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Abstract: A highly sensitive biosensing platform comprised of CdSe-ZnO core–shell nanostructures
for targeted applications in protein detection is demonstrated. This innovative technique uses a
microwave-assisted thermal decomposition method to produce a rapid, less hazardous, and user-
friendly procedure to synthesize a semiconductor core surrounded by nanometer-thick metal oxide
shells. The benefit of using a metal oxide shell includes mitigating the toxicity of the CdSe core, thus
increasing its biocompatibility and minimizing its photochemical corrosion and oxidation. We present
a simple one-pot microwave-assisted protocol for the formation of CdSe-ZnO core–shell quantum
dots (QDs). These QDs optimize the recognition limit of bovine serum albumin (BSA) protein through
a spectral signal at a considerably low concentration (2.5 × 10−6 M), thus demonstrating its potential
to become a highly effective surface-plasmon-enhanced Raman spectroscopy (SERS)-like sensing
platform. We report a QD material that can mimic a strong SERS-like behavior due to charge transfer
affecting the local electric field.

Keywords: biosensing; quantum dots; surface plasmons; protein detection

1. Introduction

Due to the limited number of non-invasive detection methods currently available, it
is essential to develop more reliable, non-invasive diagnostic systems with applications
in pre-screening biomolecular detection. Currently, invasive procedures used to detect
analytes can cause pain, discomfort, stress, and false positives. In addition to the adverse
effects on health, the procedures are also time-intensive and cost-ineffective. Thus, there
is a critical need for non-invasive diagnostics that are both accurate and quick. The de-
velopment of a non-invasive method could potentially replace expensive conventional
methods such as blood testing and biopsies. The core–shell structure described in this
work offers a quick, invasive detection method, similar to nanotechnology-based devices
such as a lab-on-a-chip [1]. This work focuses on the study of semiconductor nanocrys-
tals/nanoparticles, which are known as quantum dots (QDs). Nanoparticles, specifically
QDs, have unique optical properties that provide a strong platform for biological imaging,
visual aids, and biosensing [2]. QDs are semiconducting nanoparticles that have quantum-
confined holes and electrons that produce properties such as broad absorption bands,
narrow emission bands, size-tunable emission, and extreme brightness [3]. Unlike other
fluorescent molecules or fluorophores, QDs have sharper photoluminescence (PL) peaks,
brighter fluorescence, and are more resistant to chemical degradation [4].

These unique optical properties of QDs allow them to be used for LEDs, drug delivery,
and electronic and optoelectronic devices [5,6]. Although QDs have bright fluorescence
and band gap tunability, they are quite toxic and oxidize easily. These limitations are
compounded by their high surface-to-volume ratio, which decreases their quantum yield
due to increased surface defects [2,7]. The most common method to prevent surface defects
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and enhance photostability is the synthesis of a metal oxide or semiconductor shell to sur-
round the core. CdSe and ZnO were chosen as the core and metal oxide shell, respectively,
because CdSe has good stability and high luminescence, whereas ZnO is biocompatible
with a similar lattice structure to CdSe [5,8]. An et al. have shown shells of ZnO that can be
successfully deposited by using a time-consuming and hazardous methodology [9]. We
have improved on this process by using an alternative, high temperature, and quicker
deposition method using a one-pot synthesis in the microwave. Furthermore, the detection
limit of analytes has dramatically increased as a result of this new microwave-assisted
method by fabricating a CdSe-ZnO core–shell nanosystem. This was demonstrated by
using the protein (bovine serum albumin) BSA, which is one of the most abundant proteins
found in the circulatory system and heavily contributes to osmotic blood pressure [10].

