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Abstract: The mixed cumulative probit (MCP), a new, flexible algorithm that accommodates a variety
of mean and shape parameters in univariate models and conditional dependence/independence in
multivariate models, was used to develop subadult age estimation models. Sixty-two variables were
collected on computed tomography (CT) images of 1317 individuals (537 females and 780 males)
aged between birth and 21 years from the United States sample in the Subadult Virtual Anthropology
Database (SVAD). Long bone measurements (n = 18), stages of epiphyseal fusion and ossification
(n = 28), and stages of dental development of permanent teeth (n = 16) were used in univariate,
multivariate, and mixed models and compared using test mean log posterior (TMNLP), root mean
squared error (RMSE), and percent accuracy on an independent test sample. Out of the six possible
parameter combinations, all combinations were accounted for at least once in the data and condition-
ally dependent models outperformed the conditionally independent models. Overall, multivariate
models exhibited smaller TMNLP and RMSE, and an overall greater stability in the age estimations
compared to univariate models across all ages and independent of indicator type. Pre-optimized
subadult age estimation models are freely available for immediate application through MCP-S-Age, a
graphical user interface.

Keywords: MCP-S-Age; juvenile; dental development; long bone dimensions; epiphyseal fusion

1. Introduction

A multitude of age estimation papers have been published recently that collectively
emphasize the need for improved methodologies. Some authors have focused on using
more indicators—or multivariate approaches—to increase precision and minimize bias in
age estimates, e.g., [1–3], others have explored the impact of violating assumptions on the
age estimates, such as conditional independence versus conditional dependence, e.g., [4],
and still others have focused on population-specific approaches, e.g., [5,6]. Age estimation
has always been a crucial component of the subadult biological profile [7] but the increased
use of it to estimate if an individual is above or below a legal threshold is likely one of
the primary driving forces of the increased publications [8,9]. A second catalyst may be
the increased incorporation of advanced medical imaging and its use both in developing
databases and methods for underrepresented groups (e.g., subadults) [4,10–12]. No matter
the reason for the amplified focus, the impact of improved age estimates in forensic anthro-
pology easily extends across all biological anthropology affecting demographers, human
biologists, paleoanthropologists, and bioarchaeologists.

As a field, we can critique age estimation techniques through parameters like their
accuracy and precision. However, if the method is statistically inappropriate in its mod-
eling of the relationship between skeletal and dental variables and age, then any result it
yields may be invalid and downstream explorations of its performance are unwarranted.
Therefore, the underlying appropriateness of the methodology is fundamental and should

Forensic Sci. 2022, 2, 741–779. https://doi.org/10.3390/forensicsci2040055 https://www.mdpi.com/journal/forensicsci

https://doi.org/10.3390/forensicsci2040055
https://doi.org/10.3390/forensicsci2040055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forensicsci
https://www.mdpi.com
https://orcid.org/0000-0002-4541-6777
https://orcid.org/0000-0003-3274-2204
https://orcid.org/0000-0002-4788-6203
https://orcid.org/0000-0003-4420-5342
https://doi.org/10.3390/forensicsci2040055
https://www.mdpi.com/journal/forensicsci
https://www.mdpi.com/article/10.3390/forensicsci2040055?type=check_update&version=2


Forensic Sci. 2022, 2 742

be evaluated concurrently to considerations about sample composition and size. Subadult
age estimation variables present with a myriad of idiosyncrasies, such as having strong
inter-variable correlations compared to adult age indicators and a large amount of missing
data [13,14], ordinal (e.g., epiphyseal fusion stages) and continuous (e.g., skeletal mea-
surements) variables, and nonlinear relationships [13,15,16]. Some of these features are
inherent to sampling (i.e., missing data and numerous variable types) and some of these
features are inherent to the relationship between age and the variables (i.e., nonlinearity,
inter-variable correlations, heteroskedasticity/homoskedasticity). Unfortunately, there
is currently no ‘one size fits all’ approach; each variable has its own combination of all
these components that needs to be modeled (i.e., linear and heteroskedastic, nonlinear
and homoscedastic, etc.). As one transitions from univariate to multivariate models, other
modeling considerations, such as conditional dependence or conditional independence
of predictor variables, become relevant. The variety of data structures associated with
subadult data necessitates innovative modeling strategies, but also appropriate modeling
is imperative because age estimation is often the sole parameter that contributes to the
subadult biological profile in a forensic context [7,17]. What one gains from the extra effort
to build statistically robust and appropriate multivariate models for age estimation is valid
models, which as a forensic scientist must be paramount [18].

Transition analysis (TA) was proposed by Boldsen et al. [19] and was a notable method-
ological contribution to anthropology. The method is mostly associated with adult age
estimation using ordinal data [20–27], but it is also a term used for a statistical technique
(or, depending on context, a family of statistical techniques) called the cumulative probit.
The Bayesian framework it adopts alleviates some problems associated with conventional
age estimation approaches [28–31], but it is limited to ordinal variables, and assumes ho-
moskedasticity, linearity at the univariate level and assumes conditional independence at
the multivariate level [32]. The biological data that anthropologists typically work with
is more complex than those assumptions, as previous research has shown [4]. TA models
are usually not fully Bayesian. In particular, while Bayesian inference is used to link the
prior over ages to a posterior over ages, Bayesian inference (e.g., sampling) is not done for
the parameter vector used in that update step. More frequently than accommodating non-
linearity and heteroskedasticity, researchers have explored how to accommodate residual
correlation between the age indicators and therefore not assume conditional independence
in publications that have implemented a multivariate cumulative probit. For example, a
post hoc method has been used to account for residual correlations [19,33], and a Markov
chain Monte Carlo approach [32] and the composite likelihood method [24] were used to
estimate residual correlations. Generally, it is more desirable to have a non-post hoc and
non-approximate means to accommodate conditional dependence.

The mixed cumulative probit (MCP) is a generalized cumulative probit model that
offers increased flexibility in the modeling process to accommodate complex data [34]. Sim-
ply, the MCP estimates a continuous outcome using any number of ordinal and continuous
data, thus adapted to both univariate and multivariate approaches. While the cumulative
probit used in TA assumes the data is linear (mean response) and homoskedastic (noise
response), the MCP does not assume a specific shape of the data (mean response) and
distribution of the data (noise). The MCP provides six alternate combinations for specifica-
tions for a mean (power law, linear, and logarithmic) and noise response (heteroskedastic,
homoskedastic), selected based on cross-validation or the Akaike information criterion [34].
While six combinations of shape and distribution may not cover all possible data structures,
this approach provides objectivity in the modeling process and enables flexible options in
the modeling process. Notably, if the MCP is using a single ordinal variable and identi-
fies homoskedasticity and linearity, the algorithm is fundamentally equivalent to TA (in
some cases, formally identical). In a multivariate situation, the MCP uses the parametric
model types selected in the univariate fits, and subsequently determines if a conditionally
independent or conditionally dependent model is appropriate.
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The mis-modeling of the mean, noise, and assumption of conditional dependence all
lead to error in the resulting age estimates. When the data is heteroskedastic, but assumed
to be homoskedastic, this results in an over- or underestimation of the error depending
on where the observation falls on the x-axis (in this context, age); the more extreme the
observation and magnitude of heteroskedasticity, the higher the misestimation of the error.
A similar finding is true for assuming linearity when the data is in fact non-linear. Lastly,
assuming conditional independence when the data are conditionally dependent results
in overconfident confidence intervals. Conditional dependence may be a bigger issue to
contend with in subadult age estimation models compared to adult age estimation models
because of stronger inter-variable correlations. Additionally problematic are that these
correlations are not static through ontogeny or across variables; as age increases, the inter-
variable correlations typically reduce in strength but they vary according to the variables in
question [13,14].

One of the greatest limitations in biological anthropology that researchers contend
with is missing data. When dealing with indicators of growth and development used for
subadult age estimation, some data will be inherently unavailable to collect (i.e., missing)
because of differential developmental trajectories. Among growth and development mark-
ers used in subadult age estimation there is a pattern to the missing data (Figure 1): (a) long
bones are available through the first decade or so of ontogeny (from the prenatal period to
the prepubertal period) and should all be available simultaneously, (b) each tooth has a
unique developmental trajectory, resulting in activity through all of ontogeny but rarely are
all teeth actively developing at one given time, and (c) appearance of ossification centers is
early, but the fusion process is only active later in ontogeny with its initiation integral to
the culmination of diaphyseal dimensions. Therefore, subadult age estimation techniques
require algorithms that can accommodate missing data because of these different but con-
current ontogenetic trajectories. Missing data is also a function of the very nature of our
work (i.e., recovery rates, taphonomy, trauma), which often involves incomplete and/or
damaged sets of human remains, be it in the context of a forensic case or research involving
skeletal collections [35,36].

