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Abstract: A generic expression is derived for the dynamical response function of metal films, with
conductivity tensors as the only input. The semi-classical model is then used to provide an analytical
expression for the conductivity tensor, thus establishing a kinetic theory for the response function. A
major advantage of the theory is its ability to handle surface roughness effects through the use of
the so-called specularity parameter. We applied the theory to study the properties of surface plasma
waves. It is found that surface roughness does not affect the dispersion, but rather the decay rate of
these waves. Furthermore, it significantly affects the spectral weight carried by the SPW resonances,
which diminishes toward zero as the specularity parameter approaches unity.
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1. Introduction

Electrodynamic responses refer to the processes in which electromagnetic fields induce
electric charges and currents in materials. They can reveal the character of elementary
excitations therein and underlie a plethora of physical phenomena, such as screening [1–3],
adsorption [4], particle scattering [5–7], light scattering [8], vacuum fluctuation forces [9],
image potential states [10,11], surface enhanced Raman scattering [12], metal-induced
energy transfer [13,14], Auger processes [15] and so on. They are also the basis of technolog-
ically important processes such as electrostatic gating [16], metal-induced-energy-transfer
imaging [13,14], solar cell design [17], crystal growth on substrates [18] and particle collider
design [19].

Electrodynamic responses can be quantified with the charge density-density response
function, written as χ(x, x′, t), which measures the amount of charges induced at point x by
a transient electrostatic potential introduced a while t ago, localized at x′. For infinite metals
with full translational symmetry, χ depends on x− x′ rather than x and x′ individually,
and its properties have been well known since the seminal work of Bohm and Pines in the
1950s [20–23]. Their work provided a thorough understanding of plasma waves in metals,
namely the charge density oscillations sustained by the long-range part of the Coulomb
force between the charges.

For finite systems such as metal films, translational symmetry is partial, and the
calculation of χ is much less straightforward [5,24–26]. Most earlier works were based on
local responses, assuming that χ is significant only for x ' x′, which is reasonable if the
probing potential does not vary fast spatially. An important discovery from such work
was that the charge density oscillations could also exist on metal surfaces, not just in the
bulk [27–30]. These oscillations, called surface plasma waves (SPWs) to be distinguished
from the oscillations in the bulk (i.e., volume plasma waves, VPWs), are at the centre of
on-going research in the name of plasmonics [31–33].
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In order to go beyond local responses, the first and the simplest approach was to
treat electrons in a metal like a fluid within the hydrodynamic model [34–39], which
remains popular and has gained momentum in recent years [40–43]. Another natural
approach was to go microscopic and fully quantum mechanical [5,44], either employing
the Greenwood–Kubo formalism [45–47] or the density functional theory (DFT) [44,48–55].
The Greenwood–Kubo community invariably works with an infinite barrier model [44],
assuming that electrons are confined by an infinite potential barrier with wave function
nodes at the surfaces, while the DFT way is in general computational, relying on supercom-
puters, and seems to be the favoured approach nowadays [44]. DFT allows one to study
microscopic effects for ideal surfaces such as the electron spill-out [48], but is not best suited
to deal with ubiquitous features such as surface roughness [56]. Yet, there is a semi-classical
approach based on Boltzmann’s kinetic equation, which was pursued by several authors in
the 1970s but has since received undue attention [57–59]. As a major advantage, this kinetic
approach can deal with surface roughness analytically via a specularity parameter [60],
and seems to be the only approach that has been used to account for the anomalous skin
effect [61–65]. The kinetic approach is appropriate when the microscopic details of a surface
are negligible in the problems of interest.

The main purpose of the present work is to derive generic analytical expressions for
the density response function χ for metal films, and tailor it with the kinetic method. To
date, as we are concerned, existing studies using this method have been exclusively on
infinite or semi-infinite metals and none on films. As an innovation, our derivation treats
the surfaces of a film as physical though negligibly thin regions rather than geometric
separations [66–69]. In this way we are able to avoid the imposition of additional boundary
conditions permeating existing work [57–59]. As an application, we apply the analytical ex-
pressions to study the properties of VPWs and SPWs in metal films. Although these waves
have been well studied, little has been known of the impact from surface roughness, while
revisiting well known results, we also see some unexpected features about these waves.

The rest of the paper is organized as follows. In the next section, we first derive a
generic formalism for evaluating the response function with the conductivity tensor as the
only input. We then discuss the macroscopic limit of this formalism. The result is illustrated
with the local responses and the calculation of a screening function that describes how
charges are induced in a film by exterior charges. Finally, we calculate the conductivity
tensor using the kinetic equation and obtain the kinetic theory for the response function.
It is shown that the response contains two types of resonances, one corresponding to the
VPWs and the other to the SPWs. In Section 3, we analyse the properties of SPWs in light
of the kinetic theory. We found that surface roughness, as characterized by the specularity
parameter, has a strong effect on the spectral weight carried by the SPWs. Specifically,
the spectral weight is reduced toward zero as the specularity parameter approaches unity.
We also found that surface roughness has negligible effect on the SPW dispersion but
considerably affects the decay rate. This can, in principle, be experimentally studied,
for example in electron scattering. The paper is summarized in Section 4.