Raman spectroscopy has been a standard tool for the detection of biomolecules,
including clinical settings [8]. However, due to the interference of fluorescence and the low
detection limit of biomolecules, difficulty exists in identifying the proper structure of the
analytes in the Raman spectra [11]. Thus, there is much room for improvement increasing
the Raman signal by enhancing the detection limit of biomolecules using nanoparticles. The
field of nanoparticles is a heavily researched topic due to their potential of high selectivity
and sensitivity detection that can be achieved by taking advantage of a phenomenon called
surface plasmon resonance (SPR) and localized SPR [12]. SPR can be used to enhance the
detection of protein because it increases the surface sensitivity and enhancement factor,
since each protein has a distinctive surface energy. Hence, the surface-enhanced Raman
spectra (SERs) would allow the identification of analytes in the fingerprint region more
effectively even at low concentrations, which has already been shown to enhance weak
Raman signals as well as decrease the background noise of fluorescence [13–18]. Generally,
SERs are observed in the presence of noble metals (Au, Ag, and Cu) or alkali metal (Na, Li,
and K) surfaces with the excitation wavelength near the visible region [19,20]. However,
other semiconducting materials have been proven to show Raman enhancement such as
InAs/GaAs quantum dots, CuTe nanocrystals, CuO nanospheres, and TiO2 nanostructures
in which charge transfer at the semiconductor–analyte interface plays a major role in
Raman scattering enhancement [20–26].

In this study, we discuss an improved microwave-assisted approach for synthesizing
CdSe-ZnO core–shell QDs, which led to their increased sensitivity for biosensing that was
demonstrated by using a specific interaction between a protein and its aptamer. Addition-
ally, our results further indicated Raman enhancement in semiconducting materials by
protein attachment to a metal oxide shell (ZnO) with CdSe core showing strong SERs-like
behavior through Forster energy transfer (FRET) to ZnO from CdSe QDs. This suggests the
possibility of using this platform as a sensing device for both biomedical as well as other
thin film-based sensor applications.

2. Materials and Methods

The CdSe QDs were prepared by using a one-pot procedure in the microwave. In this
synthesis, the selenium precursor was prepared by adding 0.03 g of selenium powder to 5
mL of 1-octadecene (ODE) and 400 µL of trioctylphosphine (TOP). In a microwave glass
vial, 10 mL of ODE and 600 µL of oleic acid (OA) were added, and the vial was sealed.
Then, the sealed glass vial was transferred to the glove box where 1 mL of the selenium
precursor and 0.013 g cadmium oxide (CdO) were added. Then, the sealed glass vial was
removed from the glove box and transferred into the microwave (Anton Paar monowave
300, Anton Paar, Graz, Austria) where the nanocrystals were grown at 225 ◦C for 3 min.
During the 3 min synthesis, 2 mL aliquots were taken every 30 s until the reaction was
complete. The two-minute CdSe aliquot was used for ZnO shelling due to its highest
concentration determined from photoluminescence.

The CdSe-ZnO core–shell nanocrystals were produced by the modifying method and
calculations used by Nguyen et al. via a one–pot synthesis protocol in the microwave [6].
The 0.1 M ZnO precursor was prepared by adding 246 mg zinc acteylacetonate ((acac)2),
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1.07 g oleylamine (OLA), and 6.84 g ODE to a microwave vial and synthesized in the
microwave at 80 ◦C for 20 min. Then, the precursor solution was maintained at 60 ◦C
until it was ready for use. With the concentration of CdSe being 55 µM and having a
diameter of 2.57 nm, 543.49 µL of CdSe was required for ZnO shelling. The calculations
of the monomer requirements were based on the concentration of CdSe, ZnO density,
ZnO molecular weight, ZnO lattice constant (0.325 nm), and the concentration of the ZnO
precursor [6]. Depending on the desired monolayers (MLs) of ZnO, the nanocrystals were
prepared in a microwave vial by adding the required amount of the ZnO precursor needed
for shelling, 3375 µL of ODE, an equimolar amount of OA (0.1 M), and 543.49 µL of CdSe.
For example, to deposit three monolayers of ZnO, 1125 µL of the ZnO precursor solution
was needed [6]. The ZnO shell was grown at 260 ◦C for 30 min before cooling to room
temperature. The schematic of this process is shown in Figure 1. The final core–shell
material was washed through centrifugation using acetone/methanol and redispersed in
hexane for characterization. All the chemicals used here are at least 99.99% purity.
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Figure 1. Schematic of the CdSe/ZnO nanostructure synthesis with one to four monolayers (MLs)
ZnO shelling.

