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Abstract: Nano-hybrid systems are products of interactions between organic and inorganic materials
designed and planned to develop drug delivery platforms that can be self-assembled. Poloxamine,
commercially available as Tetronic®, is formed by blocks of copolymers consisting of poly (ethylene
oxide) (PEO) and poly (propylene oxide) (PPO) units arranged in a four-armed star shape. Structurally,
Tetronics are similar to Pluronics®, with an additional feature as they are also pH-dependent due to
their central ethylenediamine unit. Laponite is a synthetic clay arranged in the form of discs with a
diameter of approximately 25 nm and a thickness of 1 nm. Both compounds are biocompatible and
considered as candidates for the formation of carrier systems. The objective is to explore associations
between a Tetronic (T1304) and LAP (Laponite) at concentrations of 1–20% (w/w) and 0–3% (w/w),
respectively. Response surface methodology (RMS) and two types of machine learning (multilayer
perceptron (MLP) and support vector machine (SVM)) were used to evaluate the physical behavior
of the systems and the β-Lapachone (β-Lap) solubility in the systems. β-Lap (model drug with low
solubility in water) has antiviral, antiparasitic, antitumor, and anti-inflammatory properties. The
results show an adequate machine learning approach to predict the physical behavior of nanocarrier
systems with and without the presence of LAP. Additionally, the analysis performed with SVM
showed better results (R2 > 0.97) in terms of data adjustment in the evaluation of β-Lap solubility.
Furthermore, this work presents a new methodology for classifying phase behavior using ML. The
new methodology allows the creation of a phase behavior surface for different concentrations of T1304
and LAP at different pHs and temperatures. The machine learning strategies used were excellent in
assisting in the optimized development of new nano-hybrid platforms.

Keywords: clay; polyamines; response surface methodology; machine learning; support vector
machine; multilayer perceptron; thermo responsive gels; pH-responsive gels
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1. Introduction

Polymer micelles have been studied as a viable alternative for gene delivery systems,
drugs, or contrast agents [1–7]. Polymeric therapy is arguably one of the most successful
alternatives when dealing with first-generation nanotechnology carriers. Among them,
polymeric micellar systems stand out, which have great potential for success [8]. Micellar
systems are formed by blocks of amphiphilic copolymers and have been used in treating,
diagnosing, and monitoring an illness. These theragnostic systems have attracted much at-
tention in the medical, biological, and pharmaceutical fields [9]. Polyamines, commercially
available as Tetronic®, are formed by blocks of copolymers consisting of poly (ethylene
oxide) (PEO) and poly (propylene oxide) (PPO) units arranged in a four-armed star shape
with different hydrophilic-lipophilic balance (HBL), and molecular weight [10,11], being
very attractive as drug delivery systems due to the capacity to form nanometric structures
as micelles or worm-like micelles, for example, [12–14]. Structurally, Tetronics are similar
to Pluronics® [15–17]. PEO-PPO-PEO copolymer block micelles (Pluronic) incorporating
doxorubicin (SP1049C) are used in clinical studies as anticancer agents [18].

Recent studies have shown that micelles formed by Tetronics have the same favorable
attributes as Pluronic, however, with an additional benefit, as they are pH-dependent
due to their central ethylenediamine unit [15,19]. The influence of pH on its structural
organization provides a relevant and favorable feature to the delivery system of substances
to a specific site, such as the delivery of antineoplastic in tumor tissue; this is due to the
increase in glucose that raises (abnormally) the concentration of lactic acid by malignant
cells (Warburg effect) [20]. Furthermore, according to [21], there is evidence that Tetronics
can also inhibit efflux pumps in a similar way to Pluronics, which would be another great
advantage for neoplasm therapy.

It is known that the combination of Laponite (LAP, Na+
0.7[(Si8Mg5.5Li0.3) O20(OH)4]−0.7),

discs of synthetic smectite clays with a diameter of approximately 25 nm and a thickness of
1 nm, with Pluronic block copolymers leads to the formation of hydrogels [17,18]. LAP has
negative-charge surfaces with pH-dependent edges [22–24].

