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Abstract: This study investigates the electrical characteristics observed in n-channel and p-channel
ferroelectric field effect transistor (FeFET) devices fabricated through a similar process flow with
10 nm of ferroelectric hafnium zirconium oxide (HZO) as the gate dielectric. The n-FeFETs demon-
strate a faster complete polarization switching compared to the p-channel counterparts. Detailed and
systematic investigations using TCAD simulations reveal the role of fixed charges and interface traps
at the HZO-interfacial layer (HZO/IL) interface in modulating the subthreshold characteristics of the
devices. A characteristic crossover point observed in the transfer characteristics of n-channel devices
is attributed with the temporary switching between ferroelectric-based operation to charge-based
operation, caused by the pinning effect due to the presence of different traps. This experimental study
helps understand the role of charge trapping effects in switching characteristics of n- and p-channel
ferroelectric FETs.

Keywords: ferroelectric; FeFETs; HZO; polarization; charge trapping

1. Introduction

Ferroelectric field effect transistors (FeFETs), particularly hafnium oxide (HfO2) based
FeFETs, have captured the interest of semiconductor technology as the dominant candidates
for future memory applications. FeFETs have all the design components of a traditional
MOSFET with a sandwiched ferroelectric material layer as the gate dielectric. The two
polarization states of the dielectric determine two separate threshold voltages giving rise to
a memory window (MW) between two non-volatile memory states.

The discovery of ferroelectricity in hafnium oxide based dielectrics that are CMOS
compatible has attracted enormous interests in integrating FeFETs in emerging non volatile
memory, in-memory computing, and neuromorphic computing applications [1–3]. Apart
from these, FeFETs also find applications in the domain of flexible electronics [4], partic-
ularly using structured memory arrays which can be used to mimic important biological
functions for brain—inspired computing, or to emulate artificial synaptic responses for
neuromorphic computing as discussed above [5]. This is in conjunction with rapid develop-
ments in artificial intelligence (AI) technology, which has put forward the requirements for
high-speed, energy efficient, and non-volatile memories [6–8]. In this regard, the research
community has observed a shift from the existing von Neumann computer architectures,
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driven by developments in FeFET technology [9–11]. FeFETs have demonstrated scala-
bility, low power operation due to their CMOS compatibility, and faster non-destructible
read/write operation capabilities.

The ferroelectricity observed in ferroelectric materials is primarily due to their non-
centrosymmetric structure [1]. A large number of ferroelectric materials have been reported
in the literature, however the most popular ones are PZT, PVDF, and HZO [1]. In such
materials the polarization direction is controlled by the displacement of the atoms, their
degree of variation in crystalline phase and material compositions [12–21].

Among the various dopants in hafnium oxide (HfO2) such as Al, Sr, La, Gd, Si, and
Zr that enable ferroelectricity, Zr doped HfO2 films have been observed to demonstrate
stable ferroelectric behavior over a wide range of temperatures, compositions, and re-
quire a lower processing temperature [22–26]. The principle of a FeFET is the change
in threshold voltage resulting from the polarization states of the gate dielectric that in-
duce charges at the gate/channel region. Charge trapping remains a major challenge
in FeFETs due to the induced threshold voltage (VTH) instability [27]. Hafnium oxide is
known to have a high density of intrinsic defects, and the interfaces of HfO2/interlayer
and interlayer/semiconductor are typically defective, which can trap electrons and holes,
counteracting the VTH shift induced by polarization switching [28,29]. Figure 1 depicts
the effects of up and down polarization in n-FeFET and p-FeFET, comparing with charge
trapping effects which are opposite to the polarization effects [28].
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Figure 1. Effect of polarization switching and charge trapping on the threshold voltage shift in MOSFETs.

Hafnium oxide based FeFETs, however, may encounter undesirable charge trapping
during the program and erase cycles required for polarization switching [1,22,27]. This
is due to the defect density in HfO2, which limits the span of the memory window post
program cycles [1,22,27]. Therefore, the devices demonstrate a slower read operation which
leads to a departure from the theoretical values of the memory window (MW) [1,30]. This
calls for an early assessment of the different kinds of traps that form in the dielectric stack
of the fabricated structure and is the focus of this study.