2. Analytical Expressions for the Dynamical Response Function

The system under consideration is a metal film placed in a vacuum, of thickness L
with two surfaces located at z = 0 and z = L, respectively. The surfaces are macroscop-
ically flat, but could be rough microscopically (i.e., on the scale of a Fermi wavelength)
so that translational symmetry along the surfaces could be preserved macroscopically.
The metal is treated in the spirit of the jellium model, by which the electrons are moving in
a homogeneous and static background of positive charges that keeps the metal neutral as
a whole.

In the presence of an external probing potential φext(x, t), electric charges of density
ρ(x, t) = en(x, t) are induced in the metal. Here, e is the charge of an electron and n(x, t)
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is the deviation of the electron number density from the constant mean density n0. In the
regime of a linear response, writing x = (r, z) with r = (x, y) being planar coordinates,

ρ(x, t) =
∫ t

dt′
∫

dx′ χ(r− r′, z, z′, t− t′)φext(r′, z′, t′),

or, equivalently, by a Fourier transform with respect to the planar coordinates and time,

ρkω(z) =
∫ L

0
dz′ χkω(z, z′)φext,kω(z′), (1)

where k and ω represent the planar wave vector and frequency of the Fourier components,
respectively. To avoid notation cluttering, we shall hereafter drop the scripts k and ω
wherever no confusion is caused. In the above equation, both z and z′ lie inside the metal.
We may then introduce a cosine series for ρ(z) and φext(z). For example,

ρ(z) =
∞

∑
n=0

ρn cos(qnz), ρn =
1

Ln

∫ L

0
dz ρ(z) cos(qnz), (2)

where qn = nπ
L are the wavenumbers and Ln = L

2−δn,0
, with δn,0 being the Kronecker

symbol. It may be noted that qn has a natural cutoff: ρ(z) cannot vary faster than allowed
by the largest possible wavenumber in the first Brillouin zone of the underlying crystal
lattice, which is comparable to ωp/vF. Thus, the cutoff in n is of the order of Lωp/vF.
In other words, ρn is negligible for n beyond this value.

Now, Equation (1) can be rewritten as

ρn =
∞

∑
m=0

χ(n, m)φext,m, (3)

where φext,m is the cosine component of φext(z) and

χ(n, m) =
1

Ln

∫ L

0
dz
∫ L

0
dz′ cos(qnz)χ(z, z′) cos(qmz′) (4)

is the key quantity to be calculated.
In the rest of this section, we shall first describe a generic density response theory

with the electrical conductivity tensor as the only input. Then, we apply the theory to the
specific case for which the conductivity is obtained with Boltzmann’s kinetic equation. We
shall also derive the screening function describing screening effects.

2.1. Generic Formalism

We begin the construction of the theory with a discussion of the electric current flowing
in the metal, as electric currents are the ultimate reason for induced charges. In the first
place, we may distinguish between two types of electric currents [70]: one of them is driven
by short-range thermal electronic collisions, while the other is driven by the long-range
mean electric field generated by the probing potential and the induced charges. The electric
current density is then written as j f ield + jcol , where j f ield is due to the mean field and jcol due
to electronic collisions. As the collisions tend to drive the system toward thermodynamic
equilibrium, the main effect of jcol is to smear the non-equilibrium electronic distribution
and cause any induced charges to decay. Within the relaxation-time approximation, we may
assume that ∂x · jcol(x, t) = ρ(x,t)

τ , where 1
τ gives the collision rate. This result is consistent

with and can be directly derived from the kinetic theory [71].
Meanwhile, in the regime of linear responses, we may write j f ield = j + jext, where j is

driven by the electric field E of the induced charges and jext by that of the probing potential.



Solids 2023, 4 271

The currents and electric fields are related by the electrical conductivity tensor Σµν, where
µ, ν = x, y, z label the components. Namely, we have, component-wise,(

jµ(x, t)
jext,µ(x, t)

)
= ∑

ν

∫
dt′
∫

dx′ Σµν(x, x′, t− t′)

(
Eν(x′, t′)

Eext,ν(x′, t′)

)
,

Or, after a Fourier transform with respect to the planar coordinates and time,(
jµ(z)

jext,µ(z)

)
= ∑

ν

∫ L

0
dz′ Σµν(z, z′)

(
Eν(z′)

Eext,ν(z′)

)
. (5)

The scripts of wave vector and frequency have been dropped here as before. It should
be noted that the conductivity Σµν excludes the effects due to the long-range electron-
electron Coulomb interaction supposedly included in the mean field E. The electric fields
are obtained from the law of electrostatics,

Eext = −∇φext(z), E = −∇φ(z), (6)

where ∇ = (ik, ∂z) and, with k = |k|,

φ(z) =
2π

k

∫ L

0
dz′e−k|z−z′|ρ(z′) (7)

is the electrostatic potential of the induced charges. Equations (5)–(7) are closed by the
equation of continuity,

∂tρ(x, t) + ∂x ·
[
j f ield(x, t) + jcol(x, t)

]
= 0.