Nano-hybrid systems were presented as an attractive platform for drug delivery.
These systems combine organic and inorganic materials in self-assembled structures [25].
Recent research has also shown that compounds formed by polyethylene oxide (PEO) and
PEO/chitosan associated with LAP promote cell adhesion, proliferation, and differentia-
tion [26]. Furthermore, according to [27], complexes formed by Laponite and alginate were
able to promote the sustained release of doxorubicin, which was more significant with the
reduction in pH.

Several studies have been published focusing on composite formulations with Tetronic
co-polymers associated or not with laponite nanoparticles. This association can modify
the transition of sol–gel phases of nanocomposites formed and provide a sustained re-
lease of dependence temperature and/or pH [28–30]. For these reasons, they can be a
desirable platform for multifunctional, innovative therapy with excellent prospects for
cancer treatment.

Beta-lapachone (β-Lap) is a naphthoquinone synthesized from Lapachol. Lapachol is a
phenolic compound extracted from trees of the Bignoniaceae family, Tabebuia, widely found
in northern and northeastern Brazil. A high quantity of research indicates β-Lap as a drug
with antiviral, antiparasitic, antitumor, and anti-inflammatory activities [31,32]. However,
its low water solubility (0.038 mg. mL−1) provides serious bioavailability problems [33,34],
making its use unfeasible.

The different stages of developing new pharmaceutical products, in general, demand
a lot of time and money; in carrier systems, it is no different since there is a great possibility
of organic and inorganic compounds that can be used to prepare nanocomposites. Studies
reporting the optimized design of experiments are classic approaches and are widely used
nowadays. Optimizing the parameters used during development allows for evaluating
the impact of each variable (input data) on the target (output data). The response surface
methodology (RSM) technique created in 1951 by Box and Wilson [35] is widely used in the



Nanomanufacturing 2022, 2 84

chemical and pharmaceutical industry to optimize experimental procedures when seeking
to reduce the number of experiments. The RSM searches through mathematical models for
possible impacts of factors related to a process and points out an ideal working region with
answers individually and cumulatively in response to a system [36].

Artificial intelligence (AI) based on machine learning (ML) has been increasingly used
in different areas of knowledge. For example, ML techniques and algorithms allow a new
analysis alternative and have accelerated discoveries of materials and formulations in the
pharmaceutical field [37–47].

ML techniques, such as the support vector machine (SVM), and those based on artificial
neural networks (ANNs), such as multilayer perceptron (MLP), can find input and output
relationships for complex nonlinear systems associated with multiple variables. From a set
of experimental data, ML techniques (MLP and SVM) can learn regression and classification
models for any system [42]. The MLP technique has been successfully used in the literature
to obtain regression models. However, this technique requires a lot of experimental data
for training and validation [42], which in some cases can be prohibitive. On the other
hand, SVM works well with a small dataset, generating very reliable response surfaces and
classification models [47–51].

All aspects of this study are considered relevant to the potential development of
Tetronic-based systems. The objective is, therefore, to use RSM and ML (SVM and MLP)
techniques [47–49] to optimize different T1304 and LAP concentrations to find the most
efficient formulations to solubilize β-Lap. In addition, this work presents a novel method-
ology based on phase behavior classification using ML. This novel methodology enables
the creation of a phase behavior surface for different concentrations of T1304 and LAP
at different pHs (natural pH, pH 2.0, pH 5.5, and pH 7.4) and with a temperature ramp
between 25–70 ◦C.

Finally, our results can promote important information to rapidly advance the design-
ing of an attractive platform for multifunctional treatment, based on its low cost, combined
with good biological activity, the favorable characteristics of micellar systems as carriers of
drugs and contrast agents, and the wealth of data generated with the Pluronic® micelles.

2. Materials and Methods
2.1. Materials

Poloxamine with 21 and 27 PEO and PPO units, respectively (Tetronic 1304 with MM
10,500 Dalton and HBL: 12–18), was donated by the manufacturer BASF Corporation (Lud-
wigshafen, Germany). BYK Additives & Instruments (Wesel, Germany) kindly provided
Laponite RD, a synthetic clay. The β-Lap compound was obtained from the laboratory of
Professor Celson Camara of the Federal Rural University of Pernambuco (UFRPE, Recife,
Brazil). This was achieved by a simple process of acid cyclization of Lapachol under acidic
conditions and low temperatures. The other reagents used in this work, but not described
in this section, are available and considered as analytical grade.