2. Materials and Methods
2.1. Experimental

The FeFETs were fabricated in a student run fab [31] at Rochester Institute of Technol-
ogy (RIT) on 1–10 Ω-cm base resistivity silicon wafers with 10 nm ALD deposited hafnium
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zirconium oxide (Hf0.5Zr0.5O2) as the gate dielectric and 15 nm of sputtered TiN as the gate
electrode, followed by an anneal at 600 ◦C to achieve the ferroelectric phase. The process
flow consisted of 5 mask levels designed in-house using Mentor Graphics Pyxis (v10.2), fab-
ricated by a direct laser writer (DWL 66+, Heidelberg Instruments, Heidelberg, Germany)
and using an i-line stepper (PAS 5500, ASML, Veldhoven, Netherlands) for lithography. The
devices consisted of LOCOS (local oxidation of silicon) isolated FETs with ion implanted
source and drain regions implanted by an ion implanter (350D, Varian Semiconductor
Equipment, Gloucester, MA, USA). For the n-channel devices, a P31 implant species and
p-type substrates were used, and for the p-channel devices a B11 implant species and
n-type substrates were used. The process flow and the device schematics are shown in
Figure 2, and a detailed process flow for both n- and p-channel devices can be found in
Figures S1 and S2 respectively in the Supplementary Materials.
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Figure 2. (a) Process flow for the fabrication of FeFETs, and (b) Schematic diagram of a fabricated FeFET.

A scanning electron micrograph image of a fabricated device (with designed 15 µm
channel length and 15 µm channel width) and a high-resolution TEM image of the gate di-
electric are shown in Figure 3. A close observation of the TEM image reveals the crystalline
nature of the deposited ferroelectric HZO (Hf0.5Zr0.5O2) thin film on the silicon substrate.
Further, at the HZO/Si interface, a thin interfacial layer (IL) of SiOx (~1.63 nm) is observed.
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2.2. Polarization Characterization of HZO

The HZO layer employed in this work was characterized for its polarization behavior
by fabricating MFM capacitors. The fabricated test structure helps in the assessment
and characterization of the deposited thin film ferroelectric layers. The layer stack of the
MFM capacitor consists of a bottom electrode deposited by sputtering and standard liftoff
procedures to realize a 100 nm TiN layer. This is followed by the conformal atomic layer
deposition (ALD) of the 10 nm Hf0.5Zr0.5O2 ferroelectric layer. The top electrode, TiN is
then deposited by sputtering.

The polarization-electric field (P-E) hysteresis loop of the test structure were recorded
with a parameter analyzer (4200-SCS, Keithley Instruments, Solon, OH, USA), illustrated
in Figure 4. As observed, the test structure demonstrates good polarization switching
behavior with a remnant polarization (PR) of 17 µC/cm2, saturated polarization (PS) of
27 µC/cm2, and a coercive field (EC) of 1 MV/cm. Also presented is the calibration of
a metal-ferroelectric-metal (MFM) capacitor through Silvaco’s Victory TCAD (v 1.22.0)
simulator, which will be used as a primer for realizing the fabricated FeFETs through TCAD
for further analysis [32]. The TCAD modeling of the MFM capacitor relies on the Preisach
Ferroelectric model [33], which utilizes the parameters PR, PS, and EC to model the P-E
hysteresis loop as shown in Figure 4.
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Figure 4. Measured and simulated polarization-electric field hysteresis loop of TiN/10 nm HZO/TiN
capacitor.

3. Simulation Methodology
3.1. Experimental Results
3.1.1. DC Characterization

To investigate the DC characteristics, a parametric analyzer (4200-SCS, Keithley In-
struments, Solon, OH, USA) was used. The transfer characteristics (ID vs. VGS) for the n-
and p-FeFETs are shown in Figure 5. The memory window (MW) specified at the drain
current of 1 nA/µm, and extracted between the high and low VTH states, is observed to
be 1 V for the n-FeFET and 1.4 V for the p-FeFET. The DC characteristics of the n- and
p-FeFETs demonstrate asymmetric subthreshold characteristics. The p-channel devices
exhibit steeper subthreshold characteristics compared to their n-channel counterparts. In
addition, the n-FeFETs demonstrate a higher contribution of the gate-induced-drain-leakage
(GIDL) current component, suggesting the role of stronger band bending at the accumu-
lation region which is responsible for the setup of high electric fields. This consequently
results in the tunneling of the valence band (VB) electrons to the conduction band (CB)
while generating holes in the VB, otherwise known as band-to-band tunneling (BTBT). An-
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other distinguishing feature of the n-FeFETs is the characteristic crossover point observed
during the downward sweep in the transfer characteristics.
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Figure 5. Transfer characteristics of (a) n-channel FeFETs, and (b) p-channel FeFETs depicting
asymmetric behavior.