Within the aforementioned relaxation-time approximation and after Fourier transform,
the equation becomes

iω̄ρ(z)−∇ · j(z) = ∇ · jext(z), (8)

where ω̄ = ω + i/τ. Now, substituting the expressions of the currents and eliminating the
electric fields in favour of the charge density, we find∫ L

0
dz′
[
ω̄2δ(z− z′)− h(z, z′)

]
ρ(z′)

= iω̄ ∑
µ,ν

∫ L

0
dz′∇µΣµν(z, z′)∇′νφext(z′), (9)

where δ(z− z′) denotes the Dirac function, ∇′ = (ik, ∂z′) and

h(z, z′) =
2πiω̄

k ∑
µ,ν

∫ L

0
dz
′′∇µΣµν(z, z′′)∇′′νe−k|z′′−z′| (10)

is an integral kernel. Here ∇′′ = (ik, ∂z′′). Equation (9), which is linear, is formally solved
by an inversion, yielding

ρ(z) = iω̄ ∑
µ,ν

∫ L

0
dz′

∫ L

0
dz′′ Λ(z, z′)∇′µΣµν(z′, z′′)∇′′νφext(z′′), (11)

where Λ(z, z′) inverts the integral in the left-hand-side of Equation (9), satisfying∫
dz′′ Λ(z, z′′)

[
ω̄2δ(z′′ − z′)− h(z′′, z′)

]
= δ(z− z′).
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From Equation (11) it follows that

χ(n, m) =
iω̄
Ln

∑
µ,ν

∫ L

0
dz
∫ L

0
dz′

∫ L

0
dz′′

cos(qnz)Λ(z, z′)∇′µΣµν(z′, z′′)∇′′ν cos(qmz′′), (12)

which gives the density response function in terms of the electrical conductivity as the
only input.

2.2. Macroscopic Limit

The expression for χ(n, m), Equation (12) is generic and, in principle, exact within the
mean field framework. However, to make progress, one must compute the conductivity
tensor Σµ,ν, which is not straightforward for a finite system. The difficulty, to be further
explained below, lies with the surfaces. Here, we argue that this difficulty can be bypassed,
largely at the cost of introducing some surface characteristics, in the macroscopic limit,
whereby the surfaces can be considered infinitesimally thin. Needless to say, many theories,
such as the currently popular hydrodynamic theory and the kinetic theory to be studied in
the next section, are macroscopic. The macroscopic approach can be justified if the fields do
not vary appreciably on the scale of the thickness of surfaces (usually a few atomic layers
thick), as often implicitly presumed in the subject of electromagnetism [8].

In macroscopic theories, a surface is usually reduced as a geometric separation and its
physical attributes have been habitually implemented with some boundary conditions [8].
Such a macroscopic view tends to obscure the aforementioned difficulty, which, however,
becomes conspicuous atomistically, e.g., in microscopic theories such as those based on
DFT or the Greenwood–Kubo formula. Atomistically, a film normally divides itself into
three regions: two inhomogeneous surface regions (SRs), one for each surface, and a homo-
geneous bulk region (BR). The SRs differ from the BR due to surface reconstruction, and the
atomistic environment seen by electrons in the SRs, and therefore differs from that in the
BR. In microscopic theories, such division is not needed, as the SRs and the BR are treated
on equal footing from the outset and the exact Σµν(z, z′) is computed, which applies to the
entire system including both the SRs and the BR. Nevertheless, to perform the computation,
one must provide a detailed atomistic profile of the whole system. In the BR, the profile
is supposed to be the same as for an infinite system. In the SRs, however, the profile is
expected to vary from sample to sample and is virtually unknown a priori. First-principles
microscopic calculations often prescribe an ideal atomistic profile for the SRs and ignore
realistic complications. Such microscopically computed Σµν(z, z′), though applicable to the
whole system, does not necessarily capture all the interesting aspects of realistic surfaces,
in particular those due to surface roughness.

In macroscopic theories, on the other hand, the SRs are regarded as infinitesimally thin
geometric separations and completely disregarded in the dynamical equations governing
the conductivity tensor, and hence only the BR is directly (and often unwittingly) considered
and the conductivity tensor obtained in macroscopic theories, denoted by σµν(z, z′), applies
only to the BR. In other words, σµν(z, z′) and Σµν(z, z′) are equal if both z and z′ lie in the
BR, but they differ if z or z′ or both lie in the SRs. It follows that the actual electric current
densities, jµ(z) and jext,µ(z), determined by Σµν(z, z′), are generally not the same as(

Jµ(z)
Jext,µ(z)

)
= ∑

ν

∫ L

0
dz′ σµν(z, z′)

(
Eν(z′)

Eext,ν(z′)

)
, (13)

which are determined by σµν(z, z′). Nonetheless, in the macroscopic limit where the
electric fields do not vary appreciably over the SRs, jµ(z) ' Jµ(z) and jext,µ(z) ' Jext,µ(z)
for z in the BR. Indeed, the BR the discrepancy between jµ(z) and Jµ(z), and similarly

between jext,µ(z) and Jext,µ(z), is given by ∑ν

∫
SR dz′

[
Σµν(z, z′)− σµν(z, z′)

]
Eν(z′), which
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represents a higher-order correction ∼ ds/Λ that vanishes in the macroscopic limit. Here,
ds is the SR thickness and Λ a macroscopic length. In the SRs, however, the discrepancy
between jµ(z) and Jµ(z) amounts to ∑ν

∫
SR+BR

[
Σµν(z, z′)− σµν(z, z′)