Historically, the first obstacle with subadult research has been the availability of speci-
mens, especially that cover the entire ontogenetic period. Without the specimens, we are
unable to develop models, let alone develop appropriate models. Recently, members of our
team collected growth and development markers on computed tomography (CT) images
generated at numerous worldwide institutions to create the Subadult Virtual Anthropol-
ogy Database (SVAD) [11]. The SVAD has numerous components that are available to
researchers, but the most immediately impactful is the large, freely available repository of
data collected from contemporary (2010–2019) individuals aged between birth and 21 years.
With data available, researchers can now transition to improving the methodological ap-
proaches and subsequently expand the subadult biological profile. The goal of this paper is
to use the MCP and 62 age indicators collected from a large sample of subadults to provide
new standards for subadult age estimation in the United States. Univariate, multivariate,
and mixed models are built to facilitate a discussion on the performance of the MCP, the
modeling needs of the data, and the predictive potential of high dimensional models.
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Figure 1. Visualization of available data per chronological age in the United States sample queried 
from the SVAD. The color is indicative of the percent of data available out of a total of 62 age indi-
cators that were collected. Therefore, the darker blue indicates no data is available for any individual 

Figure 1. Visualization of available data per chronological age in the United States sample queried
from the SVAD. The color is indicative of the percent of data available out of a total of 62 age
indicators that were collected. Therefore, the darker blue indicates no data is available for any
individual per chronological age and the darker red indicates all individuals have data available at
that age. Abbreviations for the variables can be found in Tables 2–4.
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2. Materials and Methods
2.1. Sample

The sample was queried from the SVAD [11] and included only individuals from
the United States (n = 1317) aged between birth and 21 years (Table 1). The data from
these individuals was collected from CT scans generated at two geographically distinct
medical examiner’s offices: the University of New Mexico Health Sciences Center, Office
of the Medical Investigator and the Office of the Chief Medical Examiner (OCME) in
Baltimore, Maryland (Figure 2). Eighty-one percent of the sample (n = 1071) were queried
from the New Mexico Decedent Image Database (NMDID), a large digital repository of
anonymized full body CT scans and associated demographic information of individuals
who died in New Mexico between 2010 and 2017 [10,37,38]. The sample from Baltimore
(n = 246, 19% of total) is much smaller but all ages and sexes were represented. As expected
for subadults sampled through medical examiner’s offices, the mortality distribution is
bimodal (Figure 2) [39,40]. Additionally, across all ages, males have a higher mortality
rate than females. The bimodal distribution and different mortality rates according to sex
result in an unequal number of individuals for each chronological age (Figure 2; Table 1).
Despite this unequal age distribution, this sample of contemporary subadults is large and
diverse, thus capturing a wide range of variation for the United States population. The
three largest population affinity groups—referenced following the terminology used by the
United States Census Bureau and NMDID [38]—in this sample are white (68%), American
Indian (16%), and black (11%), while the remaining 5% correspond to Pacific Islander,
or Asian population affinities. Hispanics were recorded with different terminology at
each institution (e.g., social race for the OCME vs. ethnicity in NMDID); 34% (n = 442)
of the total sample was recorded as Hispanic, most of which were considered white with
Hispanic ethnicity in the NMDID sample. Of individuals who had a confirmed manner of
death (MOD) (n = 1299; remaining individuals were pending), there was an overwhelming
majority of accidental deaths (46%). The remaining MODs were somewhat comparable in
their frequencies: natural deaths (18%), suicides (15%), homicides (12%), and undetermined
(9%). Minimal differences in long bone growth were identified in individuals less than
two years among MODs, however this difference was nonexistent for individuals older
than two years in the sample, and there were no differences in dental development among
different MODs in the sample [40]. Numerous studies recently explored biological mortality
bias in long bones and dental development between individuals with different MODs and
those papers should be explored for a deeper discussion regarding growth, survivorship,
and MOD [40–42].

Table 1. Sex and age distributions for the sample.

Age (years) Sex Count Age
(years) Sex Count

0
F 123

11
F 14

M 139 M 10

1
F 38

12
F 9

M 65 M 19

2
F 25

13
F 13

M 39 M 17

3
F 18

14
F 19

M 23 M 21

4
F 20

15
F 18

M 20 M 45

5
F 19

16
F 25

M 12 M 66

6
F 7

17
F 28

M 8 M 53

7
F 11

18
F 39

M 10 M 70

8
F 6

19
F 47

M 9 M 66

9
F 8

20
F 45

M 17 M 65

10
F 4

21
F 1

M 6 M 0
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2.2. Data Collection

The age indicators included three types of skeletal and dental markers of growth and
development: dental development stages of permanent teeth (16 variables), appearance
of ossification centers (9 variables), and epiphyseal fusion stages (19 variables), and long
bone measurements (18 variables) [11,43] (Figures 3 and 4, Tables 2–4). The data and
staging and measurement protocols have been presented in detail in previously published
research [43,44] and the data are freely accessible via the Subadult Virtual Anthropology
Database Zenodo repository (https://zenodo.org/communities/svad/?page=1&size=20
(accessed on 7 November 2022)) [45].

Modifications to the previously collected scoring systems for dental and epiphyseal
fusion data were required prior to running statistical analyses. Dental development was
scored on all 32 left and right lower and upper permanent teeth using a 13-stage system
(coded as Stages 1 to 13) (Table 2) [46]. Because the final two root developmental stages
describing apex closure could not be easily differentiated on the CT slices, the original
13-stage system was adapted into a 12-stage system by collapsing stages 12 and 13 into one
final root stage (Stage 12 = apex closed) for the analyses. In case of any stage asymmetry
between left and right antimeres, the side with the highest stage was retained. If there
were no differences in expression, the left side was used but it was substituted with the
right if the left was missing. A total of 16 dental development variables were used in
the models: eight variables for the maxillary (max) teeth (max_M1, max_M2, max_M3,
max_PM1, max_PM2, max_C, max_I2, max_I1) and eight variables for the mandibular
(man) teeth (man_M1, man_M2, man_M3, man_PM1, man_PM2, man_C, man_I2, man_I1).

https://zenodo.org/communities/svad/?page=1&size=20
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Table 2. Description of the stages used for scoring dental development of permanent teeth.

Stage Description Original Abbreviation

1 Initial cusp formation ci

2 Coalescence of cusps Cco

3 Cusp outline complete Coc

4 Crown half completed with dentine formation Cr 1
2

5 Crown three quarters completed Cr 3
4

6 Crown completed with defined pulp roof Crc

7 Initial root formation with diverge edges Ri

8 Root length less than crown length R 1
4

9 Root length equals crown length R 1
2

10 Three quarters of root length developed with diverge ends R 3
4

11 Root length completed with parallel ends Rc

12 Apex closed (root ends converge) with wide periodontal ligament A 1
2

13 Apex closed with normal periodontal ligament width * Ac

* Stages 12 and 13 were collapsed into a unique stage (stage 12) for analysis.

Table 3. Detailed information on how each site was scored for the epiphyseal appearance/fusion variables.

Bone Epiphyses Abbreviation Scoring System

Humerus

Humeral Head Ossification HH_Oss

2-stage scoring systemGreater Tubercle Ossification HGT_Oss

Lesser Tubercle Ossification HLT_Oss

Proximal Epiphysis Epiphyseal (PE) Fusion
(PE = fused HH, GT and LT)

If PE not fused, score 0
If PE fused but unfused to diaphysis, score 1

HPE_EF =
fused HH + HGT + HLT 7-stage scoring system

Capitulum Ossification HC_Oss

2-stage scoring systemTrochlea Ossification HT_Oss

Lateral Epicondyle Ossification HLE_Oss

Distal Epiphysis Epiphyseal Fusion (fusion to the diaphysis) HDE_EF 7-stage scoring system

Medial Epicondyle Epiphyseal Fusion HME_EF 7-stage scoring system

Radius
Proximal Epiphysis Epiphyseal Fusion RPE_EF

7-stage scoring system
Distal Epiphysis Epiphyseal Fusion RDE_EF

Ulna
Proximal Epiphysis Epiphyseal Fusion UPE_EF

7-stage scoring system
Distal Epiphysis Epiphyseal Fusion UDE_EF

Femur

Femoral Head Epiphyseal Fusion FH_EF

7-stage scoring system
Greater Trochanter Epiphyseal Fusion FGT_EF

Lesser Trochanter Epiphyseal Fusion FLT_EF

Distal Epiphysis Epiphyseal Fusion FDE_EF

Tibia
Proximal Epiphysis Epiphyseal Fusion TPE_EF

7-stage scoring system
Distal Epiphysis Epiphyseal Fusion TDE_EF

Fibula
Proximal Epiphysis Epiphyseal Fusion FBPE_EF

7-stage scoring system
Distal Epiphysis Epiphyseal Fusion FBDE_EF

Os Coxa

Ischio-Pubic Ramus Union ISPR_EF
3-stage scoring system

Ilio-ischial Union ILIS_EF

Iliac Crest Epiphyseal Fusion IC_EF 73-stage scoring system

Calcaneus Calcaneal Tuberosity Epiphyseal Fusion CT_EF 7-stage scoring system

Patella Patella Ossification PC_Oss 2-stage scoring system

Carpals Number of carpals present CC_Oss 0–8

Tarsals Number of tarsals present TC_Oss 0–7
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Table 4. Diaphyseal measurements per bone and their associated abbreviations. A blank indicates
that no measurement was defined for the corresponding bone.

Bone Diaphyseal
Length

Proximal
Breadth

Midshaft
Breadth Distal Breadth

Humerus HDL HPB HMSB HDB

Radius RDL RPB RMSB RDB

Ulna UDL - UMSB -

Femur FDL - FMSB FDB

Tibia TDL TPB TMSB TDB

Fibula FBDL - - -

Table 3 has the complete list of epiphyseal fusion sites with their abbreviations and
respective staging systems. An expanded 7-stage scoring system was originally used
to capture the development of the six long bone epiphyses and the calcaneal tuberosity
(Figure 3). These stages are defined as: (0) the epiphysis has not ossified (or appeared)
(i.e., absent); (1) the epiphysis has appeared but is characterized by the lack of any bony
attachments (i.e., present); (1/2) “early active union” is used when bony bridging exists,
but is between 0 and 25% of the entire metaphyseal surface; (2) “active union” is used when
bony bridging is equal or slightly less than half the length of the epiphyseal growth plate;
(2/3) “active/advanced union” is used when bony bridging covers approximately 50% of
the growth plate; (3) “advanced union” is characterized by bony bridging greater than half
the length of the growth plate, or with no or minor radiolucent gaps retained throughout;
and (4) complete fusion, as demonstrated by homogenous radiodensity. Using a 7-stage
scoring system offers a high level of precision in data collection and provides the ability to
easily collapse stages, which would be more appropriate when working with dry skeletal
material. The collapsed stage system is defined as: (0) absent, (1) unfused, (2) fusing, and
(3) fused. In the collapsed 4-stage system, stages 1/2, 2, 2/3, and 3 are all collapsed into
stage 2 (fusing). Two models were always generated when working with epiphyseal data:
one model using the collapsed data and one model using the expanded data.

