrared spectra were acquired using a Perkin
Elmer Spectrum Two in ATR mode. The melting points were measured in a Reichert
Thermovar microscope (Reichert Technologies, Depew, NY, USA), and the obtained values
are uncorrected. ESI-MS analysis was performed on an LTQ OrbitrapTM XL hybrid mass
spectrometer (Thermo Fischer Scientific, Bremen, Germany) controlled by LTQ Tune Plus
2.5.5 and Xcalibur 2.1.0.

2.2. Synthesis of -(4-(Prop-2-yn-1-yloxy)phenyl)ethan-1-one (2)

To a solution of 4-hydroxyacetophenone (1) (1.08 g; 7.93 mmol) in dry DMF (17 mL),
potassium carbonate (1.5 g; 10.85 mmol) was added, followed by propargyl bromide (1.39 g;
11.68 mmol). The mixture was stirred at room temperature under an inert atmosphere for
16 h. Ice-cold water was added to the reaction mixture, affording a solid that was vacuum
filtered and washed with cold water. Compound 2 was obtained as a white solid (1.14 g;
6.54 mmol; 83%).

m.p: 75–76 ◦C. (lit. 73 ◦C) [44].
IR (neat) νmax (cm−1): 3221; 3002; 2933; 2875; 2121; 1657; 1600; 1575; 1240; 1015; 824;

591.
1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 4.76 (d,

J = 2.4 Hz, 2H), 2.56 (s, 4H).
13C NMR (101 MHz, CDCl3) δ 196.9, 161.4, 131.2, 130.7, 114.7, 77.9, 76.3, 55.9, 26.5.
The Spectroscopic Data is shown in Figures S1–S3 respectively.

2.3. Synthesis of (E)-3-(2-Hydroxyphenyl)-1-(4-(prop-2-yn-1-yloxy)phenyl)prop-2-en-1-one (3)

To a solution of (2) (0.5 g; 2.87 mmol) in absolute ethanol (5 mL), lithium hydroxide
monohydrate (0.35 g; 8.35 mmol) was added. After solubilization of the lithium hydroxide,
salicylaldehyde (0.5 mL; 4.69 mmol) was added. The resulting mixture was stirred sheltered
from light at 40 ◦C for 18 h. A solution of HCl 1M was added until a neutral pH was reached,
affording a solid that was filtered under vacuum and washed with cold water and cold
ethanol. Compound 3 was obtained as a yellow solid (0.5 g; 1.8 mmol; 63%).

m.p: 120 ◦C (decomposition).
IR (neat) νmax (cm−1): 3237; 2118; 1638; 1601; 1547; 1218; 1012; 835; 749.
1H NMR (400 MHz, DMSO-d6) δ 10.24 (s, 1H), 8.12 (d, J = 8.4 Hz, 2H), 8.03 (d,

J = 15.7 Hz, 1H), 7.91–7.81 (m, 2H), 7.27 (t, J = 7.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 6.93 (d,
J = 8.2 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 4.94 (s, 2H), 3.65 (s, 1H).

13C NMR (101 MHz, DMSO-d6) δ 187.7, 160.9, 157.2, 138.7, 131.9, 131.3, 130.6, 128.6,
121.5, 120.8, 119.4, 116.2, 114.8, 78.8, 55.7.

The Spectroscopic Data is shown in Figures S4–S9 respectively.

2.4. Synthesis of (3R,3aS,6R,6aR)-6-Hydroxyhexahydrofuro[3,2-b]furan-3-yl
4-methylbenzenesulfonate (5)

To a solution of isomannide (4) (1 g; 6.84 mmol) in dry pyridine (6 mL), tosyl chlo-
ride (1.45 g; 7.61 mmol) was added at 0 ◦C. The resulting mixture was stirred at room
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temperature under nitrogen for 24 h. A solution of HCl 1M was added until pH = 1, and
the mixture was extracted with dichloromethane. The organic phase was washed with a
saturated solution of sodium bicarbonate, dried with anhydrous sodium sulfate, filtered,
and the solvent was evaporated to dryness. Compound 5 was obtained as a white solid
(1.05 g; 3.67 mmol; 54%).

m.p: 105–107 ◦C (lit 104–105 ◦C) [45].
IR (neat) νmax (cm−1): 3524; 2984; 2933; 2868; 1596; 1357; 1172; 1098; 816.
1H NMR (400 MHz, DMSO-d6) δ 10.24 (s, 1H), 8.12 (d, J = 8.4 Hz, 2H), 8.03 (d,

J = 15.7 Hz, 1H), 7.91–7.81 (m, 2H), 7.27 (t, J = 7.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 6.93
(d, J = 8.2 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 4.94 (s, 2H), 3.65 (s, 1H).