]
Eν(z′), which cannot

be neglected even in the macroscopic limit. In particular, it is worth pointing out that,
at the microscopic division between the metal and the vacuum, Σµν(z, z′) and jz(z) must
vanish, as no electrons can flow into the vacuum (tunnelling ignored), but σµν(z, z′) and
Jµ(z) do not need to, as these are valid only in the BR. To summarize, we may introduce
some phenomenological functions wµ(z) so as to write jµ(z) = wµ(z)Jµ(z) and jext,µ(z) =
wµ(z)Jext,µ(z). By definition, wµ(z) vanish at the microscopic divisions and cross over to
unity as z goes over a SR into the BR. In the macroscopic limit, wµ(z) invariably reduces
to the simple Heaviside step functions θ(z), i.e., wµ(z)→ θ(z)− θ(z− L), all microscopic
variations within the SRs thereby erased as they should in macroscopic theories. As such,
in macroscopic theories,

Σµν(z, z′) = [θ(z)− θ(z− L)]σµν(z, z′). (14)

This simple expression dictates how j(z) and jext(z), which are the actual current
densities throughout the entire system, are related to J(z) and Jext(z), which give the current
densities correctly only in the BR. The values of the latter in the SRs are extrapolations.
In the literature, these two sorts of densities are often confused. For example, most authors
impose that Jz(z) vanishes at the surfaces, exemplifying the so-called additional boundary
conditions first proposed by Pekar [72]. Such an imposition is not justified in light of the
above analysis; see also Refs. [66,69,73] and references therein.

As aforesaid, σµν(z, z′) is governed by the same dynamical equations as for infinite
systems. However, this does not mean that it is the same as the conductivity for an infinite
system. Actually, σµν(z, z′) contains an additional contribution standing for surface scatter-
ing effects, which in general carries some parameters characterizing such effects that can be
regarded as fingerprints of a surface. In quantum mechanical theories (e.g., DFT based),
the dynamical equation is the Schrödinger equation, and the parameters correspond to the
scattering matrix elements with the surface as the scatterer. In the kinetic theory covered in
the next section, the dynamical equation is Boltzmann’s transport equation and the param-
eter is the specularity parameter (also called the Fuchs parameter), specifying the fraction
of incident electrons that are specularly reflected by a rough surface; see details below.

With the relation (14), the density response function can be expressed in terms of
σµν(z, z′). After some straightforward manipulations, we obtain

χ(n, m) =
∞

∑
l=0

[(
ω̄2I−H− G

)−1
]

n,l
Al,m, (15)

or compactly, treating χ as a matrix,

χ =
(

ω̄2I−H− G
)−1
A,

where I is the identity matrix andH, G and A are square matrices with elements given by

Hn,m =
iω̄
Ln

2π

k2 + q2
m

∫ 2
cos(qnz)∇µσµν(z, z′)∇′νΦm(z′), (16)

Gn,m =
iω̄
Ln

2π

k2 + q2
m

∫ 1[
σzν(0, z)− (−1)nσzν(L, z)

]
∇νΦm(z), (17)

where
∫ 2 is a shorthand standing for ∑µ,ν

∫ L
0 dz

∫ L
0 dz′ while

∫ 1 for ∑ν

∫ L
0 dz, and

Φm(z) = 2 cos(qmz)− e−kz − (−1)me−k(L−z),
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which is proportional to the potential generated by the m-th component of ρ(z). Note that
Φm(z) and cos(qmz) behave in the same way under reflection about the the mid-plane of
the film, that is,

Φm(L− z) = (−1)mΦm(z).

As for A, we can split A = A(1) +A(2) with

A(1)
n,m =

iω̄
Ln

∫ 2
cos(qnz)∇µσµν(z, z′)∇′ν cos(qmz′), (18)

A(2)
n,m =

iω̄
Ln

∫ 1[
σzν(0, z)− (−1)nσzν(L, z)

]
∇ν cos(qmz). (19)

Note that both G and A(2) originate from the derivatives taken in h(z, z′) and Equa-
tion (12) of the step functions in Equation (14). Had we mistaken σµν(z, z′) for Σµν(z, z′),
these quantities would not have existed. They represent surface capacitive effects (viz.,
effects due to charges occupying the SRs) [67].

The wave equation is satisfied by the charge density, and Equation (9) can now be
rewritten as a matrix equation, (

ω̄2I−H− G
)

ρ = Aφext, (20)

where ρ and φext are column vectors with elements ρn and φext,n, respectively. The normal
modes of the charge density waves (e.g., VPWs and SPWs) in a film are then determined
from the secular equation ∣∣∣ω̄2I−H− G

∣∣∣ = 0. (21)

It is instructive to note the differences between an infinite system and a film. There
are two basic differences. Firstly, for an infinite system, G (and also A(2)) vanishes as there
is no surface capacitive effects. Secondly, as stressed before, the conductivity tensor for
an infinite system, which we may denote by σinf,µν(z − z′), differs from σµν(z, z′) for a
film: σinf,µν(z− z′) does not bear any surface scattering effects, while σµν(z, z′) does. As a
result, H (and A(1)) for a film differs from that for an infinite system, which we denote
byHinf. The corresponding secular equation for an infinite system reads

∣∣∣ω̄2I−Hinf

∣∣∣ = 0.
In the so-called dielectric approximation [74], the difference betweenH andHinf is ignored.
As will be seen later, this difference is crucial for obtaining the correct frequencies of SPWs
in the kinetic theory.