There were no modifications/collapsing of data for the data that was previously
collected following a 3-stage (os coxa variables), binary (ossification variables), or count
(carpals and tarsals) scoring system.

Diaphyseal measurements (18 variables) were taken on the virtually reconstructed
surfaces of the six long bones from the filled smoothed generated bone surfaces (Table 4,
Figure 4) [43]. If the epiphyseal fusion score was greater than or equal to Stage 2 (“active
union”), the diaphyseal length and midshaft breadth for the corresponding bone were
not recorded as these measurements were obscured at this stage of development. If the
fusion score for a distal or proximal epiphysis was Stage 4 (“completely fused”), the
corresponding distal or proximal diaphyseal breadth was not measured. Measurements
were taken on the left side by default, with some cases including the right side if the
left was damaged or unobservable (e.g., trauma, amputation, or missing elements due to
advanced decomposition).

2.3. Observer Error and Reliability of the Variables

Observer errors and agreement rates were evaluated for all the variables and are
available in detail in previous publications [11,44,47]. Technical error of measurement
(TEM) and relative TEM (%TEM), used to assess intra- and inter-observer errors for long
bone dimensions, ranged between 0.0354 mm and 0.364 mm and 0.069% and 1.723%,
respectively. Weighted Cohen’s kappas were used to assess intra- and inter-observer
agreement of epiphyseal fusion and dental development stages; they ranged between 0.501
and 1.00 for epiphyseal fusion and 0.687 and 1.00 for dental development, with averages
over 0.900 for both indicators [43,44].
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One of the main considerations when working with advanced imaging is pre- and
post-processing imaging and reconstruction parameters that impact image resolution and
segmentation of bone surfaces, which in turn both directly impacts the validity and appli-
cability of the methods to different modalities (dry bone, 3D reconstructions, CT images,
conventional x-rays). Colman et al. [48] and Colman, Dobbe, Stull, & Ruijter [49] explored
the effects of imaging parameters on the precision of virtually rendered images and on the
impact of soft tissue on the measurement accuracy of virtually rendered images, respec-
tively. Based on this previous research and the acquisition parameters of the collaborating
institutions, the authors are confident in the capacity of the medical images and virtual sur-
face renderings to accurately represent physical skeletal and dental elements [50]. However,
because diaphyseal measurements were collected from segmented elements, post-imaging
segmentation protocols were also evaluated to ensure reliability in measurements from
potentially varying threshold values. Stock and colleagues [51] presented the results of
four observers doing independent segmentations of the ossa coxae from eleven randomly
selected individuals from the UNM sample. Remarkably, even the largest inter-observer
difference in thresholding values (130 HU) in the study resulted in models with root mean
square error values < 0.5 mm [51].

2.4. Methodology

The sample was first randomly split into training (n = 989) and testing (n = 327)
subsets, based on a 75% and 25% split, using the caret package and createDataPartition
function [52] (Figure 2). The percentage of individuals from each collaborating institution
was maintained in the training and test sets. The same training subset was used to de-
velop all univariate, multivariate, and mixed age estimation models using the MCP (see
3.3.1. Statistical Analysis). Univariate models were developed for each of the 62 variables
(18 long bones, 16 teeth, 19 epiphyseal fusion sites, 9 appearance of ossification sites). All
epiphyseal fusion data that was collected in the 7-stage system had models built on both
the expanded (7-stage) and collapsed (4-stage) data and all dental data had models built on
the 12-stage system (1 to 12).

Multivariate models were built to demonstrate the performance of multivariate mod-
els, compare them to univariate approaches, and discuss the frequency of conditionally
dependent and independent models. It is computationally time consuming, and unrealistic,
to produce every multivariate combination of 62 variables. Therefore, subsets were created
to build multivariate models based on different indicators: dental development (Dent
model), epiphyseal fusion (EF_Oss and Prox-Dist models), long bone dimensions (LBs
model), and a mixed model built using a selection of 18 variables from all three indicator
types (18 Vars model) (Table 5).

Statistical Analysis

The MCP algorithm retains the underlying conceptual approach of TA, but with
increased flexibility [34]. Specifically, the MCP utilizes a Bayesian update step to calculate a
continuous outcome (age) using any number and combination of continuous and/or ordinal
data. The MCP is flexible in the type of data (ordinal or continuous) it requires, and flexible
in the modeling assumptions. If working with continuous variables, there is currently
only one mean specification option, a power law, and two noise specifications, constant
(homoskedastic) and linear positive intercept (heteroskedastic). If working with ordinal
variables, there are three mean specification options—linear, power law, and logarithmic—
and the same two noise specifications. The logarithmic model is a limiting case of the power
law model when the exponent goes to zero and requires certain assumptions about the
underlying dataset to apply (i.e., so that the logarithm of zero is never taken). All told, there
is a potential of two to six models to be evaluated for each univariate variable. We utilized
Akaike Information Criterion (AIC) rather than cross validation to do model selection.
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Table 5. List of variables included in each multivariate model.

Variable Subset
(Model) Number of Variables Variables

Dental
(Dent) 16

max_M1
max_M2
max_M3

max_PM1

max_PM2
max_C
max_I1
max_I2

man_M1
man_M2
man_M3

man_PM1

man_PM2
man_C
man_I1
man_I2

Epiphyseal Fusion
(EF_Oss) 28

FH_EF
FGT_EF
FLT_EF
FDE_EF
TPE_EF
TDE_EF
FBPE_EF

FBDE_EF
HH_Oss

HGT_Oss
HLT_Oss
HPE_EF
HC_Oss
HT_Oss

HLE_Oss
HDE_EF
HME_EF
RPE_EF
RDE_EF
UPE_EF
UDE_EF

CT_EF
CC_Oss
TC_Oss
ISPR_EF
ILIS_EF
PC_Oss
IC_EF

Epiphyseal Fusion
(Prox-Dist) 13

FH_EF
FDE_EF
TPE_EF
TDE_EF

FBPE_EF
FBDE_EF
HH_Oss

HPE_EF
HDE_EF
RPE_EF

RDE_EF
UPE_EF
UDE_EF

Long Bone Dimensions
(LBs) 18

FDL
FMSB
FDB
TDL
TPB

TMSB
TDB
FBDL
HDL
HPB

HMSB
HDB
RDL
RPB

RMSB
RDB
UDL

UMSB

18-Variable Mixed Model
(18 Vars) 18

max_M1
max_M2

max_PM2
man_M1
man_M2

man_PM1
man_C
FGT_EF
HME_EF
RPE_EF

UDE_EF
CC_Oss
ISPR_EF
ILIS_EF

FDL
TPB
HDL
HPB

The model selection consisted of an initial step to choose the univariate parametric
model forms. For multivariate models, a second step to choose the conditional correlation
structure was employed, where the univariate parameters were used as a starting point.
In the conditionally independent option, the correlation coefficients (ρ_il) are all zero and
the likelihood is simply the pointwise product of the univariate model likelihoods. In
contrast to the conditionally independent option, the correlation coefficients (along with
the other parameters) vary in the conditionally dependent option. For both steps, the
lowest AIC model is the preferred model, where, again, the AIC is calculated solely on the
training data.

We utilized the Kullback–Leibler (KL) divergence statistics to provide a quantitative
measure of model misspecification. The KL divergence value depended only on the models,
which were fit using only the training dataset. A model was determined to be mis-specified
from the AIC values, with corroboration from the test-sample performance metrics. A full
description of the KL divergence calculation is provided in Stull et al. [34]. Briefly, the
KL divergence provides a measure of the amount of information gain achieved by the
Bayesian update estimate on average for a model at a given age compared to the prior
distribution. For example, if the prior is wide (or even flat) and the posterior is, on average,
narrow then much information has been gained. This does not necessarily mean that the
model is good since it may be over-precise, which cannot be determined directly from the
model itself—rather it must be assessed with the AIC values and/or performance metrics.
However, the KL divergence provides a very useful quantitative measure for the level of
misspecification of a model. Furthermore, as we expand on below, while the KL divergence
cannot be used to show that a model is bad (that is the role of the performance metrics), it
is quite valuable for understanding why the model is bad.

The result of all age estimation models includes a point estimation and 95% and 99%
credible intervals (CrI). We utilized the mean of the posterior density for the point estimate,
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though mode and median are also available to be used. The highest posterior density
(HPD) was used rather than an equal-tailed interval for a range or interval measure. We
refer to these intervals as credible intervals (CrI), which is the common term for intervals
over a probability distribution in Bayesian statistics, though we are uncertain that this
is better than confidence intervals since many our performance metrics (see below) are
frequentist-inspired.