2.2. Methods
2.2.1. Preparation of the Nanocarriers

All nanocarrier systems (unique compound and hybrid) were similarly prepared. The
mixtures of poloxamine (T1304) with or without LAP were kept in a bath sonicator for
approximately 20 min at room temperature, then held under magnetic stirring for 24 h. The
used concentrations of T1304 ranged over 1–20%, w/w with and without the presence of
1.5 or 3% w/w of LAP. Additionally, pH influence was studied at pH 2.0, pH 5.5, pH 7.0,
and natural pH (~8.2 for nanocarriers in the absence of LAP and ~10 in the presence of
LAP). All pHs were adjusted, with HCL at 1 mol.L−1) [30].
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2.2.2. Characterization of the Nanocarriers
Physical Behavior of Systems

The systems were evaluated for physical behavior by visual observation. In addi-
tion, the samples were all subjected to a stepwise temperature increase of 20 to 80 ◦C
(increments of 5 ◦C, 10 min intervals between each sample stabilization). The experiments
were conducted with samples in triplicate and the parameters used for data analysis and
classification are described in Table 1.

Table 1. Parameters used for data analysis and classification of systems.

Physical Behavior Parameters Used

Liquid Clear liquid and unable to maintain its weight if the bottle is inverted.
Viscous liquid Thicker liquid with slower sample flow. Additionally, unable to maintain its weight if the bottle is inverted.

Gel Classified as transparent dispersions in the form of a gel and capable of maintaining their weight if the vial is
inverted; however, if subjected to vigorous agitation for 10 s, they come off.

Strong gel Classified as clear dispersions in the form of a firm gel, capable of maintaining their weight against gravity
in an inverted flask, and if subjected to vigorous shaking for 10 s, they do not come off.

Phase Behavior Experimental Design using Machine Learning

The ML used to classify the phase behavior was characterized by a committee com-
posed of four SVMs, as presented in Figure 1. The ML was trained to classify four-phase
behavior represented by liquid, viscous liquid, gel, and strong gel. Each kth SVM (SVMk)
inside the committee was a binary classifier, and it was responsible for one of each class, i.e.,
liquid (SVM1), viscous liquid (SVM2), gel (SVM3), and strong gel (SVM4). The inputs asso-
ciated with each kth SVM were associated with the proportion of T1304 (x1), the proportion
of LAP (x2), and the temperature (x3) in Celsius degrees.

Figure 1. The ML approach used to classify the phase behavior. (a) The SVM committee architecture
composed of four SVMs. (b) The kth SVM of the SVM committee. Each SVM is associated with one of
the four classes: liquid (k = 1), viscous liquid (k = 2), gel (k = 3), and strong gel (k = 4).

The Gaussian kernel with the sequential minimal optimization (SMO) algorithm were
used for each kth SVM. The Gaussian kernel can be represented as

K(x, ci) = e−
1

2σ x−ci
2

(1)
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where x = [x1, x2, x3] is the vector input and ci is the center of the ith kernel, also called sup-
port vectors [42,47,48]. The output of each kth SVM was combined to generate the unique
output that represents one of the kth classes. The proposed ML output is characterized by

k = g
(

index
1≤k≤4

(max{s1, s2, s3, s4})
)

(2)

where the variables {s1, s2, s3, s4} represent the output of each kth SVM. The training and
validation used n-fold cross-validation with n = 5.

β-Lap Solubility in Nanosystems: Factorial and Machine Learning Analyses

A total of 5 mg of β-Lap was added to each 1 g sample (single or hybrid systems).
Thus, in excess of the drug, all vials were kept under continuous agitation for ten days,
without interruption, using the Blood Homogenizer and Solutions Model AP 22 (Phoenix-
Luferco, Araraquara, Brazil). Subsequently, the systems were centrifuged (14,000 rpm for
15 min at 20 ◦C), and the supernatant was evaluated by UV-Vis spectrophotometry at 257
nm. The calibration curve comprised values between 2–10 µg mL−1 of β-Lap solubilized in
an ethanolic solution (1:1). The drug was quantified using the linear least squares rule by
the equation y = 0.1123x + 0.0041, R2 = 0.9998 [33].