Hereafter, we study films symmetric under reflection about its mid-plane z = L/2.
The symmetry requires that σµν(L− z, L− z′) = σµν(z, z′) for (µ, ν) = (x, x), (y, y), (z, z),
(x, y) and (y, x) whereas σµν(L − z, L − z′) = −σµν(z, z′) for (µ, ν) = (x, z), (z, x), (y, z)
and (z, y). With this, one can show that Hn,m vanishes identically unless n− m is even
(i.e., n and m of the same parity). The same can be shown for G and A (both A(1) and
A(2)). Physically, this means that the symmetry of ρ(z) must be the same as that of φext(z):
a symmetric (anti-symmetric) φext can only induce a symmetric (anti-symmetric) ρ(z).
Therefore, we can decompose the quantities into two disconnected sectors, a symmetric
one (indicated by ‘+’) and an anti-symmetric one (‘−’), obtaining

ρ =

(
ρ+

ρ−

)
, φext =

(
φ+

ext
φ−ext

)
, H =

(
H+ 0

0 H−

)
= H+ ⊕H−,

and, similarly, G = G+ ⊕ G− and A = A+ ⊕ A−. Here, ρ+ is a column vector with
elements ρ+l = ρ2l and ρ− is a column vector with elements ρ−l = ρ2l+1, where l = 0, 1, ...,
H+ is a square matrix with elements H+

l,l′ = H2l,2l′ while H− is a square matrix with
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elements H−l,l′ = H2l+1,2l′+1, and similarly, G+l,l′ = G2l,2l′ , G−l,l′ = G2l+1,2l′+1, A+
l,l′ = A2l,2l′

and A−l,l′ = A2l+1,2l′+1. It follows that ρ± = χ±φ±ext with

χ± =
(

ω̄2I−H± − G±
)−1
A±. (22)

For the sake of completeness, one may also note that

ρ(z) = ρ+(z) + ρ−(z),

where ρ±(z) = ∑∞
l=0 ρ±l cos(q±l z) with q+l = q2l and q−l = q2l+1.

Further transformations can be performed by noting that, using the expression (17),

G±l,l′ = Z±l G±l′ , Z±l =
2− δl,0

2
, Z−l = 1,

and, with Φ+
l (z) = Φ2l(z) and Φ−l (z) = Φ2l+1(z),

G±l =
iω̄
L

4π

k2 +
(

q±l
)2 ∑

ν

∫ L

0
dz
[
σzν(0, z)∓ σzν(L, z)

]
∇νΦ±l (z). (23)

In matrix form, G± = Z±G±, where Z± is a column vector with elements Z±l and G±

is a row vector with elements G±l . In terms of G±, we find

χ± =
(

ω̄2I−H±
)−1
A± (24)

+
1

ε±s

(
ω̄2I−H±

)−1
Z±G±

(
ω̄2I−H±

)−1
A±,

where the function εs is given by

ε±s = 1− G±
(

ω̄2I−H±
)−1

Z±. (25)

Note that the second term in Equation (24) does not exist for infinite systems and
is unique to bounded systems (capacitive effects). The density response function of an
infinite system, denoted by χinf, has the same form as the first term in Equation (24),
but with H± and A± replaced by the counterparts Hinf and Ainf, respectively. Namely,

χinf =
(

ω̄2I−Hinf

)−1
Ainf. For an infinite system, there is no difference between the

symmetric and the anti-symmetric sectors.
Equation (24) shows that χ± possesses two types of resonances. One type of resonance

occurs where
ε±b (k, ω) =

∣∣∣ω̄2I−H±
∣∣∣ ≈ 0.

In infinite systems, these resonances give rise to the VPWs. In films, depending on the
dynamics, surface scattering effects might convert some of these resonances into surface
localized ones. Within the kinetic theory, though, all of them represent VPWs, analogous to
what happens in infinite systems.

The other type of resonance occurs where

ε±s (k, ω) ≈ 0.

These resonances are unique to bounded systems. They are all surface localized and
represent the SPWs.

Example. Exemplifying the above formalism, let us consider the local dielectric model

(LDM), for which σµν(z, z′) = σ0δµνδ(z− z′) with σ0 =
iω2

p
4πω̄ being the Drude conductivity,
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where ωp is the characteristic frequency of the metal. Upon using this expression, we obtain

H±l,l′ = ω2
pδl,l′ , G±l =

ω2
p

L/2
k

k2+(q±l )
2

(
1∓ e−kL

)
and A±l,l′ =

ω2
p

4π

(
k2 +

(
q±l
)2
)

δl,l′ . After some

algebra, one gets the density response function χ±(l, l′) for this model, which we write as

χ±LDM(l, l′) =
k2 +

(
q±l
)2

4π

ω2
p

ω̄2 −ω2
p

δl,l′ (26)

+
k

2πL±
ω2

p

ω2
p − ω̄2

(
ω±s0

)2

ω̄2 −
(

ω±s0

)2 .

Here, L+
l = L

2−δl,0
, L−l = L

2 , and ω±s0 = ωp

√
1∓e−kL

2 is the SPW frequency by this model,

which is often quoted in the literature and textbooks. Clearly, χ±LDM(l, l′) has a resonance at
ω = ωp, which corresponds to the VPWs. It also has resonances at ω = ω+

s0 and ω = ω−s0,
representing the symmetric and anti-symmetric SPWs, respectively.