P-type (100) silicon substrates were ultrasonically cleaned in subsequent baths of
trichloroethylene, acetone, and methanol 10 min each before silanization. The silanization
process included drop casting a 1% solution of (3-aminopropyl) triethoxysilane (APTES)
on the substrate, after which the solution was allowed to sit for 10 min. After 10 min, the
substrate was rinsed with deionized (DI) water. Then, the core–shell nanoparticles were
drop casted onto the substrate and allowed to sit for 10 min and rinsed again with DI
water. Subsequently, a warm acetone solution (50 ◦C) was drop casted on the substrate and
allowed to sit for approximately 30 s before rinsing the substrate with DI water followed by
methanol. To complete the silanization process, the substrate was allowed naturally to dry.

The optical absorption of the core–shell material was recorded using a Perkin Elmer
Lambda 950 UV-VIS-NIR spectrophotometer (Perkin Elmer, Waltham, MA, USA). The pho-
toluminescence of the core–shell material was measured using a Hitachi F-700 fluorescence
spectrophotometer (Hitachi, Tokyo, Japan). The morphology and microstructure of the
as-synthesized materials were characterized by using a Hitachi 4700 transmission electron
microscope (TEM) as well as a Rigaku Dmax 2200 X-ray diffractometer (Rigaku, Tokyo,
Japan). The Raman spectra were acquired using a Horiba LabRam Confocal HR Evolution
micro-Raman system (Horiba, Kyoto, Japan) with a 785 nm laser.

3. Results and Discussions

Figure 1 displays the schematic of the CdSe/ZnO core–shell nanostructure synthesis
with 1 monolayer (ML) to 4 MLs of ZnO shelling. The UV−VIS absorbance spectra of the
CdSe QDs are shown in Figure 2A. In order to evaluate the CdSe QDs microwave-assisted
synthesis method, the absorbance spectra were monitored as a function of the reaction
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time. After thirty seconds of allowed reaction time, the first aliquot was removed, and
the resulting absorbance spectrum was acquired, displaying a peak wavelength at 494 nm
(Figures 2A and 3). As the reaction continued, subsequent aliquots were removed at thirty
second intervals to produce a range of CdSe QDs with absorbance peak wavelengths
ranging from 504 to 527 nm, which are represented in Figure 3. In all cases, as the reaction
time was increased, the peak absorbance wavelength was red shifted due to the increased
size of the quantum dots [8]. We have demonstrated that this process uses an alternative,
high-temperature, and quicker deposition method using a one-pot synthesis in the mi-
crowave with varying CdSe QDs size, and later, a ZnO precursor is used for shelling on
the CdSe surface simultaneously.
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Figure 2. The characterization of UV-VIS absorption and photoluminescence (PL). The microwave-
assisted thermal decomposition method allowed for the controlled growth of ZnO monolayers (MLs)
around the CdSe core using a one-pot synthesis at 260 ◦C. (A) The normalized absorbance spectra
and (B) the normalized photoluminescence spectra of the CdSe core aliquots. (C) Photographs of the
respective aliquots under white light and (D) by UV light (365 nm).
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Figure 3. A curve representation of the UV-VIS and PL characterizations of the CdSe aliquots. The
peak absorbance and photoluminescence wavelengths of the CdSe aliquots are depicted in Figure 2.

A very similar trend is also observed in the photoluminescence of the aliquots. Figure 2B
shows a monotonic red shift of the optical emission of the QDs as a function of their size
due to extended reactions times, where photoluminescence peak wavelengths range from
552 to 578 nm and are represented in Figure 2B. The two-minute CdSe aliquot was used for
ZnO shelling due to having the highest concentration determined by photoluminescence.
The emission and absorption of color range with varying QDs size under white light and
(E) UV light (365 nm) is shown in Figure 2C,D.