13C NMR (101 MHz, DMSO-d6) δ 187.7, 160.9, 157.2, 138.7, 131.9, 131.3, 130.6, 128.6,
121.5, 120.8, 119.4, 116.2, 114.8, 78.8, 55.7.

The Spectroscopic Data is shown in Figures S10–S12 respectively.

2.5. Synthesis of (3R,3aR,6S,6aR)-6-Azidohexahydrofuro[3,2-b]furan-3-ol (6)

To a solution of 5 (0.94 g; 3.13 mmol) in dry DMF (5 mL), sodium azide (0.66 g;
10.15 mmol) was added. The reaction mixture was stirred at 160 ◦C under nitrogen for 18 h.
The resulting mixture was poured into an ice-cold water mixture and further extracted
with dichloromethane. The combined organic phases were washed with water, dried with
sodium sulfate, filtered, and evaporated to dryness. The resulting solid was purified using
column chromatography (EtOAc/Hex (9:1)). Compound 6 was obtained as a white solid
(0.29 g; 1.67 mmol; 53%)

m.p: 47–50 ◦C.
IR (neat) νmax (cm−1): 3425; 2963; 2869; 2862; 2134; 1499; 1417; 1260; 1007.
1H NMR (400 MHz, CDCl3) δ 4.60 (t, J = 4.9 Hz, 1H), 4.45 (d, J = 4.4 Hz, 1H), 4.30

(p, J = 5.8 Hz, 1H), 4.10–4.02 (m, 2H), 3.94 (dd, J = 10.1, 4.0 Hz, 1H), 3.86 (dd, J = 9.6, 5.9 Hz,
1H), 3.58 (dd, J = 9.5, 5.7 Hz, 1H), 2.69 (d, J = 6.4 Hz, 1H).

13C NMR (101 MHz, CDCl3) δ 86.3, 82.1, 73.9, 72.7, 72.2, 66.3.
The Spectroscopic Data is shown in Figures S13–S15 respectively.

2.6. Synthesis of (E)-1-(4-((1-((3S,3aR,6R,6aR)-6-Hydroxyhexahydrofuro[3,2-b]furan-3-yl)-1H-
1,2,3-triazol-4-yl)methoxy)phenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one (7)

A solution of (6) (50 mg; 0.29 mmol) and (3) (89 mg; 0.32 mmol) in a mixture of
DMSO:H2O (4:1) (2 mL) was bubbled with N2. After 10 min, Cuprous iodide (3 mg;
0.015 mmol; 5% mol) was added, and the resulting mixture was stirred for 16 h at 50 ◦C
under nitrogen and sheltered from light. Cuprisorb™ resin was added and stirred at room
temperature for 2 h. The mixture was filtered and ice-cold water was added, resulting
in the formation of a pale-yellow solid. After centrifugation, the solid was washed with
cold water, followed by a mixture of EtOAc:Hex (9:1). Compound 7 was obtained as a
pale-yellow solid (110 mg; 0.24 mmol; 84%).

m.p: 160 ◦C (decomposition).
IR (neat) νmax (cm−1): 3430; 3147; 2980; 2947; 1652; 1593; 1453; 1335; 1188; 992; 832;

754.
1H NMR (400 MHz, DMSO-d6) δ 8.31 (s, 1H), 8.12 (d, J = 8.1 Hz, 2H), 8.02 (d,

J = 15.7 Hz, 1H), 7.89–7.81 (m, 2H), 7.26 (t, J = 7.7 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 6.93
(d, J = 8.2 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 5.28 (s, 2H), 5.24 (s, 1H), 5.05 (s, 1H), 4.78–4.75
(m, 1H), 4.62 (t, J = 4.5 Hz, 1H), 4.24–4.11 (m, 3H), 3.85–3.77 (m, 1H), 3.55–3.49 (m, 1H).

