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Abstract: A method to conformally coat silica nanosprings with magnesium via sublimation at
450 ◦C has been developed. In addition, Mg thin films were grown on Si(100) using this method to
determine the effects of substrate morphology (nanoscale curvatures vs. planar) on the interfacial
morphology of the Mg coating. High-resolution/powder X-ray diffraction (HRXRD/PXRD) on
both the Mg-coated NS and the thin film revealed the presence of Mgand MgO due to exposure of
the samples to air. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)
confirmed the presence of Mg on the nanosprings. Elemental mapping with TEM-EDS verified that
Mg uniformity and conformally coats the nanosprings. Nanocrystallinity of the Mg coating on the
nanosprings was determined to be polycrystalline by TEM and selected area electron diffraction
(SAED). In contrast, the process produces large micron-scale crystals on planar surfaces.
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1. Introduction

Coating one-dimensional (1D) nanostructures such as silica nanosprings (NS), nanowires,
nanorods, or nanotubes with different metal, semiconductor, or insulating coatings can pro-
duce nanomaterials with unique capabilities and lead to a wealth of technological uses. In
recent years, 1D nanostructure-based devices such as those based on zinc oxide [1,2], sili-
con [3], and silver nanowires [4,5] have shown strengthened physical, optical, and electrical
properties after the application of various coatings. The conformal coating of 1D nanostruc-
tures requires either liquid immersion solgel deposition [6–9] or chemical vapor deposition
of one type or another [10–14]. The purpose of this study is to develop a cost effective
and straightforward method for conformally coating 1D nanostructures such as NS with
magnesium. Duan et al. [15] have outlined the many desirable properties of Mg, including
its excellent optical properties for nanoplasmonics [15–17] and its appeal in reversible
metal to dielectric states when exposed to hydrogen [18–20], as well as superior structural
properties for applications in biotechnology and the aerospace/automotive sector [21]. In
the case of NS, Mg coatings may impart unique chiral optical properties for enhanced gas
sensing [22–24] or other dynamic properties with significant technological impact.

Magnesium is an excellent material for conformal coating of 1D nanostructures due to
its low sublimation temperature of 327 ◦C at 10−4 Torr, as well as its immensely interesting
properties [22,25–30]. Magnesium at low pressures behaves almost like a semipermanent
gas, which is unusual for metals; that facilitates conformal coatings on various struc-
tures [31]. There are, of course, methods of Mg deposition widely used, including atomic
layer deposition (ALD) and molecular beam epitaxy (MBE). However, these methods have
their drawbacks. For example, ALD of Mg is mainly used for doping semiconductors using
magnesium bis(cyclopentadienyl) (MgCp2), where plasma enhancement is required for
the process [32,33]. Molecular beam epitaxy of Mg and MgO is well suited for thin film
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deposition but is better suited for line-of-sight deposition [32,34]. The advantages of the
method presented here are its simplicity and cost effectiveness as well as the fact that it
does not require a significant investment in capital equipment.

2. Experimental Setup

Mg deposition was carried out in a simple vacuum system schematically represented
in Figure 1. It consists of a bench top vacuum chamber—in this case, an 8-inch vacuum
chamber with a removable flange on the top for inserting the sample. Inside the chamber
is a boron nitride heater, although any heater capable of reaching 450 ◦C will suffice. The
system is pumped with a turbomolecular pump capable of obtaining a base chamber
pressure of <2× 10−4 Torr. A detailed explanation of the Au catalyst assisted vapor–liquid–
solid growth of the silica nanosprings can found in [35–37]. A NS sample placed facing
upward in a 10 mL quartz crucible along with approximately 20 mg of Mg shaved from a
Mg pellet (Ted Pella). Laying the sample flat on the bottom of the crucible ensures good
thermal contact and therefore at the same temperature. Note that this is necessary to
promote Mg adsorption onto the NS because of Mg’s semipermanent gas properties [31].
This placement also keeps the sample out of the line-of-sight of Mg deposition that is
predominantly upward, thereby eliminating over deposition of Mg on the top surface of the
sample, which in the case of the NS mat can clog the spaces between NS and lead to their
encapsulation instead of a conformal coating. The crucible is covered with a ceramic plate
and placed on the heater. The ceramic plate helps to maintain a high vapor concentration
of Mg in the crucible. A type K thermocouple is mounted on the heater next to the crucible.
The heater is then raised to 450 ◦C and remains so for a dwell time of 10–15 min. The silica
NS samples consisting of a mat of NS grown on Si(100) via a modified vapor–liquid–solid
(VLS) method discussed by McIlroy et al. in depth in [38]. The thickness of the mat of NS is
approximately 30 mm. When coating a bare Si(100) substrate, it was attached to the ceramic
top plate facing toward the bottom of the crucible.
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Figure 1. Vacuum chamber used for sublimation deposition of Mg onto silica nanosprings. The
sample and Mg pellets are placed in a quartz crucible capped with a ceramic disk.