To further study the core–shell synthesis of CdSe-ZnO, the absorbance and photolu-
minescence spectra were monitored as a function of the ZnO shell monolayer thickness
(Figure 4A,B) using the two-minute CdSe core aliquot. There is a monotonic red-shifting
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that occurs in the absorbance and photoluminescence spectra of the core–shell system due
to an increase in the overall nanoparticle size upon the addition of increasing concentrations
of ZnO. This red shift directly corresponds to the addition of ZnO MLs to the CdSe core.
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The maxima in absorbance peaks range from 537 to 561 nm and the photolumines-
cence peaks range from 572 to 589 nm as the ZnO monolayers are increased from one to
four MLs, which are displayed in Table 1. Comparable to results reported elsewhere [5]
that the full-width half-maxima (FWHM) of the narrow emission peaks increased from
28 nm for the CdSe two-minute aliquot core to 33 nm for the CdSe coated with four MLs of
ZnO (shown the absorption spectra in supplementary Figure S1 and the corresponding
photoluminescence spectra in Figure S2). Thus, the microwave-assisted method can alter-
natively be used to reproduce QDs-based systems with minimum trap states or defects.
The increase of the FWHM of emission peaks can be attributed to the addition of the ZnO
MLs, which naturally have broad trap emissions due to oxygen-related defects near the
photoluminescence range of 450–550 nm. The photoluminescence spectra of ZnO nanopar-
ticles have characteristically displayed exciton emission approximately between 350 and
380 nm with some trap emission between 450 and 550 nm [5]. Consequently, the lattice mis-
match between CdSe and ZnO can also attribute to the increase of full-width half-maxima
(FWHM) due to the strain on the CdSe core upon the addition of ZnO shell thickness.

Table 1. Peak absorbance and photoluminescence wavelengths along with average particle sizes for
the CdSe core (0 ML of ZnO) and CdSe-ZnO core–shell nanoparticles.

Number of ZnO
Monolayers

Absorbance
Wavelength (nm)

Photoluminescence
Wavelength (nm)

Average Particle
Size (nm)

0 520 571 2.57

1 537 572 2.80

2 548 581 3.00

3 554 583 3.12

4 561 589 3.29

The photoluminescence spectra of the core–shell CdSe-ZnO systems also revealed
a strong enhancement and consistent red shifting of the CdSe QDs with increasing shell
thickness. The core–shell CdSe-ZnO system with four MLs of ZnO displayed the highest
intensity (see Figure S2). The strong enhancement and red shift indicate effective surface
passivation of the core and an increased particle size upon the addition of ZnO MLS. The
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red shifting also confirms the lack of oxidation or reduction in the CdSe-ZnO system,
which is normally exhibited in the CdSe-ZnS systems [27]. This clearly exhibits that the
core CdSe QDs are intact. Therefore, further release of Cd and Se to the particle surface
is not evident in the core–shell CdSe-ZnO, mitigating the toxicity of this QD system and
indicating better photostability than CdSe-ZnS. ZnS, a chalcogenide, is very susceptible to
photoanodic oxidation, which can cause the shell layer to degrade. In addition, CdSe-ZnS
has a lattice mismatch of 12%, while CdSe-ZnO has a drastically lower lattice mismatch of
7.1% [5,28]. Due to having a higher lattice mismatch, the CdSe core is unable to withstand
strain without forming defects in the CdSe-ZnS system when it reaches the maximum
quantum yield at approximately 1.5 ML of shell thickness.