3.1.2. Pulse Characterization

The fabricated n- and p-channel FeFET devices were characterized through a series of
read and write pulse cycles using a probe station (Summit 11000/12000, Cascade Microtech,
Beaverton, OR, USA) and a parametric analyzer (4200-SCS, Keithley Instruments, Solon,
OH, USA). The pulse setups for the n- and p-channel devices are shown in Figure 6. For
the n-channel devices, the height of the reset pulse is set to −4.5 V with a pulse duration
of 1 µs, while the set pulse height is varied from 1 V to 3.8 V and the pulse duration is
gradually tuned from 50 ns to 0.1 s. The p-channel devices are also subjected to similar
pulsing conditions with reversed polarities.

Solids 2023, 4, FOR PEER REVIEW 6 
 

 

  
(a) (b) 

Figure 6. Read and write operations performed at the gate electrode of (a) n-FeFET, and (b) p-FeFET. 

The shift in the threshold voltage (VTH) and the resulting MW for the n- and p-channel 
devices as a function of pulse width is shown in Figure 7. The switching of the polarization 
dipoles of a particular ferroelectric layer is a function of both the applied bias and the time 
duration during which the pulse is applied to the ferroelectric gate stack. As observed 
from Figure 7a,c, the VTH of both devices can be tuned gradually by varying both the pulse 
height and the pulse duration. As the pulse height decreases, a longer pulse is required 
for observing the necessary switching of the polarization dipoles. For the n-channel 
FeFETs, a maximum MW of 1 V, is achieved with a pulse height of 3.8 V and pulse dura-
tion of 1 µs, as seen in Figure 7b. This point corresponds to the complete switching of the 
polarization dipoles within the ferroelectric layer. Intermediate pulse height/widths can 
be utilized for partial polarization in multi-level logic devices. For the p-channel devices, 
however, the pulse characteristics in Figure 7c,d demonstrate a global maxima in the MW 
at a pulse duration of 10 µs and a pulse height of −3.8 V. Further, on increasing the pulse 
width, a characteristic roll-off in the MW is observed as a function of write pulse width. 

 
(a) (b) 

Figure 6. Read and write operations performed at the gate electrode of (a) n-FeFET, and (b) p-FeFET.

The shift in the threshold voltage (VTH) and the resulting MW for the n- and p-channel
devices as a function of pulse width is shown in Figure 7. The switching of the polarization
dipoles of a particular ferroelectric layer is a function of both the applied bias and the time
duration during which the pulse is applied to the ferroelectric gate stack. As observed
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from Figure 7a,c, the VTH of both devices can be tuned gradually by varying both the pulse
height and the pulse duration. As the pulse height decreases, a longer pulse is required for
observing the necessary switching of the polarization dipoles. For the n-channel FeFETs, a
maximum MW of 1 V, is achieved with a pulse height of 3.8 V and pulse duration of 1 µs,
as seen in Figure 7b. This point corresponds to the complete switching of the polarization
dipoles within the ferroelectric layer. Intermediate pulse height/widths can be utilized
for partial polarization in multi-level logic devices. For the p-channel devices, however,
the pulse characteristics in Figure 7c,d demonstrate a global maxima in the MW at a pulse
duration of 10 µs and a pulse height of −3.8 V. Further, on increasing the pulse width, a
characteristic roll-off in the MW is observed as a function of write pulse width.
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The switching behavior investigated using different program/erase pulse heights and
widths shows a faster complete polarization switching in n-FeFETs (3.8 V, 1 µs) than in
p-FeFETs (−3.8 V, 10 µs).

3.2. Simulation Methodology

The polarization parameters extracted from the test structure’s P-E hysteresis loops are
fed to the simulation deck to realize ferroelectricity in the HZO. The calibrated simulation
deck acts as a primer for realizing FeFET devices for the assessment of the trapping
parameters. Table 1 provides the geometrical parameters of the fabricated devices used
in simulations.

Table 1. Device geometrical parameters depicted in Figure 2b.