The training sample was used to fit the models, and the test sample was used to
evaluate the models generated with the training sample. The resulting age estimation
models are evaluated by a number of performance statistics, as there is currently not a
consensus on how to interpret the error when validating age estimation methods in forensic
anthropology [53]. While there is, broadly, no single answer to the best performance metric
for an age estimation model, we believe one metric makes the most sense when choosing
between Bayesian age-estimation models: the mean value of the negative log posterior
evaluated at the known ages of the test observations, which we choose to call the test mean
negative log posterior (TMNLP). The TMNLP is

TMNLP = − 1
N

N

∑
n=1

log
(

f
(

x(t)n

))
Let x(t)n be the n-the observation in the test set for a model with N total observations in

that test set (N varies across models because of missing data) and let f(x) be the posterior
probability density for that model, where we subsume the dependence of the posterior
density on the best-fit parameter vector for that model (and reuse the symbol f(·), which
might be considered abuse of notation). This is a very similar thing to the expected
predictive log density (ELPD) [54], with one major difference being that the latter requires
that the true data generating process be known (or can be sampled from). The TMNLP
is calculated for just age on the hold-out sample of the mostly Bayesian models typically
used for age estimation (see footnote above), so it seems better to define a new term than
to use ELPD or one of its related out-of-sample approximators. Gelman et al. [54] and
Gneiting [55] adumbrate why the TMNLP should be the gold standard for Bayesian model
comparison, though we consider a full explication of these ideas as they relate to age
estimation an excellent topic for future work.

The additional metrics we report for the test dataset are the test accuracy and root
mean square error (RMSE). One consideration that motivates these choices is that the
metrics that can be calculated depend on the type of model being assessed. For example,
some regression models provide only a point estimate of the variable of interest while
other regression models provide an uncertainty for the point estimate. Bayesian models (or
semi-Bayesian models, such as the MCP), provide a full posterior density as a function of
age. The RMSE supports the comparison among all types of models (i.e., regression with
point estimate only, regression with uncertainty, Bayesian, etc.). To calculate the RMSE
when a posterior density is available, one must choose the point estimate to “summarize”
the full posterior density (though one might also integrate over the posterior density to
calculate the metric). As Gneiting [55] shows, the choice of the point estimate should match
the choice of the metric (scoring function). For RMSE, the appropriate point estimate is the
mean, whereas for absolute error the appropriate point estimate is the median (see Table 5
of Gneiting [55], where SE stands for squared error and AE for absolute error). Therefore,
we use and report the mean.

A commonly used metric for age estimation models (at least, those that provide an
uncertainty measure) is the so-called “accuracy,” which is the proportion of test observa-
tions for which the true, known age falls within the uncertainty “window” [30,56,57]. The
“window” is usually a 95% confidence interval for frequentist models and a 95% CrI for
Bayesian models (with respect to the posterior distribution). Despite its common usage,
accuracy has some major flaws. Indeed, it is a somewhat misleading name since, intuitively,
one would think that a monotonic increase (or decrease) in the measure is always good
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(or bad), but that is not so; a good model should hover around 95%. A very low accuracy
almost certainly implies that the model is bad, usually biased or too precise, but an accuracy
near 100% may also imply a bad model, such as overly imprecise; similarly, whether a
model is close enough to 95% depends on a lot of details, notably the sample size of the
test dataset (in fact, it may even be possible for a correct model to hover around something
other than 95%). Regarding age estimation, accuracy is almost always discussed with
precision because of the tendency to believe there is a trade-off between the two in the
practical application of age estimation [3,57].

In addition to the dataset level metrics (TMNLP, percent accuracy, and RMSE) we plot
and discuss two data point specific metrics for observations in the test set: the residuals, the
predicted value minus the known value, where the predicted value is the point estimate,
and the absolute residuals, the absolute values (magnitudes) of the residuals. If the residuals
systematically differ from zero (including over a specific range of ages) the predictions
are biased.

Stull et al. [34] provides a thorough explanation of the MCP algorithm and the func-
tions required for implementing the MCP are in a R package called yada, which stands
for “Yet Another Demographic Analysis” (GitHub.com/MichaelHoltonPrice/yada (ac-
cessed on 7 November 2022)). There is also a step-by-step vignette (https://rpubs.com/
elainechu/mcp_vignette (accessed on 7 November 2022)) and R script template available
for researchers.

3. Results

The point estimates and 95% CrIs are provided per stage for the ordinal univariate
models (Tables S1–S7). Because of the continuous nature of the diaphyseal data, these
results are not presented in table form.

3.1. Mean and Noise Specifications

Out of the six possible parameter combinations that could be developed for the
MCP models, all combinations occurred at least once in the data (Figure 5). Overall,
heteroskedasticity was selected for 33 variables and homoskedasticity was selected for
29 variables. As for the mean response, 37 variables had a power law selected, seven
had a logarithm selected, and 11 had a linear mean function selected. Considering all
possible combinations, the least likely mean and noise specification was the logarithmic
mean specification and a heteroskedastic noise specification.

The epiphyseal fusion and dental variables had more variability among the mean and
noise specification combinations (Table 6, Figures 5 and 6). Eleven of the dental variables
had a homoskedastic noise response, and five of the dental variables had a heteroskedastic
noise response. Most of the dental variables (n = 9) had a power law selected to model the
shape of the data. Two dental variables had a logarithmic shape selected and five dental
variables had a linear shape selected. The epiphyseal fusion and appearance of ossification
centers were also evenly split between the noise response specifications; homoskedasticity
was selected for 16 variables and heteroskedasticity was selected for 12 variables. In contrast
to epiphyseal fusion, ossification, and dental variables, only the diaphyseal dimensions
showed a consistent trend with the combination of a power law and heteroskedasticity
(Table 6, Figures 5 and 6).

3.2. Performance: Univariate Models

The range of negative TMNLP values is −0.077 to 2.499, with a mean of 1.6 (Table 7).
A smaller value indicates better test sample performance. When arranging the TMNLP
from smallest to largest, all 18 diaphyseal dimensions exhibit the smallest values (<1.348)
and most of the ossification variables exhibit the largest values. Primarily, a mixture of EF
models and dental models have the next higher TMNLP values (~<2) (Table 7). Overall, EF
models outperformed the dental variables, if evaluated at the indicator-level. Generally, if
not almost always, the expanded EF data outperformed—albeit only slightly—the collapsed

https://rpubs.com/elainechu/mcp_vignette
https://rpubs.com/elainechu/mcp_vignette
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EF data. Mandibular and maxillary M1 are the univariate dental models that present with
the smallest TMNLP values and are the only univariate dental models to be ranked in the
smallest 50% of TMNLP values. The univariate dental models with the next smallest values
are the mandibular and maxillary central incisors.

Long bone lengths also had the smallest RMSE values. However, in contrast to the
TMNLP values, dental models had smaller RMSE values than the long bone breadth models
and the EF models. Of course, there is some variability, but the general trend is true. For
most variables, there are concurrent increases in both TMNLP and RMSE. However, for the
dental models, there is a discordance between the performance metrics. Specifically, the
dental variables exhibit higher TMNLP values with smaller RMSE values.

The percent accuracy (calculated using the test sample) for all univariate models
ranged from 87% to 98%. When separated by indicator type, all indicators achieved an
average accuracy of 95%, except for the expanded (7-stage) epiphyseal fusion model, which
achieved a 94% accuracy (Table 7). Residual and absolute residuals plots with loess lines
were generated for a few of the models that presented with the highest percent accuracy
(FDL, RDL, PC_Oss, HPE_EF, TDE_EF, max_M1, man_PM2) to demonstrate discrepancies
among performance metrics (Figure 7). Even though visualized models had the highest
testing accuracy, there are clear discrepancies in residuals and absolute residuals depending
on a variable presenting with a high or low RMSE.
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Table 6. Mean and noise specifications selected for each univariate age estimation model.

Variable Mean Specifications Noise Specification Indicator Type

max_M1 Linear Heteroskedasticity Dental Development

max_M2 Logarithmic Homoskedasticity Dental Development

max_M3 Linear Heteroskedasticity Dental Development

max_PM1 Linear Heteroskedasticity Dental Development

max_PM2 Logarithmic Homoskedasticity Dental Development

max_C Power Law Homoskedasticity Dental Development

max_I1 Power Law Homoskedasticity Dental Development

max_I2 Power Law Homoskedasticity Dental Development

man_M1 Power Law Homoskedasticity Dental Development

man_M2 Power Law Homoskedasticity Dental Development

man_M3 Linear Homoskedasticity Dental Development

man_PM1 Power Law Heteroskedasticity Dental Development

man_PM2 Linear Heteroskedasticity Dental Development

man_C Power Law Homoskedasticity Dental Development

man_I1 Power Law Homoskedasticity Dental Development

man_I2 Power Law Homoskedasticity Dental Development

FH_EF Power Law Heteroskedasticity Epiphyseal Fusion

FGT_EF Power Law Heteroskedasticity Epiphyseal Fusion

FLT_EF Power Law Homoskedasticity Epiphyseal Fusion

FDE_EF Power Law Heteroskedasticity Epiphyseal Fusion

TPE_EF Power Law Heteroskedasticity Epiphyseal Fusion

TDE_EF Power Law Heteroskedasticity Epiphyseal Fusion

FBPE_EF Linear Heteroskedasticity Epiphyseal Fusion

FBDE_EF Linear Heteroskedasticity Epiphyseal Fusion

HH_Oss Linear Homoskedasticity Ossification

HGT_Oss Linear Heteroskedasticity Ossification

HLT_Oss Linear Homoskedasticity Ossification

HPE_EF Power Law Homoskedasticity Epiphyseal Fusion

HC_Oss Logarithmic Homoskedasticity Ossification

HT_Oss Linear Homoskedasticity Ossification

HLE_Oss Linear Heteroskedasticity Ossification

HDE_EF Logarithmic Homoskedasticity Epiphyseal Fusion

HME_EF Linear Heteroskedasticity Epiphyseal Fusion

RPE_EF Linear Heteroskedasticity Epiphyseal Fusion

RDE_EF Power Law Homoskedasticity Epiphyseal Fusion
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Table 6. Cont.