Screening function. As another application, let us study the screening response of a
metal film to a distribution of charges placed outside the film. We denote by ρext(z) the
(ω, k)-th Fourier component of the density of these charges, which we assume all reside in
the half space z < 0 without loss of generality, i.e., ρext(z > 0) ≡ 0. The potential generated
by this component is given by φext(z) = (e−kz/k)ξ with ξ = 2π

∫ 0
−∞ dz ρext(z)ekz. It follows

that φext,n = ξ/Ln
k2+q2

n

(
1− (−1)ne−kL

)
. Now, the corresponding Fourier component of the

density of the charges induced in the film reads

ρn = Pnξ, Pn =
∞

∑
m=0

1
Lm

1
k2 + q2

m

(
1− (−1)me−kL

)
χ(n, m). (27)

The screening function Pn determines the response of the film to exterior charges.
It plays a fundamental role in electron energy loss spectroscopy and electron scattering
with metals.

2.3. Kinetic Theory

Here, we assume semi-classical dynamics for the electrons to obtain σµν(z, z′) and then
the corresponding χ± through the formalism established in the preceding section.

The semi-classical distribution function for the electrons may be written as
f (v, z) = f0[ε(v)] + g(v, z), where v is the velocity of electrons, f0(ε) is the equilibrium
distribution (i.e., the Fermi–Dirac distribution) with ε = mv2/2 being the energy of the
electrons of effective mass m, and g(v, z) is the non-equilibrium part of the distribution.
As before, we have dropped the Fourier frequency and wave vector labels. No position
dependence of f0 has been assumed, as we are concerned with the electronic distribution
in the BR, wherein g(v, z) satisfies the following Boltzmann equation,(

∂z −
iω̃
vz

)
g(v, z) + e f ′0[ε(v)]

v · EEE(z)
vz

= 0, (28)

where ω̃ = ω̄− k · v, f ′0(ε) = ∂ε f0, and EEE(z) is the electric field present in the BR. Following
Fuchs [60,75,76], we assume that a fraction of electrons impinging on the surfaces of the
film are specularly reflected. With v− = (v‖,−vz) and v‖ = (vx, vy),

g(v, z = 0) = p0g(v−, z = 0), vz ≥ 0

for the surface at z = 0 and

g(v, z = L) = pLg(v−, z = L), vz < 0



Solids 2023, 4 277

for the surface at z = L. Here, p0 and pL are the Fuchs parameters, which give the fractions
of specularly reflected electrons at the corresponding surfaces and measure microscopic
surface roughness seen by electron waves resolving structural variations over a Fermi
wavelength. Solving Equation (28) subjected to such considerations, we find

g(v, z) = −
e f ′0
|vz|



D
∫ L

0 dz′
(

ve
iω̃(z−z′)

vz + p0v−e
iω̃(z+z′)

vz

)
· EEE(z′)

−
∫ L

z dz′e
iω̃(z−z′)

vz v · EEE(z′), for vz ≥ 0,

D
∫ L

0 dz′
(

ve
iω̃(z−z′)

vz + pLv−e
iω̃(z+z′−2L)

vz

)
· EEE(z′)

−
∫ z

0 dz′e
iω̃(z−z′)

vz v · EEE(z′), for vz < 0.

(29)

Here, D = 1
1−p0 pLe2iω̃L/|vz | expresses the effect due to electrons bouncing back and

forth between the surfaces. Now, the current density can be calculated as usual and the
conductivity tensor is obtained as

σµν(z, z′) =
(

m
2πh̄

)3 ∫
>

d3v
(
−e2 f ′0(ε)

)vµΓµν(z, z′)vν

vz
, (30)

where, as indicated by the greater symbol ‘>’, the integral is restricted to vz ≥ 0, and the
function Γµν(z, z′) can be split in three parts,

Γµν(z, z′) = Γ0
µν(z− z′) + Dp2e

2iω̃L
vz Γ(1)

µν (z− z′) + DpΓ(2)
µν (z, z′). (31)

Here, we have assumed that p0 = pL = p [and hence D = 1/(1− p2 exp(2iω̃L/|vz|))],
and the three parts Γ0

µν(z− z′), Γ(1)
µν (z− z′) and Γ(2)

µν (z, z′) are given as follows,

Γ0
µν(z− z′) =

ei ω̃
vz |z−z′ |, for µ, ν = x, y or µ = ν = z,

z−z′
|z−z′ | e

i ω̃
vz |z−z′ |, otherwise

(32)

which describes responses due to ‘out-going’ electrons (i.e., moving away from the pertur-
bation caused by the electric field at z′) excluding specular surface scattering effects, and

Γ(1)
µν (z− z′) =

ei ω̃
vz (z−z′) + ei ω̃

vz (z
′−z), for µ, ν = x, y or µ = ν = z

ei ω̃
vz (z−z′) − ei ω̃

vz (z
′−z), otherwise

(33)

together with

Γ(2)
µν (z, z′) =



ei ω̃
vz (z+z′) + ei ω̃

vz (2L−z−z′), for µ, ν = x, y

−
(

ei ω̃
vz (z+z′) + ei ω̃

vz (2L−z−z′)
)