3. Materials Analysis

X-ray photoelectron spectroscopy (XPS) was performed in an ultrahigh vacuum (UHV)
system with a base pressure of 6.0 × 10−10 Torr. The XPS spectra were acquired using the
monochromatic Al-Kα emission line from a dual anode X-ray source (Physical Electronics
XR 04-548) operated at 300 W and an incident angle of 54.7◦. The kinetic energy of the
photoelectrons was measured with an Omicron EA 125 hemispherical electron energy
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analyzer with a resolution of 0.02 eV. High-resolution thin film X-ray diffraction (HRXRD)
XRD pattern of Mg/Si(100) were acquired with a Bruker D8 Advanced XRD using the Cu
Ka1 emission line and powder X-ray diffraction (PXRD) XRD pattern of Mg-coated NS
were acquired with an Rigaku Miniflex Diffractometer also using the Cu Ka1 emission line.
Scanning Electron Microscopy (SEM) micrographs were acquired with an FEI Quanta 600
with Bruker EDS and HKL EBSD. The spot size resolution for SEM was between 2–3 spot
resolution and the voltage between 10–15 kV. Transmission electron microscopy (TEM)
and select area electron diffraction (SAED) of the coated NS were acquired with a JEOL
JEM-2100 transmission electron microscope with an EVEX X-ray microanalysis system.

4. Results and Discussion

An SEM micrograph and the corresponding EDS overlay of Mg-coated NS are dis-
played in Figure 2a,b. The EDS overlay demonstrates that Mg is present on the topmost NS
of the mat. The patches of high Si concentration correspond to thinner regions of the mat
and likely signal from the Si substrate in addition to the NS. The bright spots in Figure 2a
are Au NP at the tip of the NS that serve as the catalyst for their VLS growth. An XPS
survey scan of Mg/Si(100) is displayed in Figure 3. The peaks at binding energies of 100 eV
and 153 eV are the Si 2p and 2s core level states, respectively, of the substrate. The C 1s core
level is extremely weak, indicative of the cleanliness of the process. The O 1s core level
state is at the expected binding energy of 532 eV. The Mg 1s core level state is at binding
energy of 1305.3 eV (see inset in Figure 3), which is close to the literature value of 1304.5 eV
for MgO [39]. The observation of the Si 2p1/2 and 2p3/2 core level states at 104 eV and
152 eV, respectively, indicates that the Mg layer is no thicker than 10 nm and, therefore,
the interfacial morphology should be like that of the Mg-coated NS. The conclusion is that
the surface of the Mg film has oxidized upon exposure to air, which is to be expected. XPS
analysis was not performed on the Mg-coated NS due to the low signal-to-noise of the Mg
1s and that scattering from the nonuniform surface presented by the nanosprings further
exacerbates the poor signal-to-noise.
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Figure 3. An XPS survey scan of the Mg thin film on Si(100). The inset is a high-resolution XPS
spectrum of the Mg 1s core level state.

HRXRD and PXRD were used to determine the microstructure of the Mg thin film and
the Mg-coated NS sample, respectively. Displayed in Figure 4a are the HRXRD pattern for
Mg/Si(100) and the PXRD of Mg-coated NS, which both exhibit a peak at 69.46◦, just off the
Si(100) main peak, corresponding to hexagonal Mg(OH)2 [40,41]. Its presence indicates that
during the initial phase of deposition, Mg interacts with OH groups on the surface of the
silica NS [42] and the native oxide of the Si(100) substrate [43]. However, the Mg coating on
both samples eventually becomes pure Mg, as evident by the Mg(002) and Mg(102) peaks
at 34.5◦ and 47.7◦, respectively, in Figure 4b for the Mg thin film and the Mg(102) peak at
47.7◦ in Figure 4c for the Mg-coated NS. The Mg(002) peak for the Mg-coated NS is partially
obscured by the broad amorphous SiO2 peak of the silica NS between 35◦ and 42◦ [44].
The additional, unmarked peaks in Figure 4c correspond to Au used as the catalyst for NS
growth, where the Au nanoparticles is located at the end of the nanosprings.
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Figure 4. HRXRD and PXRD patterns of Mg on Si(100) wafers and nanosprings, respectively, where
(a) shows a scan from 68.5 to 70 degrees with a sharp Mg(OH)2 peak present and (b) a broader scan
from 30 to 65 degrees where Mg(002) and Mg(102) orientations are present for the thin film sample
and (c) Mg(102) is also observed in the PXRD spectrum of the Mg-coated nanosprings.