Design of Experiments by Central Composite Design

The central composite design (CCD) factorial design was used to generate the results
associated with β-Lap solubility. The factorial design was formulated with 32 assays (two
factors and three levels) (see Table 2). The surface’s coefficient of determination (R2) was
obtained using the computational tool MATLAB 2020 (License 650662, Mathworks, Natick,
MA, USA). The final expression found for the solubility surface is characterized as:

β−Lap(µg.mL−1) = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2 + β12x1x2 (3)

where the variables x1 (T1304 concentration) and x2 (LAP concentration) are the indepen-
dent variables. The β0, β1, β2, β11, β22, and β12 are linear and quadratic coefficients.

Table 2. Factorial design formulated with 32 assays. Two factors and three levels, i.e., 32.

Assays
T1304 (x1) LAP (x2) β-Lap 1

Coded Level % (w/w) Coded Level % (w/w) µg/mL

1 −1 1 −1 0.0 0.1206
2 −1 1 0 1.5 0.2600
3 −1 1 +1 3.0 0.4264
4 0 10 −1 0.0 0.4281
5 0 10 +1 3.0 0.5103
6 +1 20 −1 0.0 1.0211
7 +1 20 0 1.5 1.6062
8 +1 20 +1 3.0 0.9988
9 0 10 0 1.5 0.7875

10 0 10 0 1.5 0.8010
11 0 10 0 1.5 0.7780
12 0 10 0 1.5 0.7650

1 β-Lap in the nanocarriers: from solubility studies.

Design of Experiments by Machine Learning (MLP and SVM)

This experiment used two ML techniques to determine a surface response. The
methods were the MLP (see Figure 2a) and SVM (see Figure 2b). Analogous to the RSM
approach based on CCD factorial design (see Equation (3)), the ML techniques used as
inputs the T1304 (x1) and LAP (x2) concentrations.
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Figure 2. The ML techniques implemented to determine a surface response of β-Lap solubility.
(a) The MLP architecture. (b) The SVM architecture.

The ML based on MLP works with two hidden layers (with 16 neurons each), sig-
moid activation function in all hidden neurons, and linear function in the output neu-
ron. The training strategy was based on the Levenberg–Marquardt backpropagation
algorithm [42,47,48]. The surface response based on MLP is characterized as:

β− Lap = ∑16
q=1 w3

1q∅
(
∑16

m=1 w2
qm f

(
w1

m1x1 + w1
m2x2 + w1

m0

)
+ w2

q0

)
+ w3

10 (4)

where f (·) and ∅(·) are the sigmoid and linear activation function, respectively. The
variable the wk

ij is jth weight associated with the ith neuron in the kth layer. The surface
response based on SVM is expressed by

β− Lap = ∑N
i=1 λiK(x, ci) + bias (5)

where λi is the ith gain. The MLP and SVM techniques were trained with 90% and validated
with 10% of the samples.

The MLP and SVM models were created with the same data used in the RSM approach
(see Table 2) plus additional values presented in Table 3. The assays 1–12 (see Table 2) and
12–18 (see Table 3) were used in the training step and assays 19–21 in Table 3 were used in
the validation step.

Table 3. Experimental design of the values that were included and used to improve training and
validation of ML (SVM and MLP). Assays (1–12) shown in Table 2 were also used in these experiments.

Assays
T1304 (x1) LAP (x2) β-Lap 1

Coded Level % (w/w) Coded Level

13 5 0.0 0.2092
14 5 1.5 0.4792
15 5 3.0 0.3617
16 15 0.0 0.3639
17 15 1.5 1.1375
18 15 3.0 0.8039
19 8 0.0 0.4618
20 20 1.0 0.1397
21 20 2.0 1.2785

1 β-Lap in the nanocarriers: from solubility studies.
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3. Results and discussion
3.1. Physical Behavior Analysis

The ML technique based on SVM was applied to classify the physicists of the for-
mulations under different temperature and pH conditions since they are thermo- and
pH-responsive substances. The analysis enabled the classification and prediction of differ-
ent physical states (four classes, see Table 3).