Variable Mean Specifications Noise Specification Indicator Type

UPE_EF Logarithmic Heteroskedasticity Epiphyseal Fusion

UDE_EF Logarithmic Homoskedasticity Epiphyseal Fusion

CT_EF Linear Homoskedasticity Epiphyseal Fusion

CC_Oss Power Law Homoskedasticity Ossification

TC_Oss Power Law Homoskedasticity Ossification

ISPR_EF Logarithmic Homoskedasticity Epiphyseal Fusion

ILIS_EF Linear Homoskedasticity Epiphyseal Fusion

PC_Oss Logarithmic Homoskedasticity Ossification

IC_EF Logarithmic Homoskedasticity Epiphyseal Fusion

FDL Power Law Heteroskedasticity Diaphyseal Dimension

FMSB Power Law Heteroskedasticity Diaphyseal Dimension

FDB Power Law Heteroskedasticity Diaphyseal Dimension

TDL Power Law Heteroskedasticity Diaphyseal Dimension

TPB Power Law Heteroskedasticity Diaphyseal Dimension

TMSB Power Law Heteroskedasticity Diaphyseal Dimension

TDB Power Law Heteroskedasticity Diaphyseal Dimension

FBDL Power Law Heteroskedasticity Diaphyseal Dimension

HDL Power Law Heteroskedasticity Diaphyseal Dimension

HPB Power Law Heteroskedasticity Diaphyseal Dimension

HMSB Power Law Heteroskedasticity Diaphyseal Dimension

HDB Power Law Heteroskedasticity Diaphyseal Dimension

RDL Power Law Heteroskedasticity Diaphyseal Dimension

RPB Power Law Heteroskedasticity Diaphyseal Dimension

RMSB Power Law Heteroskedasticity Diaphyseal Dimension

RDB Power Law Heteroskedasticity Diaphyseal Dimension

UDL Power Law Heteroskedasticity Diaphyseal Dimension

UMSB Power Law Heteroskedasticity Diaphyseal Dimension

The 95% CrIs per stage associated with each ordinal dental development and epi-
physeal fusion and ossification univariate model are visualized in Figures 8–10. The CrIs
expose differential developmental trajectories for four groups of the dentition (Figure 8).
The teeth that exhibit the earliest transition to development are the incisors (I1, I2), canine
(C), and first molar (M1). Their trajectories are similar through the crown development
and seem to diverge after the root initiation stage (Stage 6); the canine has a prolonged
developmental period compared to the other teeth. Additionally, the first molar transitions
through stages faster than the incisors. The second group is composed of the first and
second premolars (PM1, PM2), closely followed by the second molar (M2). The third molar
(M3) comprises the fourth group and has the most unique developmental trajectory. All
teeth have narrower CrIs associated with the youngest ages and wider CrIs associated
with the oldest ages, except the third molars. The CrIs associated with the third molars are
widest at the youngest ages and narrower at the oldest ages.
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Table 7. Performance statistics for all univariate and multivariate age estimation models, ordered by the
TMNLP. The EF models with a ‘_c’ are the collapsed, 4-Stage system. N is the sample size of the test set,
which differs by variable. The model name in parentheses is the abbreviation used in the visualizations.
Abbreviations: C-Dep = conditional dependence and cindep = conditional independence.

Model N TMNLP %
Accuracy RMSE Model N TMNLP %

Accuracy RMSE

HDL 138 −0.077 0.96 0.688 UDE_EF_c 262 1.7934 0.93 2.066

FDL 155 0.0895 0.97 0.939 max_I1 212 1.7983 0.95 2.312

RDL 143 0.1071 0.98 0.624 RPE_EF 262 1.7994 0.94 2.153

UDL 148 0.2488 0.96 0.996 CT_EF_c 255 1.8019 0.95 2.089

TDL 159 0.2497 0.96 1.076 FH_EF_c 262 1.8039 0.94 2.839

FBDL 160 0.3034 0.96 1.205 RPE_EF_c 262 1.8081 0.94 2.209

Long Bones (C-Dep LBs) 193 0.5173 0.93 1.44 man_I1 211 1.8092 0.94 2.315

TPB 181 0.8479 0.96 1.714 man_I2 210 1.833 0.92 2.171

FMSB 157 0.8853 0.96 2.261 FLT_EF_c 261 1.837 0.96 2.141

FDB 184 0.8994 0.96 1.881 max_C 202 1.844 0.93 1.889

HPB 187 0.9079 0.97 1.508 TC_Oss_c 255 1.8712 0.96 4.453

Mixed (C-Dep 18-Var) 323 0.9216 0.91 1.164 UPE_EF 261 1.8779 0.93 2.258

Mixed (C-Dep 18-Var,
Collapsed) 323 0.9434 0.9 1.167 man_C 204 1.8799 0.92 1.849

HDB 166 0.9469 0.9 2.295 UPE_EF_c 261 1.8943 0.95 2.316

TMSB 160 1.0193 0.94 2.454 TPE_EF 253 1.8945 0.93 2.977

RPB 168 1.028 0.95 2.15 max_PM2 161 1.9077 0.96 1.797

TDB 180 1.0807 0.95 1.982 HDE_EF 260 1.9122 0.93 2.473

HMSB 160 1.1064 0.92 2.932 max_M2 162 1.9192 0.95 1.679

RDB 178 1.1598 0.96 2.151 HDE_EF_c 260 1.92 0.95 2.496

Mixed (C-Indep 18-Var,
Collapsed) 323 1.1965 0.82 1.203 max_PM1 174 1.9205 0.96 1.917

RMSB 161 1.2049 0.93 2.639 man_M3 117 1.9313 0.95 1.81

Mixed (C-Indep 18-Var) 323 1.2188 0.83 1.202 max_M3 116 1.9447 0.96 1.883

Proximal and Distal
Epiphyses (C-Dep

Prox-Dist, Collapsed)
263 1.3428 0.87 1.548 man_M2 161 1.9529 0.94 1.756

UMSB 159 1.3488 0.91 3.647 TPE_EF_c 253 1.954 0.96 3.075

Proximal and Distal
Epiphyses (C-Dep

Prox-Dist)
263 1.3521 0.86 1.47 man_PM1 174 1.9557 0.95 1.917

Dental (C-Dep Dental) 211 1.4132 0.84 1.161 man_PM2 161 1.9596 0.97 1.863

Epiphyseal Fusion and
Ossification (C-Dep
EF_Oss, Collapsed)

303 1.4995 0.79 1.533 ILIS_EF_c 261 1.9623 0.94 2.738

CC_Oss_c 263 1.5881 0.97 2.305 max_I2 194 1.9832 0.94 2.182

HPE_EF_US_all 266 1.6614 0.96 2.532 FDE_EF 256 1.9875 0.93 3.417

FBDE_EF_US_all 257 1.6654 0.94 2.793 HLE_Oss 260 2.0142 0.95 2.786

man_M1 228 1.6694 0.95 2.275 PC_Oss 257 2.0179 0.98 4.175

TDE_EF 257 1.67 0.96 2.751 ISPR_EF_c 261 2.0228 0.93 3.045

FBPE_EF 257 1.6719 0.95 2.189 FDE_EF_c 256 2.0394 0.93 3.494

max_M1 225 1.6919 0.97 2.336 Dental (C-Indep Dental) 211 2.0458 0.71 1.142

FGT_EF_c 257 1.6978 0.95 2.125 HT_Oss 261 2.0582 0.95 3.203

FBDE_EF_c 257 1.7045 0.96 2.862 IC_EF_c 112 2.0601 0.87 3.056

TDE_EF_c 257 1.7112 0.95 2.842 HLT_Oss 266 2.1379 0.96 4.988
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Table 7. Cont.

Model N TMNLP %
Accuracy RMSE Model N TMNLP %

Accuracy RMSE

FBPE_EF_c 257 1.7176 0.95 2.268 HGT_Oss 265 2.2141 0.94 5.907

FH_EF 262 1.7362 0.93 2.632 HC_Oss 262 2.275 0.95 6.574

RDE_EF 262 1.7365 0.91 2.971
Epiphyseal Fusion and
Ossification (C-Indep
Prox-Dist, Collapsed)

263 2.4014 0.7 1.841

HPE_EF_c 266 1.7381 0.96 2.639 HH_Oss 267 2.4992 0.96 7.299

UDE_EF 262 1.7674 0.93 1.998
Proximal and Distal
Epiphyses (C-Indep

Prox-Dist)
263 2.5076 0.71 1.712

RDE_EF_c 262 1.7714 0.92 3.021
Epiphyseal Fusion and
Ossification (C-Indep
EF_Oss, Collapsed)

303 2.6683 0.64 1.717

HME_EF_c 261 1.788 0.95 2.139 Long Bones (C-Indep LBs) 193 3.4524 0.56 1.217
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The pattern across all univariate models using the collapsed EF staging system (0 to 4)
is a wide 95% CrI before EF is active (Stages 0 and 1), then shorter transitions into being
scored as partially fused (Stage 2), and then completely fused (Stage 4) (Figure 9). While
the 95% CrI captures the variation, there is consistency across all anatomical sites that the
point estimates for partial fusion (Stage 3) is between the ages of 15 and 18 years. Similarly,
there is consistency in the point estimates between all anatomical sites for complete fusion
(Stage 4), which is between 18 and 20 years of age (Figure 9).