Symbols Description Value

ND/S Source/Drain Doping 2 × 1019 cm−3

NSubs Substrate Doping 2 × 1015 cm−3

tS/D Junction depth of Source/Drain 0.8 µm
LS/D Lateral Extensions of Source/Drain 13 µm
tSiO2 Thickness of Silicon Dioxide 100 nm
tFerro Thickness of Ferro Layer 10 nm
tTiN Thickness of TiN Layer 12 nm
tGate Thickness of Al Gate Contact 750 nm

tAl(S/D) Thickness of Al Source/Drain Contact 750 nm
LAl(S/D) Length of Al Source/Drain Contact 9 µm

Silvaco’s Victory Device simulator is used to identify the different kinds of traps
that evolved during the fabrication process [27]. A detailed simulation methodology is
presented to capture the switching of the polarization dipoles during the upward and
downward sweeps.

Calibration of the Fabricated Devices

In modeling the fabricated devices, p-channel devices are considered first due to their
steeper subthreshold characteristics and a parallel memory window. The off-state current is
tuned by considering donor type bulk traps in the silicon substrate. The bulk trap density
is set as 1 × 1016 cm3 and the trap level is 0.63 eV. The capture cross section for electrons
and holes are set to 10−13 cm2 and 10−14 cm2 respectively in accordance with experimental
reports [1,22,34]. Further, the literature survey suggests the role of fixed charges and charge
trapping at the HZO/SiO2 interfacial layer (IL) interface in modulating the subthreshold
characteristics and thus limiting the memory window of the fabricated devices [1,22,34].
Accordingly, acceptor type interface traps were tuned at the HZO/IL interface to obtain a
best fit to the experimental data. In this regard, an interface trap density of 1.8 × 1013 cm2,
trap energy level of 0.20 eV and capture cross sections of 10−13 cm2 and 10−14 cm2 for
electrons and holes respectively were defined at the HZO/IL interface [33]. In addition to
these, Fermi and SRH models were invoked to capture carrier statistics and the interaction
of carriers with traps that evolved during the fabrication process. The Priesach Ferroelectric
model was also invoked to model the doping dependent mobility, CVT model [35] and
to capture the ferroelectric polarization. The calibrated simulation deck for the p-channel
device was then used as the basis for realizing n-channel FeFETs. The off-state current
was tuned again by considering the donor type bulk traps in the silicon substrate. The
trapping conditions defined in the substrate were similar to that of p-channel devices in
order to mimic similar bulk conditions, except that the OFF–state current was tuned by
changing the energy of the trap level to 0.43 eV. The interface trap density at the HZO/IL
interface was similar to the p-channel case, except that the trap levels were tuned to 0.26 eV
to capture the slow subthreshold characteristics observed in Figure 5a for n-FeFETs. In
addition to this, to capture the GIDL effect observed in n-FeFETs, as seen in Figure 5a,
Kane’s BTBT model was invoked, and its coefficients were tuned to achieve the best fit to
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the GIDL current [30]. The calibrated simulation decks for the n- and p-channel devices are
shown in Figure 8.
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It is observed that the subthreshold characteristics of n-FeFETs are more affected due
to charge trapping at the HZO/SiO2(IL) interface suggesting that electrons are more easily
trapped than holes. This observation essentially stems from the transfer characteristics
of the fabricated n- and p-channel FeFET devices. As observed from the subthreshold
characteristics of both Figures 5a and 8a, the n-channel FeFET devices demonstrate a grad-
ual change (along with kink) in the subthreshold characteristics, which is a characteristic
feature of the trapping and detrapping of the majority carriers, which for the n-channel
devices are electrons. On the contrary, for the p-channel devices, as observed from both
Figures 5b and 8b, the transfer characteristics, particularly in the subthreshold region
demonstrate a steep change with the applied bias without any significant trapping effects
as far as the DC characteristics are concerned. From a TCAD perspective, this is achieved
by favoring electron trapping by specifying a larger capture cross section area as discussed
above and validated from the TCAD simulations shown in Figure 8a. The presence of IL
further participates in a tunneling current, due to charge trapping at the HZO/SiO2 (IL).
This results in a charge transfer directly between the HZO and Si channel and is responsible
for modulating the subthreshold characteristics of the n-FeFETs [36].

The characteristic crossover point observed in the n-channel devices during the down-
ward sweep was also captured in the TCAD simulations, as shown in Figure 8a. A closer
insight into this reveals that there is a temporary switching of the ferroelectric based opera-
tion to the charged based operation, which arises due to the presence of the fixed charges
and charge trapping at the HZO/IL interface and HZO bulk layer. Under this condition,
during the negative sweep, the drain current characteristics are dominated by the carrier
trapping which reduces the ON—state current (shown in Figure 8a) as the applied bias
is reduced from 4 V to 2 V (denoted as the charge-based operation). The trapped carriers
are detrapped as the applied bias is further reduced beyond 2 V, after which, the ferroelec-
tric based operation dominates, giving rise to the memory window (MW) as observed in
Figure 8a.