In Figure 2C,D, visual color changes support the addition of the ZnO layers and
successful core–shell synthesis. The average particle sizes of the nanocrystals (see Table 1)
were calculated by using the first absorption peak positions from the optical measurements
in Figures 2A and 4A as well as from TEM images (see Figure 5). Yu et al. have shown the
calculations of CdSe nanocrystal size by using empirical fitting functions [18]:

CdSe: D = (1.6122 × 10−9) λ4 − (2.6575 × 10−6) λ3 + (1.6242 × 10−3) λ2 −
(0.4277) λ + (41.57);

where D (nm) is the size of a given nanocrystal sample and λ (nm) is the wavelength of the
first excitonic absorption peak [18].

Nanomanufacturing 2021, 1, FOR PEER REVIEW 7 
 

 

showed similar Raman peaks, the CdSe-ZnO-4 MLs system displayed the highest Raman 
intensity, and therefore, it was used for the biosensing platform in this study. The Raman 
modes of CdSe and ZnO are compared to previous literature in Table 2 [29–36] and are 
slightly shifted due to the shelling mechanism of the QDs [8]. For instance, the lower order 
longitudinal Raman modes of CdSe (210 cm−1 and 228 cm−1) are weakened and in some 
cases not observed due to the four MLs of ZnO. Higher-order Raman peaks of CdSe are 
observed (425 and 607 cm−1), which represents the second-order phonon frequency and 
phonon mode 3LO1, respectively (Table 2). Correspondingly, the Raman features of ZnO 
are observed at 300, 360, 415, 590, and 657 cm−1, which indicate the successful shelling of 
CdSe with ZnO (Table 2). The normal Raman spectrum of BSA with a concentration of 2.5 
× 10−4 M was used as a control (baseline) to thoroughly characterize the core–shell QDs 
and its viability as a SERS sensor. Figure 6B shows that this BSA control has only four 
identifiable peaks (940, 980, 1130, and 1244 cm−1) with very weak intensity (see Figure 7). 
Similarly, this trend was noticed in the lower concentrations of BSA, which included 2.5 × 
10−5 M and 2.5 × 10−6 M, thus indicating that the normal Raman has difficulties in identify-
ing biomolecules. Using the core–shell QD system attached to the silicon substrate, we see 
an increase in the peak intensities observed in the control, as well as an increase in the 
total number of peaks specific to the biological molecule, BSA. 

 
Figure 5. TEM images of the core CdSe, and the CdSe-ZnO core–shell systems. (A) CdSe core, and CdSe-ZnO core–shells 
with (B) one ML, (C) two MLs, (D) three MLs, (E) four MLs, and (F) five MLs of ZnO with corresponding high-resolution 
images (insets). A typical electron diffraction image for the QDs shows the polycrystalline hexagonal structures with pre-
ferred orientations (inset in A). 

Figure 5. TEM images of the core CdSe, and the CdSe-ZnO core–shell systems. (A) CdSe core, and CdSe-ZnO core–shells
with (B) one ML, (C) two MLs, (D) three MLs, (E) four MLs, and (F) five MLs of ZnO with corresponding high-resolution
images (insets). A typical electron diffraction image for the QDs shows the polycrystalline hexagonal structures with
preferred orientations (inset in A).