More nuanced fusion patterns are exposed when the CrIs generated from the 7-stage
EF data are visualized (Figure 10). For example, the distal humerus and proximal ulna and
radius are some of the latest ossification sites to appear but are the earliest sites to transition
through active fusion (Stages 1/2–3). In contrast, the proximal humerus appears early but
has one of the later ages for active fusion. Figure 11 verifies that the CrIs associated with
the EF models generated with the collapsed and expanded data yield comparable ages.
However, notably, if one is working with advanced imaging and can confidently collect the
data on the expanded staging system, then the more precise data collection methodology
yields a more precise age estimation, particularly for stages 1/2, 2, 2/3, and 3 (Figure 10).
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3.3. Performance: Multivariate and Mixed Models

The TMNLP values for the multivariate models range from 0.517 to 3.452. The multi-
variate models with the smallest TMNLP values are the conditionally dependent LB model
and the conditionally dependent 18-Var (collapsed and expanded) mixed models, followed
by the conditionally independent collapsed and expanded 18-Var models, conditionally
dependent Prox-Dist, Dent, and EF_Oss models. Each conditionally dependent multivari-
ate model exhibits a smaller TMNLP than the analogous conditionally independent model
(Table 7). Notably, the mixed 18-Var conditionally independent models (collapsed and
expanded) yield smaller TMNLP values than the remaining conditionally dependent and
independent multivariate models.

Conditional dependence outperforms conditional independence in multivariate mod-
els based on percent accuracy and RMSE (Table 8). The conditionally dependent models
(with the exception of the EF_Oss model) achieved at least 84% accuracy, while the condi-
tionally independent models (with the exception of the mixed variable model) achieved
between 56% and 71%. The conditionally dependent long bone (LBs) and the mixed
variable models (18 Var) are the only models to achieve an accuracy of 90% or greater.

Table 8. K-L Bits per model. C-dep is abbreviated for conditionally dependent while C-indep is
abbreviated for conditionally independent.

Models Model Specifications K-L bits

Mixed/18-Vars
(c-dep, collapsed) C-dep, collapsed 5.26

Mixed/18-Vars
(c-indep, collapsed) C-indep, collapsed 5.98

Mixed/18-Vars
(c-dep) C-dep 5.18

Mixed/18-Vars
(c-indep) C-indep 5.98

Long bones
(c-dep) C-dep 3.96

Long bones
(c-indep) C-indep 5.5

Epiphyseal fusion
(c-dep, collapsed) C-dep, collapsed 4.39

Epiphyseal fusion
(c-indep, collapsed) C-indep, collapsed 4.74

Dental development
(c-dep) C-dep 5.24

Dental development
(c-indep) C-indep 6.24

RDL (homoskedastic) Homoskedasticity 4.39

RDL (heteroskedastic) Heteroskedasticity 2.87

FDL (homoskedastic) Homoskedasticity 4.63

FDL (heteroskedastic) Heteroskedasticity 3.97

Man_PM2
(homoskedastic) Homoskedasticity 4.08

Man_PM2 (heteroskedastic) Heteroskedasticity 4.11

PC_Oss (homoskedastic) Homoskedasticity 0.52

PC_Oss (heteroskedastic) Heteroskedasticity 0.52



Forensic Sci. 2022, 2 764

While the LB model has the highest percent accuracy at 93% and the smallest TMNLP,
the models with the smallest RMSE values are the 18 Var model and the dental model
(Dent). The relationship between the larger accuracy and smaller RMSE can be seen in
Figure 12. The vertical lines illustrate the CrI per individual in the test set for the LB
model and Dent models; the larger CrIs were associated with the more accurate model.
In contrast, the overall narrower CrIs associated with the Dent model reflects the smaller
RMSE value (Figure 12). In contrast to the univariate models, almost all conditionally
dependent multivariate and mixed models present with lower RMSE values; the consistent
performance can be seen in the residuals and absolute residuals (Figure 13). The stability
in the performance of the conditionally dependent multivariate methods across the entire
age range is even more apparent when compared with the univariate models that achieved
both high accuracy and low RMSE values (Figure 14).
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Figure 14. Loess lines expose the trends in the residuals (top) and absolute residuals of four univariate
models and the conditionally dependent 18-Var multivariate model.

There are two prominent results for the models that included the epiphyseal fusion
and ossification data. First, there are minimal differences in the performance metrics
between collapsed and expanded versions of multivariate models (e.g., Prox-Dist and
EF_Oss). Second, the Prox-Dist model substantially outperforms the multivariate model
that incorporates ossification data (EF_Oss).
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3.4. K-L Statistic

The models with the greatest magnitude difference in the K-L bits were the diaphyseal
dimensions, both at the univariate and multivariate level (Table 8, Figure 15). Because the
LB models (univariate and multivariate) have a large disparity in K-L bits, the negative
effects of misspecifications are clearly displayed; the conditionally independent model
exhibits overconfidence. In contrast, the conditionally dependent have a broader peak
with an appropriate level of confidence in the estimate. The multivariate models all have a
substantial difference between the K-L bits for the conditionally dependent and indepen-
dent models (Figure 15). However, the mandibular second premolar and ossification of
the patella show that not all variables have large differences in the K-L bits when different
specifications are modeled (Table 8), subsequently the negative effects of mismodeling are
also less.
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Figure 15. Results for the same 8-year-old were visualized for each model to illustrate the rela-
tionship between true age and the posterior density region associated with each model. Each
density line represents different model specifications, both at the univariate level (heteroskedas-
ticity [hetero]/homoskedasticity [homo]) and at the multivariate level (conditional dependence
[C-Dep]/conditional independence [C-Indep]). Top Left: comparison of seven multivariate and
univariate models; Top Right: the long bone (LBs) multivariate model and the univariate radius
length model; Bottom Left: multivariate dental development (Dent) model; Bottom Right: 18-variable
(18-Var) mixed multivariate model.
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4. Discussion

The current study offers the first application of the MCP to estimate subadult age
using 62 variables from all age indicators (i.e., diaphyseal dimensions, epiphyseal fu-
sion/appearance, and dental development), and it offers immediately applicable univariate
and multivariate subadult age estimation models (see Section 4.4) (Tables S1–S7). The
flexible algorithm exposed the need for a variety of shape and noise parameters to appro-
priately capture the relationship between age indicators and age and the KL divergence
statistic offered additional insight regarding the magnitude of model misspecification at the
univariate and multivariate levels. The incorporation of the AIC-specified model parame-
ters removes the need to assume a particular structure to the data, prevents concomitant
misspecifications, and reduces the need to conduct post hoc analyses to correct improper
modeling assumptions. The large and diverse sample of contemporary Americans split
into a training sample to develop the models and an independent test sample to validate
the models follows best practices and ensures the generalizability of the models and their
realistic performance [53,58,59]. By properly modeling the relationships, valid ages—and
the associated uncertainty—can be estimated. Therefore, comparing the performance of
the current models to previously published findings may be a moot point because of the
previous models’ inability to properly capture the underlying relationships.

The overwhelming majority of age indicators (56 of 62 variables) achieved a better
model (e.g., smaller AIC) when the shape and noise parameters were not linear and ho-
moskedastic, respectively (see Figures 5 and 6). The diaphyseal dimensions all presented
with the same combination of power law and heteroskedastic; however, no consistent
combination was identified across the dental or epiphyseal fusion variables. Multivari-
ate models that did not account for the appropriate data features produced invalid age
estimates. For example, improperly assuming conditional independence yields narrow
95% CrIs and, subsequently, invalid age estimations, which can be seen with the lower
percent accuracy achieved by the conditionally independent multivariate and mixed mod-
els (Tables 7 and 8, Figure 15). This finding is what is expected to occur when assuming
conditional independence when in fact the data is conditionally dependent. For conditional
independence, one assumes that each variable independently informs on the posterior age
distribution. Yet, a variable that is perfectly correlated with another after conditioning
provides no additional information. If this is the case, and conditional independence is
nevertheless assumed, posterior inference will be overconfident. Essentially, the posterior
density function will be too narrow. While the long bones had the most dramatic differ-
ence in performance between the conditionally dependent and conditionally independent
models (difference in KL bits = 1.54 and large difference in TMNLP of models), the same
pattern was noted in the other mixed and multivariate models. For example, the difference
in KL bits was 1.0 between the conditionally dependent and conditionally independent
Dent models (Table 8, Figure 15).

The KL statistic facilitates further interpretation of the misspecification. The larger
the bit, the more information the posterior distribution provides in relation to the prior
distribution. However, a larger bit does not equate to a ‘better’ model. Rather, the KL
divergence can be used to understand why a model we believe is bad is not performing
well (it also can provide a quantitative measure of information gain for good models, such
as to compare two univariate models). Indeed, the KL divergence can play a similar role
to residuals in model evaluation. Performance metrics such as TMNLP and RMSE may
indicate that a model is performing poorly, but do not directly show why that is so. Often
residuals, which can be calculated either with the test or training set (the former is preferred
if available), show a systematic bias or skew—for example, consistently being too high for
young individuals and too low for old individuals. A plot of residuals can thus point to how
the model is failing and highlight which modeling assumptions may be to blame. Similarly,
if a model has poor performance but high information gain our experience suggests that
an incorrect noise model has been used, usually a homoskedastic noise model when a
heteroskedastic noise model is warranted.
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Though the MCP offers novel flexibility in modeling parameter specifications, one
limitation of the current algorithm is that there is only a maximum of six combinations
for the noise (homoskedastic and heteroskedastic) and mean (linear, power law, and
logarithmic) specifications. In fact, when working with ordinal data there are six possible
combinations, whereas there are only two combinations available for continuous data.
These data shape specifications are the most common in biological anthropology and
age estimation, which is why the MCP originally incorporated them [34]. It may limit
the usability of the model if variables exhibit different relationships, such as a negative
heteroskedastic noise option. In fact, the third molar displayed a unique relationship with
age, which was a decreasing amount of variability as age increased; this variable may
be a good example of why more options would be beneficial. Related to this, the MCP
model currently assumes that there is no age-dependence to the structure of the conditional
correlations (i.e., the covariance matrix has no age dependence), which may not be true
based on preliminary research [14].