, for µ = ν = z

ei ω̃
vz (2L−z−z′) − ei ω̃

vz (z+z′), for µ = x, y and ν = z

ei ω̃
vz (z+z′) − ei ω̃

vz (2L−z′−z), for µ = z and ν = x, y

(34)

describe specular scattering effects. Γ0
µν(z − z′) preserves translation symmetry, which

alone would revisit the conductivity for an infinite system by Equation (30). Γ(1)
µν (z− z′)

also preserves translation symmetry, which superimposes an out-going electron wave
propagating in one direction on top of a specularly reflected wave travelling in the other
direction. Γ(2)

µν (z, z′) depends on z and z′ separately and breaks the symmetry.
Now, the quantities,H±, G± andA± in the density response function χ(n, m) given by

Equation (15), are obtained by substituting the conductivity Equation (30) in
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Equations (16)–(19). Since Γµν(z, z′) [and σµν(z, z′)] consist of three parts, we accord-
ingly write each of these quantities in three parts. After some straightforward but tedious
calculations, we find

H±l,l′ =
iω̄
L±l

2π

k2 +
(

q±l′
)2

∫ (
H̃0±

l,l′ + Dp2e
2iω̃L

vz H̃1±
l,l′ + DpH̃2±

l,l′

)
. (35)

where
∫

stands for
(

m
2πh̄

)3 ∫
> d3v(−e2 f ′0), and

H̃0±
l,l′ = δl,l′

2L±l
i

F(K±l , v)−
(

1∓ ei ω̃L
vz

)
2ω̃vz

ω̃2 −
(

q±l
)2

v2
z

×

F(K±l′ , v)− F0(k∗, v)∓ e−kLF0(k∗, v−) + Φ±l′ (0)k
∗ · v−


+

2ikΦ±l′ (0)

k2 +
(

q±l
)2

[
F0(k∗, v) + F0(k∗, v−)

]
. (36)

Here, we have introduced K±l = (k, q±l ), k∗ = (k, ik) and

F0(Q, v) =
(Q · v)2

ω̄−Q · v , F(Q, v) = F0(Q, v) + F0(Q, v−).

Additionally,

H̃1±
l,l′ = −

2ω̄ω̃vz

(ω̄−K±l · v)(ω̄−K±l · v−)
(37)

×

 2
[

ω̃k · v‖ +
(

q±l′
)2

v2
z

]
(ω̄−K±l′ · v)(ω̄−K±l′ · v−)

(
2∓

(
eiω̃L/vz + e−iω̃L/vz

))

+
k∗ · v

ω̄− k∗ · v

(
e−(k+iω̃/vz)L − 1±

(
eiω̃L/vz − e−kL

))

+
k · v−

ω̄− k∗ · v−

(
e(iω̃/vz−k)L − 1±

(
e−iω̃L/vz − e−kL

)).

and

H̃2±
l,l′ =

2ω̄ω̃vz

(ω̄−K±l · v)(ω̄−K±l · v−)
(38)

×

 2
[

ω̃k · v‖ +
(

q±l′
)2

v2
z

]
(ω̄−K±l′ · v)(ω̄−K±l′ · v−)

(
1∓ eiω̃L/vz

)2

+
k∗ · v

ω̄− k∗ · v

(
eiω̃L/vz ∓ 1

)(
e−kL − eiω̃L/vz

)
− k · v−

ω̄− k∗ · v−

(
1∓ eiω̃L/vz

)(
1− e(iω̃/vz−k)L

).

Note that only the first term in Equation (36) contributes a diagonal part toH±, while
the rest represents scattering effects on the VPWs. In a previous work [67], these terms
were ignored.
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In addition, we find that

G±l =
iω̄
L

4π

k2 +
(

q±l
)2

∫ (
G̃0±

l +

(
Dp2e

2iω̃L
vz ± Dpe

iω̃L
vz

)
G̃1±

l

)
, (39)

where

G̃0±
l = 2vz

(1∓ e
iω̃L
vz

)(
F′(K±l , v)− F′0(k

∗, v)∓ e−kLF′0(k
∗, v−)

)

+
(

1∓ e−kL
)(

F′0(k
∗, v)− F′0(k

∗, v−)
) (40)

and

G̃1±
l = 2vz

(2∓
(

e
iω̃L
vz + e−

iω̃L
vz

))
F′(K±l , v)

(
e−
(

iω̃
vz +k

)
L − 1±

(
e

iω̃L
vz − e−kL

))
F′0(k

∗, v) (41)

+

(
e
(

iω̃
vz −k

)
L − 1±

(
e−

iω̃L
vz − e−kL

))
F′0(k

∗, v−)

.

In the above,

F′0(Q, v) =
Q · v

ω̄−Q · v , F′(Q, v) = F′0(Q, v) + F′0(Q, v−).

As a sanity check, we have verified that G±l vanishes identically for p = 1. In the limit
L→ ∞, one may show that G±l ∝ 1− p and revisits the expression given in Ref. [67].