The successful core–shell synthesis is further supported by the real-space TEM images
of the CdSe core and CdSe-ZnO core–shells shown in Figure 5. The QDs become larger
in size with each additional ZnO layer, which corroborates to the red shift observed in
Figures 2 and 4. Electron diffraction images (inset of Figure 5A) showed a polycrystalline
hexagonal structure with preferred orientations, as expected for both CdSe and ZnO, which
were also observed from powder X-ray diffractometer (XRD) θ–2θ scans (not shown). Upon
the addition of four MLs of ZnO (Figure 5E), the quantum dots have a clearly defined
spherical shape, whereas CdSe coated with the five MLs of ZnO (Figure 5F) displays the
expected tetrahedral morphology due to free wurtzite ZnO particles [5]. It is noted that the
absolute intensity decreases slightly with the increase of ZnO monolayers.
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Raman spectroscopy was used to study the core–shell system of CdSe-ZnO QDs,
since it is a standard tool to detect biomolecules. The Raman spectra of the CdSe-ZnO-4
MLs QDs on a silicon substrate are shown in Figure 6A. Although all CdSe-ZnO samples
showed similar Raman peaks, the CdSe-ZnO-4 MLs system displayed the highest Raman
intensity, and therefore, it was used for the biosensing platform in this study. The Raman
modes of CdSe and ZnO are compared to previous literature in Table 2 [29–36] and are
slightly shifted due to the shelling mechanism of the QDs [8]. For instance, the lower order
longitudinal Raman modes of CdSe (210 cm−1 and 228 cm−1) are weakened and in some
cases not observed due to the four MLs of ZnO. Higher-order Raman peaks of CdSe are
observed (425 and 607 cm−1), which represents the second-order phonon frequency and
phonon mode 3LO1, respectively (Table 2). Correspondingly, the Raman features of ZnO
are observed at 300, 360, 415, 590, and 657 cm−1, which indicate the successful shelling of
CdSe with ZnO (Table 2). The normal Raman spectrum of BSA with a concentration of
2.5 × 10−4 M was used as a control (baseline) to thoroughly characterize the core–shell
QDs and its viability as a SERS sensor. Figure 6B shows that this BSA control has only
four identifiable peaks (940, 980, 1130, and 1244 cm−1) with very weak intensity (see
Figure 7). Similarly, this trend was noticed in the lower concentrations of BSA, which
included 2.5 × 10−5 M and 2.5 × 10−6 M, thus indicating that the normal Raman has
difficulties in identifying biomolecules. Using the core–shell QD system attached to the
silicon substrate, we see an increase in the peak intensities observed in the control, as well
as an increase in the total number of peaks specific to the biological molecule, BSA.
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Figure 7. The Raman spectra of the CdSe/ZnO system with four MLs on a silicon substrate with
different BSA concentrations, 2.5 × 10−4 M BSA (top) to 2.5 × 10−7 M BSA (bottom).

Different concentrations of solution were prepared at room temperature from BSA
powders, and the solutions were stored in freeze at about 40 F. As several factors affect
protein assay accuracy and precision, we included replicates of each standard and test
samples. The standards were run three times. The results were found reproducible in
each run. The BSA protein was drop casted on the silicon substrates without the quantum
dot systems and CdSe/ZnO substrates with the incubation times ranging from 10 min to
24 h. Following the incubation, the excess protein was spin coated off at various speeds
(5000–6000 RPM) and times (10–30 s). Utilizing the same incubation times, the spin-coating
step was also omitted for another batch of the same samples to determine if the Raman
intensity would be affected scanning a wet substrate containing excess protein. It was
concluded that the Raman intensities were independent of the protein incubation time
and deposition method. This suggested that these devices could potentially be used for
real-time analysis studies. However, the Raman studies showed higher intensities for the
dry substrates with less fluorescence noise compared to the wet substrates.

The Raman spectrophotometer could only distinguish six peaks, whereas one of those
peaks signified the presence of the silicon substrate. However, upon use of the core–shell
system attached to the p-type bulk silicon, we see an increase within the intensities of the
peaks observed and the number of peaks specific to the biological molecule present. In
Figure 7, we present that as low as 2.5 × 10−7 M BSA (bottom) concentration is detectable
using the current Raman experiment. Upon use of the core–shell CdSe/ZnO QD system
attached to the silicon substrate, we see an increase in the peak intensities observed in
the control as well as an increase in the total number of peaks specific to BSA protein.
Compared to 2.5 × 10−4 M BSA on a CdSe/ZnO-4 MLs core–shell QD-coated silicon
substrate vs. 2.5 × 10−4 M BSA on a bare silicon substrate, the Raman intensity varies from
20,000 (a.u.) to 1000 (a.u.) under the same conditions. It is very distinct that the Raman
intensity significantly increases with the increase of BSA to 2.5 × 10−4 M, as shown in
Figure 7. The Raman intensity is enhanced by order of magnitude, which is discussed
below under the Forster energy transfer (FRET) [3,8] mechanism.