Figure 3a–d show the confusion matrix data and physical behavior for different
concentrations of T1304 with or without LAP. The results were obtained for pH 2.0, 5.5,
7.4, and natural pH over a wide temperature range using SVM models. The SVM models
for the physical behavior classification used N1 = 58, N2 = 50, N3 = 7, and N4 = 25
kernels on SVM1, SVM2, SVM3, and SVM4, respectively. The confusion matrix data of SVM
depicted an accuracy between 90 and 100% (values displayed diagonally in blue boxes).

Figure 3. SVM confusion matrix data for physical behaviour with different T1304 concentrations
with or without LAP at (a) pH 2.0, (b) pH 5.5, (c) pH 7.4, and (d) natural pH, over a temperature
range between 25 to 70 ◦C. Note: TPR is true positive rate and FNR is false negative rate.

The sensitivity of the applied model (true positive rate or TPR) revealed values be-
tween 68.4 and 100% and specificity (false negative rate or FNR) between 0 and 31.6%,
varying according to the sample dataset. Samples submitted to pH 5.5 conditions showed
the lowest percentages of TPR and FNR. It is important to mention that a cross-validation
strategy with five folds was used, where 90% of the data were destined for training and 10%
for validation. Despite the non-balancing of the data in all conditions used (Figure 4), only
for the pH 5.5 condition the classification and prediction results were not as satisfactory
as the other conditions evaluated. Another important aspect to highlight is that, despite
the number of samples in the liquid condition, no trend was observed for this class. The
accuracies led us to choose the SVM model for the classification and prediction of data.
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Figure 4. Histogram of the samples prepared with varying concentrations of T1304 with or without
LAP used for SVM training and validation. The samples were labeled based on their physical
state when subjected to conditions of (a) pH 2.0, (b) pH 5.5, (c) pH 7.4, and (d) natural pH, over a
temperature range between 25 to 70 ◦C.

Based on Figure 5, samples with T1304 (1–20%, w/w) (without LAP) were classified as
liquid samples in all concentrations, and temperature ranges were studied. These samples
had a phase transition behavior (sol–gel) only above 75 ◦C. The positive influence of LAP as
an ingredient in the formulation can be seen in Figure 4b,c. In this case, it was verified that
the LAP can modify the physical behavior of the samples for different temperatures. Based
on the results presented in Figure 4b,c, the LAP at one concentration generates samples
with the four different physical states for different temperatures. This result shows that
they are good candidates for future studies on developing drug delivery nanocarriers.
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Figure 5. Graphic representation of the SVM classification of the phase behavior for different
concentrations of T1304 and LAP at different pHs ((a) natural pH, (b) pH 2.0, (c) pH 5.5, and (d) pH
7.4) and with a temperature ramp between 25–70 ◦C. In red, the sample with 10% (w/w) of T1304
(with and without LAP) is observed at 25 ◦C and body temperature (32 ◦C, 34 ◦C, and 37 ◦C).

Unlike Figure 5, Figure 6 presents the phase behavior for the entire concentration
domain of T1304 and LAP studied at 25 ◦C, 32 ◦C, 35 ◦C, and 37 ◦C. In this case, the results
show that nano-hybrid systems have a transition phase from sol–gel to body temperatures
(32 ◦C, 35 ◦C, and 37 ◦C). The determination of these properties is very interesting because,
depending on the route of administration, the prior knowledge of these characteristics
makes possible the optimized planning for developing promising formulations, the best
bioavailability, and drug release.

Figure 6. Cont.
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Figure 6. Classification of phase behavior diagrams of systems at different temperatures and pHs.
The red dots highlight that minor temperature changes generate changes in the physical state of the
samples, such as 10% T1304 and 1.50% LAP. Red dots represent 10% T1304 concentration with 1.5%
LAP. Temperatures: 25 ◦C representing ambient temperature and body fluid temperatures (32 ◦C,
35 ◦C, and 37 ◦C). pHs studied: (a) natural pH, (b) pH 2.0, (c) pH 5.5, and (d) pH 7.4 (body fluids).

3.2. β-Lap Solubility Analysis

Figure 7a–c present the surface response concerning the influence of the concentrations of
T1304 and LAP on the solubility of β-Lap for the RSM, MLP, and SVM methods, respectively.