The MCP is an algorithm that provides a platform to identify different mean and
noise specifications and subsequently, facilitates an opportunity to appropriately model
continuous and ordinal data. Most statistical algorithms used to develop age estimation
models have not been flexible enough to model variability in both data types and structures;
algorithms that have met the needs of the data in one way, may not have been able to meet
the needs in another aspect. Other researchers have also argued for the benefits of flexible
models, though theirs were to accommodate different informative prior age distributions,
number of traits, and age threshold values [8].

4.1. Evaluating the Performance

The RMSE values appear to be at least partially related to the variable type, which can
be appreciated when visualizing the CrIs along with the relationship between estimated
and known chronological age (Figure 16). The number of stages associated with the ordinal
data in conjunction with the age distribution informs the size of the RMSE values. Ordinal
variables all saturate at the same value, meaning that at the end of the developmental
process, they all reach the same stage, resulting in no variation. The number of stages, and
therefore precision of the ordinal variable, impacts the RMSE values.

The binary score for the patella ossification center (PC_Oss) has a high accuracy
(Table 7) because the CrIs are wide. Consequently, the RMSE value is also large. The
large value associated with the RMSE is directly related to the fact that there are only two
developmental stages associated with the ossification of the patella (absent and present)
that cover the 21-year age range of the samples. Therefore, individuals have the same 95%
CrI regardless of their age being 7 years or 18 years (Figure 17, top left). If we consider
visualizations in Figure 7, we can see the impact of a binary variable slightly differently. The
loess line (green, dashed line) associated with patella ossification (PC_Oss) has an obvious
divergence compared to development of the mandibular second premolar (man_PM2) and
radius length (RDL) because for most of the 20-year age range, it has large residuals and
correspondingly high absolute residuals.

The epiphyseal fusion data is either based on a 7-stage or a 4-stage scoring system,
and therefore more precise than the binary data collection strategy. The 4-stage pattern is
clearly visualized in Figure 17 (top right) and its improvement in the residuals compared
to PC_Oss is apparent in Figure 7. However, the metrics are only slightly different for
estimates based on the 4-stage and the 7-stage scoring systems, indicating that an increase in
precision for the staging system does not equate to an increase in accuracy for the resulting
age estimates.
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Figure 16. Predicted age of the test sample regressed on known age of the test sample for the patella
ossification (top left), the epiphyseal fusion of the distal tibia (top right) (collapsed 4-stage system),
maxillary first molar (bottom left), and radius diaphyseal length (bottom right) model. The circles
are the point estimates, and the straight vertical line is the associated 95% CrI.

If we transition to dental development, which is also an ordinal variable but comprised
of 12 developmental stages, the RMSE values are even smaller, which is reflected in the
residuals (Figure 17, bottom left). Because there are more developmental stages associated
with dental development, there is greater precision compared to the ossification data and
epiphyseal fusion data, and as an outcome, the mandibular second premolar displays
far more stability in the loess lines than the other indicators, which reflects the smaller
RMSE values (Figure 7). The terminal stage in dental development is indicative of someone
having completed the dental development process. Therefore, stage 12/13 (collapsed into
12 together for the current study) is only informative at the lower boundary because the
upper boundary will include the oldest individuals in the sample. This is apparent in
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Figure 17 and in Tables S4 and S5 where the upper 95% and 99% CrIs are the age of the
oldest individual in the sample. Continuous data is fundamentally the most precise data
type and the inherent precision in the long bone data translates to models achieving high
accuracy in combination with low error and high stability (Figures 7 and 17).
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male-specific) and EF stage.

These patterns in data collection methodology are apparent more so in the RMSE than
the TMNLP because the RMSE is dependent on the shape and structure of the underlying
data. The RMSE is appropriate when the data are linear and homoskedastic, and the current
study clearly highlights that assumption is violated for many age indicators. In contrast,
the TMNLP is, we think, a better metric for comparison when the posterior distributions
are either non-Gaussian or are Gaussian but vary in their scale (heteroskedasticity), which
is why there are less obvious indicator-type patterns in the TMNLP performance. For
example, the continuous data is still distinct from ordinal data, but the stage number
differences within the ordinal data is less pronounced.

The overall pattern of the TMNLP numbers makes sense (e.g., conditionally inde-
pendent models perform worse), and the only real surprising result is why some of the
univariate models have lower values than multivariate models. The trend for the smaller
TMNLP values for the continuous univariate models is notable because the multivariate
models are both a formal generalization of the individual univariate models and contain the
underlying data that is used for the univariate models. All else equal, a parsimonious mul-
tivariate model could just ignore additional data if it does not improve performance [60].
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So why might sub-models perform better than their more comprehensive generalizations?
Almost certainly this arises from differences in the tests sets.

For the comparison to be “fair,” it must be on a comparable test dataset. Compare
the best performing model in Table 7 (by TMNLP), HDL, to the 18-Var C-Dep model. The
former has a TMNLP of −0.077 and RMSE of 0.688 based on 138 individuals whereas the
latter has a TMNLP of 0.9216 and RMSE of 1.164 based on 323 individuals. The crucial
difference between the two test samples is not the size, though, it’s that the HDL test
sample has a greater proportion of young individuals (Figure 1), for which predictions
are overall more accurate. This challenge—systematic differences in the test sets arising
from patterns in the missingness—applies in principle to any metric (e.g., test RMSE
values are also consistently lower for long bones). It is possible that if the data collection
protocols had continued long bone dimension collection through epiphyseal fusion, that
overall, the multivariate models would outperform all univariate models (including the
long bones) in all performance metrics. For all our predictions, we have used a single prior,
which is a mixture of Weibulls fit to all the ages in the training dataset. Alternatively, we
might have trained separate priors on the ages available for each univariate model. Using
separate priors is one way to account for the fact that there is information in the pattern
of missingness. However, it is not clear to us that we want to take advantage of these
patterns, though (arguably, perhaps) maybe a practitioner should want to. This is not a
trivial consideration since the choice of prior can have a major impact on TMNLP and the
other performance metrics.

Another possibility, which we want to acknowledge but think is less likely, is model
misspecification since the model accuracy numbers fall below 95% (though the qualifica-
tions we point out above do matter). For example, as we point out elsewhere, perhaps
the structure of the conditional correlation matrix is age dependent. The challenge here
is that there are an infinite number of possibilities (literally) that one could nominate and
check, and we have no positive evidence of a misspecification. We do, however, want to
acknowledge the possibility.

4.2. Achieving High Accuracy and the Variability around 95%

The current research complements previous research that proved multivariate models
outperform univariate models, in terms of greater stability across ontogeny, and less biased
residuals in the estimates, e.g., [1,2,15,61]. This appears to be especially true in models
based on ordinal data, where the error and bias are higher for univariate models compared
to multivariate models (Tables 7 and 8; Figures 13 and 14). Some researchers, e.g., [62] have
criticized multivariate techniques for (a) being more likely to overfit training data and (b)
for not having crucial external validation tests. The current study used a large independent
test set (n = 327) to evaluate model performance. Nevertheless, the variability around 95%
accuracy speaks more directly to the concept of a model being over or underfit. It seems
even more appropriate to discuss percent accuracy here as this is one performance metric
that is ostensibly ‘better’ for the univariate models. Because of how the CrIs are derived,
we should expect exactly 95% accuracy. Achieving higher than 95% accuracy is just as
problematic as achieving lower than 95% accuracy. Essentially, if a test sample achieves
100% accuracy, it may indicate that the model is underfit and the CrIs may not be helpful in
application. If a model achieves less than 95% accuracy, it may indicate the model is overfit
and the CrIs may not be helpful in application. Either way, the expected outcome is to have
a test accuracy around 95%; too much variability above or below 95% is suggestive of an
over- or underfit model. Whether the theoretical value is exactly 95% for all models to be
considered a ‘good model’ is not obvious to us; it could depend on model details and on
exactly how the relevant interval is calculated.

The other component of a multivariate/mixed approach that must be considered when
deciding what model one should use, is the unique developmental trajectories between
each single variable and age [14,63]. Therefore, the inherent variability in the relationship
makes it impossible to have a ‘best’ indicator for all of ontogeny. Epiphyseal fusion and
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ossification, diaphyseal dimensions, and dental development all provide complementary
information that one can use to derive a more precise age estimate. In fact, variables that
yield greater uncertainty in age estimates (less precision) likely have a greater improvement
when combined than strongly correlated variables, which one can see when comparing
univariate EF models to the multivariate EF model. For this reason, most researchers
and working groups (e.g., Age Estimation Working Group or AGFAD)—especially those
working with over/under maturity questions and ordinal data—support a multifactorial
approach [8,59,61].

Ultimately, including more variables in an age estimation model provides more in-
formation about the individual or sample in question, and should therefore theoretically
reduce the uncertainty (error) in the resulting age estimation. However, integrating more
variables in the model does not necessarily always improve across all performance metrics.
Indeed, accuracy is sometimes lower in multivariate models compared to univariate models,
though we have already pointed out some of the pitfalls of evaluating models using percent
accuracy. Additionally, using variables with strong correlations among each other and with
age (e.g., the six long bone lengths), may lead to redundancy in the model and may not
always lead to improved age estimates, e.g., [12]. Furthermore, adding additional variables
to the fit does increase the probability of overfitting, though only if a non-parsimonious
model is chosen and we should strive not to do so. Age indicators are informative of age
while development is ongoing (as is the case between birth and 20 years), but the amount
of information on age they carry—which can be extrapolated to their predictive ability or
their contribution to the model’s performance—is related to their developmental activity,
which presents with alternating periods of increase, decrease, or status. In addition to this,
as mentioned previously, the very nature of these indicators and the systems used to collect
them/measure them/score them will also impact their contributions to the model and the
resulting age estimate.