In Figure 8, we observe that utilizing our core–shell QD system successfully detected
approximately eight peaks specific to BSA as opposed to just four peaks without the
employment of our QD system. The Raman band assignment peaks of BSA without and
with the presence of the CdSe-ZnO-4 MLs core–shell system is shown in Table 3. The
corresponding BSA peaks were strongly enhanced on our biosensing platform even at
the considerable low concentration of 2.5 × 10−6 M. This enhancement can be attributed
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to the SERs theory because it implies there is a proximity-induced excitation of localized
surface plasmons [29–38]. Both Raman modes in CdSe and ZnO contributed to enhanced
fingerprints, which produced hot spots suggesting SERs-like activity on our platform
through FRET to ZnO from CdSe QDs [3,8]. The energy transfer explains FRET from
QD-based donor-excited states to a proximal acceptor through nonradiative dipole–dipole
coupling. However, the energy transfer efficiency between the donor–acceptor depends
on the distance, relative orientation, and the overlap between the donor emission and
acceptor absorption spectra. Our approach of biosensor platform is comparable to some
other biosensors [39–43]. However, detailed work is necessary to evaluate the figure of
merit and sensitivity of the system, although the current studies show the detection limit
better than 10−6.
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Figure 8. Raman spectra of 2.5 × 10−4 M BSA on a CdSe-ZnO-4 MLs core–shell QD-coated silicon
substrate (blue) vs. 2.5 × 10−4 M BSA on a bare silicon substrate (red).

Table 3. Comparison of the Raman band assignment peaks of BSA without and with the presence of the CdSe-ZnO-4 MLs
core–shell system.

Number of
Raman Modes

2.5 × 10−4 M BSA on a Si
Substrate (cm−1)

2.5 × 10−4 M BSA on a CdSe-ZnO-4
ML Coated Si Substrate (cm−1)

Band Assignment Peaks of
BSA (cm−1) [39,40]

1 940 822 822
2 980 940 940
3 1130 977 979
4 1244 1130 1127
5 - 1248 1254
6 - - 1359
7 - 1460 1458
8 - 1544 1530
9 - 1628 1633

4. Conclusions

We have demonstrated the detection of low concentrations of BSA using a CdSe-
ZnO biosensing platform that was formed by a novel microwave-assisted procedure. Our
experimental results prove that this procedure produces highly crystalline core–shell QDs
with varying ZnO monolayers. A monotonic red shifting was observed in the absorbance
and photoluminescence spectra of the core–shell system due to an increase in the overall
particle size upon the addition of increasing concentrations of ZnO, which directly related
to increasing MLs. The addition of the ZnO MLs could be visually seen under both white
and UV light. The addition of four MLs exhibited a clearly defined, spherical shape that
measured 3.29 nm in diameter. The uniform distribution of these QDs created hot spots in
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the spaces in between, making them ideal for SERs-like detection, which became evident
in the Raman spectra. To test the SERs-like capabilities of this platform, we optimized the
detection limit of BSA and detected concentrations as low as 2.5 × 10−6 M using Raman
spectroscopy. The intensity of the spectral signal of BSA alone was drastically enhanced
when it was on the core–shell QD platform due to efficient energy transfer from the core to
the ZnO shell. This nanoparticle core–shell system has the potential to become a highly
sensitive SERS-like substrate and has also demonstrated extended capabilities to be used
for thin film applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/2673-687
X/1/1/2/s1, Figure S1: The absorption spectrum of CdSe two-minute aliquot QDs and the core–shell
CdSe-ZnO with four MLs of ZnO, Figure S2: The PL spectrum of CdSe two-minute aliquot QDs and
the core–shell CdSe-ZnO with one and four MLs of ZnO.
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