Nanomanufacturing 2022, 2 190

To confirm the conformal nature of the Mg coating of the NS, high-resolution TEM
analysis was performed. Figure 5a is a TEM micrograph of a single Mg-coated NS. Figure 5b
is the reference spectrum for the EDS scan in Figure 5c. It is apparent from the EDS map that
Mg (red) conformally coats the entire NS. High-resolution TEM and SAED were performed
on the Mg-coated NS to confirm the morphology and crystallinity of the Mg coating, which
also provided insight into the chemical composition of the Mg, i.e., metallic Mg, MgO or
a combination of both. The TEM image in Figure 6 shows that the coating consists of Mg
nano-crystallites of less than 100 nm in size (red circles). The HRTEM micrograph of a single
Mg crystallite is displayed in Figure 6b, and the corresponding SAED pattern in Figure 6c.
The SAED patterns have been quantified using standard hexagonal Mg (h-Mg) [45,46] and
cubic MgO (c-MgO) [47,48], having the space group of P63/mmc, and FM3M, respectively.
The lattice parameters used for h-Mg are a = 3.203 Å and c = 5.127 Å), and for c-MgO,
they are a = b = c = 3.010 Å. Magnesium oxide is assumed based on the XPS analysis and
the oxidation properties of Mg. The h-Mg SAED ring patterns in Figure 6c correspond
to the (101), (002) and (100) crystal planes. The additional rings correspond to the (111),
(200), (220), and (311) crystal planes of c-MgO. Further quantification of standard trigonal
Mg(OH)2 and cubic Au having space groups P3m1 and FM3M, respectively, was carried
out. The presence of Mg(OH)2 is supported by our XPS and XRD observations, where
Au’s presence as a catalyst has been subsequently discussed. Note that because of the
amorphous structure of the silica NS, it does not contribute to the SAED pattern.
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Figure 5. TEM micrographs of (a) a single Mg-coated NS coated in Mg. (b) A reference TEM
micrograph of the end of the NS used for EDS mapping. (c) The corresponding EDS map of the end
of the NS in (b), where red corresponds to Mg and green to Si.

Based on XRD and SAED analysis, we propose the following description of Mg
sublimation deposition. During the initial phase of Mg adsorption, it reacts with the surface
of the silica NS or the native oxide of the Si substrate forming MgO and Mg(OH)2, where
the presence of Mg(OH)2 is confirmed by the observation of its (103) peak in the XRD
pattern of the NS and thin film in Figure 4a and its (002) and (111) rings in the SAED pattern
in Figure 6c. At the interface, it is assumed given the reactivity of Mg with O. Eventually,
the growth transitions to Mg. The formation of nanocrystals on the NS is consistent with
previous work on GaN-coated NS [49], where the amorphous surface and its curvature
produce stresses that favor crystallite formation over epitaxial growth. Based on the results
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of this study, we can conclude that in the presence of OH groups on the surface of the two
supports, Mg(OH)2 (brucite) is initially formed and subsequently transitions to Mg.
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Figure 6. (a) TEM micrograph of a silica NS, where red circles indicate Mg nanocrystals (NC) on the
surface. (b) A high-resolution TEM micrograph of a Mg NC and (c) the corresponding SAED pattern
consisting of rings of h-Mg (gold) and the c-MgO (green).

5. Conclusions

We have developed a simple sublimation-based process for conformally coating 1D
nanostructures with Mg. XPS analysis indicates that the topmost layer of Mg is oxidized,
which is to be expected given the proclivity of Mg to oxidize in air. The Mg (002), (102),
crystal planes were observed for the thin film and the Mg (102) for the Mg-coated NS.
X-ray diffraction peaks corresponding to Mg(OH)2 were observed for the Mg thin film and
Mg-coated NS. Optical examination of the Mg thin film revealed the formation of large
crystallites. SEM-EDS mapping of a mat of NS showed that the Mg sublimation process
coats the entire mat. High-resolution TEM and SAED analysis of a single Mg-coated NS
revealed that the Mg coating is polycrystalline, consisting of sub-100 nm nanocrystals.
Moreover, from SAED analysis of the Mg-coated NS, it was determined that the coating
is Mg(OH)2 at the interface with the NS, that it converts to h-Mg, and that it is capped
with c-MgO, where the oxide layer is attributed to post growth oxidation upon exposure
to air. This process can readily be used to coat any variety of 1D nanostructures with Mg.
The process has the advantage of minimal investment in capital equipment or expensive
chemical precursors such as those used in atomic layer deposition of Mg. We hypothesize
that the formation of MgO can be mitigated by depositing a thin Al2O3 layer prior to air
exposure. Finally, we suggest that the initial formation of Mg(HO)2 on hydroxyl terminated
surfaces can be exploited to form ultrathin films of unique MgO-based minerals.
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