4.3. Sex Differences and their Impact on Age Estimation

In the current study males and females were pooled for all age estimation models. Sex is
often unknown in forensic cases involving skeletonized remains, and subadult sex estimation
recommended or regularly performed by forensic anthropology practitioners [7,64,65]. There-
fore, it was considered paramount to first build pooled-sex age estimation models to assess
model performance regardless of other factors. However, male and female growth trajectories
differ in their velocity and different durations in specific life history stages [66–68]. This results
in sexual size dimorphism that is quantifiable in diaphyseal dimensions, e.g., [69–71] and sexual
differences in timing of epiphyseal fusion timing, e.g., [72] and dental development, e.g., [6,73].

Literature positions us to argue for the logical assumption that sex-specific models
would yield more precise age estimations both at the univariate and multivariate level
and a pooled model would yield less precise age estimations both at the univariate and
multivariate level. While our current method goals were not to build sex-specific models,
we decided it important to randomly select two univariate EF variables and build sex-
specific models to have empirical support rather than pure conjecture. Figure 17 visualizes
the output for pooled sex, female-specific, and male-specific age estimation models using
the proximal humerus (HP_EF) and the proximal tibia (TP_EF) epiphyses. The models
were developed using the expanded 7-stage EF data. One can clearly see the sex-specific
fusion patterns with CrIs separated by variable and stage (Figure 17). Females present with
younger age ranges compared to males for each EF stage from the first appearance of the
epiphysis (stage 1) through active fusion (stages 1/2 to 3); females are advanced compared
to males by approximately 2 years during the active fusion stages. The pooled model
has more males than females in the training sample, which is probably why the pooled
model aligns with the male-specific model. Also, noteworthy is the comparable precision
of the pooled model to the sex-specific models. During the process of building sex-specific
models, results revealed that the 4-stage, collapsed EF data did not reveal any differential
growth patterns between males and females. At least in these two variables—the proximal
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humerus and tibia—the 7-Stage, expanded data was required to illuminate any sexually
dimorphic differences.

Interestingly, a study by Liversidge comparing age estimates based on mandibular
second molar developmental stages of 946 individuals aged 3 to 16 years showed that
sex-specific and pooled sex models were comparable, while the influence of the staging
system and the age indicator had a greater impact on the estimates [74]. Similarly, De
Tobel and colleagues [1] built sex-specific age estimation models that incorporated sexual
maturation indicators (Tanner Stages) with the development of the third molars and EF of
the left wrist and clavicles; the incorporation did not significantly improve age estimates.
Mirroring developmental trajectories, the amount of sexual dimorphism expressed by
age indicators varies according to the indicator itself and the age of the individuals/their
developmental state. In view of this, sex may or may not have a substantial impact on
age estimates, which is why sex-specific versus pooled sex approaches in subadult age
estimation requires more explanation and may not be simple.

4.4. Accessibility and Usability

One of the more difficult obstacles is increasing the use of advanced methodological
techniques. While researchers may argue that certain models are preferred, without a
user-friendly interface, there is a small chance practitioners will incorporate them into use.
Therefore, accessibility and usability are crucial for overall advancements in our field.

MCP-S-Age is a graphical user interface (GUI) produced using Shiny [75] in R [76].
The impetus of this user-friendly GUI is to provide a means of applying MCP univariate
and multivariate models for subadult age estimation without requiring the researcher or
practitioner to use R. All models presented in this manuscript and the supplementary
information are currently available for immediate use through the MCP-S-Age GUI at:
https://kyra-stull.shinyapps.io/mcp-s-age (accessed on 7 November 2022) and in the
KidStats hub (https://kyrastull.weebly.com/kidstats.html (accessed on 7 November 2022)).
Noteworthy features of this web application include model performance-based suggestions
(TMNLP, RMSE, and percent accuracy) on reporting subadult skeletal age estimation, the
ability to handle any number and combination of commonly used skeletal age indicators
and metrics, and a downloadable report for record-keeping in forensic bench notes.

There is still a tendency of restricted access to code and/or data to develop or validate
models, which has impeded application of new methods to a wide variety of researchers
and practitioners. We disagree with this approach and instead make our data and protocols
freely available in the SVAD Zenodo Community (https://zenodo.org/communities/svad/
?page=1&size=20 (accessed on 7 November 2022)) and developed a step-by-step vignette
with a downloadable script to facilitate application of the MCP to novel research questions
(https://rpubs.com/elainechu/mcp_vignette (accessed on 7 November 2022)). As an
additional resource and for reproducibility, we have provided a sample pipeline, step-
by-step description for model optimization and selection, standalone scripts to generate
further results past model optimization and selection, and an RMarkdown and HTML file
demonstrating how all figures (i.e., visualizations) were produced. All files and scripts are
hosted on a GitHub repository for online and offline use found here: https://github.com/
ElaineYChu/fs_mcp_us (accessed on 7 November 2022).

5. Conclusions

The development of large and diverse freely available data sources, such as the SVAD,
are catalysts to methodological advancements, such as the MCP, and offer opportunities
to challenge theoretical underpinnings. The current study provides new, immediately
applicable univariate age estimation tables for dental development and epiphyseal fusion
(Tables S1–S7) and the MCP-S-Age GUI enables immediate and user-friendly applications
of both univariate (all 62 variables) and multivariate models for subadult age estimation.
The results exposed that mixed models outperform multivariate models, that continuous
data outperforms ordinal data in both univariate and multivariate models, and models

https://kyra-stull.shinyapps.io/mcp-s-age
https://kyrastull.weebly.com/kidstats.html
https://zenodo.org/communities/svad/?page=1&size=20
https://zenodo.org/communities/svad/?page=1&size=20
https://rpubs.com/elainechu/mcp_vignette
https://github.com/ElaineYChu/fs_mcp_us
https://github.com/ElaineYChu/fs_mcp_us
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that incorporate conditional dependence outperform models that incorporate conditional
independence. However, the ultimate decision of whether one should use a univariate,
multivariate, or mixed model is dependent on the available data, the age of the individual,
and practicalities. The authors suggest using the TMNLP in conjunction with the percent
test accuracy to guide their choice though the ultimate decision is the practitioner’s.

The MCP exposed the need for a variety of mean and noise parameters to appropri-
ately capture the relationship between age indicators and age. Beyond flexible modeling,
quantification of the impact of model misspecification at the univariate and multivariate
levels through KL divergence statistic offers additional insight to the relationships. By
appropriately modeling the data, the groundwork is laid to further pontificate on best
practices to report error as well as discuss other components that direct our interpretation,
such as performance metrics and data types.

Researchers and practitioners have different needs with the introduction of new
methods, but both generally require accessibility and usability. Open science initiatives have
not been the overwhelming culture in biological anthropology, yet we cannot advance as a
field without changing this culture. We have attempted to relieve some of the computational
complexity and increase the accessibility for researchers interested in applying the MCP
to future research questions. A vignette with a step-by-step tutorial as well as a template
(R script) can be found here: https://rpubs.com/elainechu/mcp_vignette (accessed on
7 November 2022). A GitHub repository (https://github.com/ElaineYChu/fs_mcp_us
(accessed on 7 November 2022)) detailing exact variable information, model parameters,
results for the analyses herein are provided for those wishing to replicate our exact results
and figures. For practitioners, we hope to increase usability by providing MCP-S-Age. This
GUI offers immediate application using the United States sample and incorporates the
performance metrics with all possible age estimations so practitioners can choose what best
fits their needs.

The age estimation models generated in the current research include only modern
individuals, therefore they are recommended for use in contemporary contexts, as historic
individuals may not exhibit the same relationships between age and age indicators [77].
Additionally, the data used to generate the models is from U.S. children, therefore, it is still
unknown whether the application of the age estimation models on different populations
would yield valid age estimations. The intention behind the large and geographically
diverse U.S. sample in the SVAD was to capture as much human variation as possible,
as it is recognized that so much of growth and development is the outcome of a com-
plex relationship between genetics and the environment. Population-specific and global
subadult age estimation models using the MCP and SVAD data collected from individuals
from Taiwan, Angola, South Africa, Colombia, France, the Netherlands, and Brazil are
currently being generated. These models will then be incorporated into MCP-S-Age (NIJ
2017-DN-BX-0144). The authors encourage colleagues with age indicator data from diverse
samples, both temporally, geographically, and/or otherwise, to upload it to the SVAD
Zenodo Community so that further explorations into age estimation and specifically the
impact of variation on age estimates can be made. As Coqueugniot et al. [3] suggested,
data sharing can lead to improved age estimations for the entire field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/forensicsci2040055/s1, Table S1—Point estimates, upper, and
lower estimates of age at the 95% and 99% credible intervals for each fusion stage by epiphyseal site
for the upper limb based on the 4-stage scoring system; Table S2—Point estimates, upper, and lower
estimates of age at the 95% and 99% credible intervals for each fusion stage by epiphyseal site for
the lower limb based on the 4-stage scoring system; Table S3—Point estimates, upper, and lower
estimates of age at the 95% and 99% credible intervals for each fusion stage by epiphyseal site for
the upper limb based on the 7-stage scoring system; Table S4—Point estimates, upper, and lower
estimates of age at the 95% and 99% credible intervals for each fusion stage by epiphyseal site for
the lower limb based on the 7-stage scoring system; Table S5—Point estimates, upper, and lower
estimates of age at the 95% and 99% credible intervals for each fusion stage by epiphyseal site for the
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os coxa; Table S6—Point estimates, upper, and lower estimates of age at the 95% and 99% credible
intervals for each mineralization stage of the upper permanent teeth; Table S7—Point estimates,
upper, and lower estimates of age at the 95% and 99% credible intervals for each mineralization stage
of the lower permanent teeth.
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