13C NMR (101 MHz, DMSO-d6) δ 187.7, 161.8, 157.2, 142.5, 138.7, 131.9, 131.0, 130.7,
128.6, 123.9, 121.5, 120.8, 119.4, 116.2, 114.7, 86.4, 82.3, 72.7, 71.9, 71.6, 66.1, 61.3.

ESI-HRMS: 448.15349 [M–H]− (calc. for C24H22N3O−6 448.15141).
The Spectroscopic Data is shown in Figures S16–S21 respectively.
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3. Results and Discussion

The trans-chalcone- isosorbide conjugate 7 was synthesized according to the strategy
depicted in Scheme 2. The acetylenic trans-chalcone 3 was readily obtained in moderate
yield from the respective acetophenone precursor 2 [44] through the LiOH catalyzed
condensation with salicylaldehyde [46]. The isomannide 4 was treated with 1.1 equiv. of
tosyl chloride to obtain the monotosylated derivative 5, which, in the presence of sodium
azide, gives the targeted monoazido isosorbide 6, by an SN2 mechanism [45]. The isosorbide
derivative 6 was then combined with trans-chalcone 3 in the presence of catalytic amounts
of CuI to give the isosorbide-trans-chalcone conjugate 7 through the copper (I) catalyzed
azido-alkyne “click” cycloaddition. [47] Usually, in CuAAC protocols, the catalytic Cu(I)
species is generated “in situ” by Cu(II) sodium ascorbate reduction. In our studies, the
use of catalytic amounts of CuSO4·5H2O and sodium ascorbate was also tested, leading to
lower yields and harder purification methods. [48] Compound 7 was fully characterized
and identified by NMR and HRMS. The 1H NMR acquired in DMSO-d6 (see the full
assignment in the Supporting Information) shows a singlet at 8.31 ppm corresponding to
the triazole proton and a pair of doublets at 8.02/7.86 ppm with a coupling constant of
J = 15.7 Hz, confirming that the chalcone 7 is obtained exclusively as the trans isomer.
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Scheme 2. Adopted synthetic approach to obtain the isosorbide-chalcone conjugate 7. Reagents and
conditions: (a) 1, K2CO3 (1.4 equiv.), propargyl bromide (1.5 equiv.), dry DMF, N2 atmosphere, RT,
16h. (b) 2, LiOH.H2O (2.9 equiv.), salicylaldehyde (1.6 equiv.), absolute ethanol, 40 ◦C, 18 h. (c) 4,
tosyl chloride (1.1 equiv.), dry pyridine, N2 atmosphere, RT, 24 h. (d), NaN3 (3 equiv.), dry DMF, N2

atmosphere, 160 ◦C, 16 h. (e) 6, 3 (1.1 equiv.), CuI (5% mol), DMSO/H2O (4:1), N2 atmosphere, RT,
18 h.

The acid–base and photoresponsive properties of the isosorbide-trans-chalcone con-
jugate 7 were investigated in H2O:DMSO solutions (85:15 v:v). The acid–base dissocia-
tion of the phenolic hydroxyl group of 7 in a basic medium was investigated by UV-Vis
spectroscopy (see Figure 1). The neutral trans-chalcone 7 displays the typical absorption
spectrum observed for this class of compounds with two overlapping bands centered at
approximately 317 nm and 350 nm. As the pH increases, a new red-shifted absorption
band, centered at 440 nm, starts to appear concomitantly with the disappearance of the
former band. This new absorption spectrum can be assigned to the ionized form of 7.
From the spectral variations shown in Figure 1, pKa = 9.06 for the formation of the ionized
trans-chalcone 7 was obtained.
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Figure 1. UV-Vis spectral variations observed for the isosorbide-trans-chalcone conjugate 7 (27 µM)
as a function of the pH. All spectra were acquired in H2O:DMSO (85:15 v:v) borate buffer (10 mM)
solutions at room temperature.

The photochemical properties of the trans-chalcone 7 were initially investigated at
acidic conditions (pH = 2, [HCl] = 0.01 M). As can be observed from Figure 2, continuous
irradiation of 7 with UV light (λirr = 365 nm) leads to the appearance of a new absorp-
tion band centered at 432 nm that can be assigned to the photoinduced formation of the
corresponding flavylium cation with an apparent quantum yield of Φ = 0.06, in line with
electronically similar flavylium photoswitches [28,33,34,49].