Figure 7. β-Lap solubility represented by response surface obtained by RSM (a), MLP (b), and
SVM (c).
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Table 4 presents the coefficients (β1–5) obtained from the RSM model and Table 5
presents the SVM-trained parameters.

Table 4. The coefficients (β1–5) obtained from the RSM model.

Parameters Values Parameters Values

β0 −0.0005 β11 0.0015
β1 0.0262 β22 −0.1345
β2 0.5031 β12 −0.0057

Table 5. The parameters obtained from the SVM-trained model (bias = 0.8017).

Kernel Centers (or Support Vectors) SVM Gains (See Figure 1b)

c1 =
[
1 0.0

]
λ1 = 3.0335

c2 =
[
5 0.0

]
λ2 = −14.7519

c3 =
[
5 3.0

]
λ3 = −0.3119

c4 =
[
10 0.0

]
λ4 = 1.9719

c5 =
[
10 3.0

]
λ5 = −0.2327

c6 =
[
15 0.0

]
λ6 = −11.1711

c7 =
[
15 1.5

]
λ7 = 0.6484

c8 =
[
20 0.0

]
λ8 = 5.8914

c9 =
[
20 1.5

]
λ9 = 15

c10 =
[
20 3.0

]
λ10 = 1.8603

c11 =
[
20 2.0

]
λ11 = −10.1704

c12 =
[
8 0.0

]
λ12 = 15

c13 =
[
20 1.0

]
λ14 = −6.7674

Table 6 shows the mean square error (MSE) and R-squared coefficient (R2) calculated
from the resulting models of the RSM, MLP, and SVM. For the RSM, the MSE and R2 were
calculated to the fitting values (assays 1–12 in Table 1) and validation values (assays 19–21
in Table 2). For MLP and SVM, the MSE and R2 were calculated to the training values
(assays 1–9 in Table 1) and validation values (assays 19–21 in Table 2).

Table 6. Comparison between the techniques used.

Surface Method MSE R2

RSM

Fitting Val. Fitting Val.

0.0105 0.0109 0.9279 0.9368

Training Val. Training Val.

MLP 0.0106 0.0098 0.9332 0.9433

SVM 0.0030 0.0045 0.9814 0.9737

The results presented in Table 6 show that the ML based on the SVM had better
results for the response surface than the other two techniques: MLP and RSM. The surface
obtained based on the RSM strategy was limited by a mathematical expression of regression
characterized by Equation (1), and this characteristic can limit the creation of the response
surface, masking some characteristic behavior of the solution.

On the other hand, the MLP technique obtained measurements closer to the training
points; although, in some regions, abrupt changes were found on the surface. It is essential
to highlight that the success of the MLP is closely associated with the number of samples
used in training. From an MSE perspective, the MLP and RSM presented similar results.
However, the MLP technique showed better R2 results.

The surface found by the SVM technique had an expected behavior for the range of
values used in the concentrations of T1304 (x1) and LAP (x1). Unlike the MLP technique,
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there were no abrupt variations in the surface found by the SVM technique. In addition,
SVM obtained a lower MSE value and a higher R2 value (see Table 6). Because of this, the
SVM technique is presented as the best alternative for mounting the response surface.

4. Conclusions

The hybrid and simple systems formed by different concentrations of T1304 with and
without LAP presented different physical states when submitted to the temperature and
pH ramp. It was observed that LAP significantly impacts the liquid–gel transition of the
systems with the variations in temperature and pH. In addition, the solubility of β-Lap
significantly increased, between 42–100-fold, depending on the compounds and concen-
trations of poloxamine and clay. The in silico study using ML and RSM computational
tools showed fast and adequate strategies for predicting the phase behavior of nanocarrier
systems; however, SVM promoted the finer adjustments of the data. The use of ML tech-
niques can reduce the time of labor experimentation for the pre-formulation development
of new nano-hybrid platforms. As proposals and future improvements, this work proposes
using other machine learning techniques, such as Randon Forest and k-nearest neighbors
algorithm (kNN), to conduct a comparative analysis and attain better results than those
presented in this manuscript.
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RMS response surface methodology
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