The devices are further investigated by recording the contour plots of electron/hole
concentrations and conduction current densities after forward and reverse sweeps at
1 nA/µm. These are depicted in Figure 9a for n-FeFETs and in Figure 9b for p-FeFETs. For
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the n-channel device, as observed from Figure 9a, the shift in electron concentration and
conduction current density is not significant after the respective program/erase cycles. In
contrast, for the p-channel device, a significant change in both the hole concentration as
well as the conduction current density is observed in Figure 9b, which accounts for the shift
in VTH observed in both Figure 7c,d and Figure 5b after subjecting the gate stack to the
necessary program cycle.
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The trapping effects on the MW can be understood by observing the band diagrams
recorded at erase and program conditions. This is shown in Figure 10a,b for the n- and
p-channel devices, respectively. For the n-FeFET devices, as depicted in Figure 10a, the
carriers can directly tunnel through the HZO and the IL (SiO2) through Fowler-Nordheim
(FN) tunneling [37]. The carriers can also participate in tunneling with the help of acceptor
type traps defined at the HZO/IL interface and at the HZO bulk through the trap-assisted
tunneling (TAT) [37]. The injected carriers are ‘hot’, in the sense that these carriers are
energetic and can further participate in the generation of interface traps at the SiO2 (IL)/Si
interface, thereby degrading the quality of the memory window or the devices over time.
Consequently, there is a charge sharing directly between the HZO and the silicon chan-
nel, which is responsible for modulating the subthreshold characteristics observed in
Figures 5a and 8a. Under the program cycle, as depicted in Figure 10b, the electron carri-
ers tunnel through the SiO2 layer, which is translated to the shift observed in the device
threshold voltage. Further, on observing the position of the traps with respect to the fermi
level under both erase and program conditions, as seen in Figure 10a, it can be inferred that
most of the tunneled carriers during the program pulse are trapped courtesy of the bulk
traps in HZO and at HZO/IL interface. Consequently, the span of the memory window for
the n-FeFETs gets limited.

The band diagrams under erase/program conditions depicted in Figure 10b for p-
channel devices follow a similar approach. The tunneling probabilities for the holes,
however, is much lower than that of the electrons and the charge sharing through FN/TAT
is effectively minimized. At a sufficiently higher gate bias, there is still a possibility of
‘hot’ hole injection, which may result in the generation of traps at the SiO2/Si interface.
Under the program cycle, similar to the n-channel case, the tunneling of the hole carriers
through the SiO2 is responsible for the shift in the device threshold voltage observed in
Figures 5b and 8b. Further, it is also identified that there are multi-level traps present at the
HZO/IL interface. These traps are relatively deeper, as discussed in Section 3.1.1, and are
responsible for the roll-off in the device VTH observed during the pulse characterization of
the p-FeFET devices in Figure 7c.
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4. Discussion

In this work, n-FeFETs and p-FeFET devices have been designed, fabricated and
investigated using a similar process flow, which is important for their integration in CMOS
circuitry. A systematic and calibrated TCAD study is presented to investigate trapping
effects on the asymmetric behavior observed in the transfer and pulse characteristics of
n- and p-channel FeFET devices. For model validation, fabricated MFM capacitors are
realized, and the P-E hysteresis loops are calibrated against the experimental set. The
calibrated deck is then used to model the FeFETs to identify the trapping parameters. The
n-FeFETs demonstrate faster complete polarization switching compared to their p-channel
counterparts. It has been observed that the fixed charges and interface traps at HZO/IL
modulate the subthreshold characteristics of the fabricated FeFETs and are responsible for
the asymmetricity observed in the transfer characteristics of the two devices. Further, the IL
facilitates the tunneling current due to the presence of traps in the bulk HZO and at HZO/IL.
This is responsible for the charge sharing directly between the HZO and the silicon channel
and limits the span of the memory window for the fabricated devices. The n-channel
devices, as observed, are identified to be more affected compared to p-channel devices,
suggesting that electrons are more easily trapped than holes. Further, the characteristic
crossover point observed in n-FeFETs was found to be associated with the partial recovery
of the polarization dipoles due to the charge trapping mechanism, which results in a
temporary switch between ferroelectric based operation to charge based operation.
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