The photoinduced formation of the flavylium cation is pH-dependent, leading to
quantitative but irreversible conversion at very acidic conditions and weak or no flavylium
formation at higher pH values. To investigate the pH-dependent photochemical properties
of 7 in more detail, irradiation experiments such as those shown in Figure 2 were conducted
at different pH values. Figure 3 shows the final spectra obtained at the photostationary
state as a function of the pH of the different solutions. As can be observed, at pH ~5, the
flavylium cation is not formed upon irradiation, but as the pH decreases, its formation
becomes more efficient. This behavior is in line with the pH-gated photochromism of
flavylium compounds. In particular, for compounds displaying high cis-trans chalcone
isomerization barriers, irradiation of the trans-species at higher pH values leads to the
formation of an equilibrated mixture of cis-chalcone and hemiketal. At lower pH values,
the hemiketal is thermally converted into the flavylium cation through the dehydration of
this last species, driving the equilibria towards the formation of the colored cation. From
the pH-dependent UV-Vis spectral variations shown in Figure 3, an apparent pKa = 3.65
can be obtained for the pH-dependent photoinduced formation of the flavylium cation.
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Figure 3. UV-Vis spectral variations recorded at the photostationary state upon irradiation of 7
(27 µM in H2O:DMSO 85:15 v:v) at different pH values in 10 mM citrate buffer.

In order to investigate the reversibility of the photochromism observed for 7, the
recovery of the trans-chalcone was monitored at T = 60 ◦C by UV-Vis spectroscopy. As can
be observed from Figure 4, the absorption band assigned to the flavylium cation disappears
according to first-order kinetics (kobs = 3.3× 10−4 s−1) leading to the concomitant formation
of the trans-chalcone, demonstrating the reversibility of the system at this pH value.



Compounds 2022, 2 118

Compounds 2022, 2, FOR PEER REVIEW 8 
 

 

 
Figure 3. UV-Vis spectral variations recorded at the photostationary state upon irradiation of 7 (27 
µM in H2O:DMSO 85:15 v:v) at different pH values in 10 mM citrate buffer. 

In order to investigate the reversibility of the photochromism observed for 7, the re-
covery of the trans-chalcone was monitored at T = 60 °C by UV-Vis spectroscopy. As can 
be observed from Figure 4, the absorption band assigned to the flavylium cation disap-
pears according to first-order kinetics (kobs = 3.3 × 10−4 s−1) leading to the concomitant for-
mation of the trans-chalcone, demonstrating the reversibility of the system at this pH 
value. 

 
Figure 4. UV-Vis spectral variations corresponding to the thermal recovery (T = 60 °C) of the trans-
chalcone 7 (27 µM in H2O:DMSO 85:15 v:v) from the photostationary state at pH = 3.06 (10 mM 
citrate buffer). The red line in the inset shows the fit to a first-order integrated rate equation. 

4. Conclusions 
In conclusion, a photochromic trans-chalcone-isosorbide conjugate was successfully 

synthesized using copper (I) catalyzed azide-alkyne cycloaddition, and its photo- and pH-
responsive properties were analyzed. The results showed that its physicochemical prop-
erties are similar to other equivalent compounds (in terms of substituents directly at-

λ / nm
300 400 500 600

A
bs

0

1.5

pH
1 2 3 4 5 6

A 
(4

36
 n

m
)

0

1.5pKa = 3.65

λ / nm
300 400 500 600

A
bs

0

1.2

t / s

A 
(4

32
 n

m
)

0

kobs = 3.3 × 10-4  s-1

0       5000  10,000

Figure 4. UV-Vis spectral variations corresponding to the thermal recovery (T = 60 ◦C) of the trans-
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4. Conclusions

In conclusion, a photochromic trans-chalcone-isosorbide conjugate was successfully
synthesized using copper (I) catalyzed azide-alkyne cycloaddition, and its photo- and
pH-responsive properties were analyzed. The results showed that its physicochemical
properties are similar to other equivalent compounds (in terms of substituents directly at-
tached to the flavylium skeleton), suggesting this synthetic approach can be safely explored
to functionalize more complex materials, such as nanoparticles, polymers, or biomolecules.
We are currently exploring some of these possibilities to develop stimuli-responsive materi-
als in the frame of our interests in supramolecular systems and nanotechnology.
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