Finally, we have A±l,l′ = A
(1)±
l,l′ +A(2)±

l,l′ , where

A(1)±
l,l′ =

iω̄
L±l

∫ (
Ã0±

l,l′ + Dp2e
2iω̃L

vz Ã1±
l,l′ + DpÃ2±

l,l′

)
(42)

with

Ã0±
l,l′ =

δl,l′
L±l
i
−
(

1∓ ei ω̃L
vz

)
ω̃vz

ω̃2 −
(

q±l
)2

v2
z

F(K±l′ , v), (43)

Ã1±
l,l′ = −

ω̄ω̃vz

(ω̄−K±l · v)(ω̄−K±l · v−)
(44)

×

[
ω̃k · v‖ +

(
q±l′
)2

v2
z

]
(ω̄−K±l′ · v)(ω̄−K±l′ · v−)

(
2∓

(
eiω̃L/vz + e−iω̃L/vz

))
,

Ã2±
l,l′ =

ω̄ω̃vz

(ω̄−K±l · v)(ω̄−K±l · v−)
(45)

×

[
ω̃k · v‖ +

(
q±l′
)2

v2
z

]
(ω̄−K±l′ · v)(ω̄−K±l′ · v−)

(
1∓ eiω̃L/vz

)2
.
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and A(2)±
l,l′ = Z±l A±l′ , where

A±l =
2iω̄

L

∫ [
Ã0±

l +

(
Dp2e

2iω̃L
vz ± Dpe

iω̃L
vz

)
Ã1±

l

]
(46)

with

(
Ã0±

l
Ã1±

l

)
=


(

1∓ e
iω̃L
vz

)
(

2∓
(

e
iω̃L
vz + e

−iω̃L
vz

))
vzF′(K±l , v). (47)

In matrix form, we may writeA(2)± = Z±A±, where A± is a row vector with elements
A±l . Such a structure is already clear in Equation (19). As a sanity check, we have verified
that A± vanishes identically for p = 1.

Before proceeding to look at plasma waves, we remark on a few properties of the
matricesH±, G± and A±. In the first place, we may split

H±l,l′ = δl,l′Ω
2(K±l , ω) +H′±(l, l′), (48)

whereH′±(l, l′) represents scattering effects on the VPWs and

Ω2(Q, ω) = ω2
p

(
1 +

3
2

QvF
ω̄

∫ 1

−1
dr

r3

1− rQvF/ω̄

)
(49)

with Q being the magnitude of Q. The diagonal part was derived from the first term in
Equation (36). One may easily show that Ω2(Q, ω) ≈ ω2

p for small Q, but it tends to zero
as QvF/ω̄ increases. A peak (dip) develops around QvF/ω̄ ∼ 1 in the real (imaginary) part
of Ω(Q, ω). This is numerically verified in Figure 1, where we also see thatH′± amounts to
a small perturbation with elements much less than ω2

p. Despite its apparent smallness,H′±
has a strong impact on the behaviours of SPWs and should not be ignored; see below.

Figure 1. Numerically computedH+
l,l′ (a–c) andH−l,l′ (d–f), both normalized by ω2

p. (a,d): real parts;
(b,e): imaginary parts; (c,f): diagonal elements. Parameters: ω/ωp = 0.7, Lωp/vF = 100, τωp = 50,
kvF/ωp = 0.0001 and p = 0.

We have numerically computed G±l as well. A typical result is displayed in Figure 2,
where it is seen that G±l features a peak around l ∼ Lω̄/vF and tends to zero for l beyond.
These features are reminiscent of Ω(K±l , ω).
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Figure 2. Numerically computed G+
l (a) and G−l (b). Parameters are the same as for Figure 1.

3. Application to Plasma Waves

In this section, we examine the properties of VPWs and SPWs using the above derived
kinetic theory. We first look at VPWs. These are represented by the resonances determined
by ε±b (k, ω) =

∣∣∣ω̄2 −H±
∣∣∣ ≈ 0. Their frequencies and decay rates are obtained from the

eigenvalues ofH±. SinceH± is mostly diagonal with diagonal elements Ω2, the resonances

are then located where Ω2(K±l , ω) ≈ ω̄2. In Figure 3, we map out log
(∣∣∣Det

(
1

ω̄2−H±
)∣∣∣) ≈

∑l log
∣∣∣∣ 1

ω̄2−Ω2(K±l ,ω)

∣∣∣∣ in the ω-k plane at various values of the Fuchs parameter p. Since

this is a sum of the contributions from all resonances with the same k, it is not possible to
discern individual resonances unless L is extremely small so that the resonances are well
separated. The VPW resonances are largely concentrated around ω = 0 and ω = ωp, since
Ω(K±l , ω) sits around ωp for small l but goes to zero for large l.
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Figure 3. Maps of log
(∣∣∣Det

(
1

ω̄2I−H±
)∣∣∣) for Lωp/vF = 100 (a–d) and Lωp/vF = 500 (e–h).

τωp = 50.

As for SPWs, their dispersion and decay rates are determined by ε±s (k, ω) = 0. To vi-

sualize them, we numerically compute the quantity
∣∣∣ 1

ε+(k,ω)

∣∣∣2 +∣∣∣ 1
ε−(k,ω)

∣∣∣2 and map it out in
the ω-k plane, which features a peak at each SPW resonance for given k. The peak position
gives the SPW frequency ω±(k), while its half width at full maximum gives the decay
rate ν±(k). The maps are displayed in Figure 4 at various values of p, and example peaks
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are shown in Figure 5. The SPW resonances disperse along the bright lines in the map.
It is seen that the symmetric SPWs and the anti-symmetric ones are nearly degenerate,
i.e., ω+(k) ≈ ω−(k) for large kL � 1, whereby the surfaces of the film are decoupled.
As k decreases toward zero while still larger than 1/L, both ω+(k) and ω−(k) tend to
the universal value ωp/

√
2 regardless of the value of p. Indeed, ω±(k) exhibits virtually

no dependence on p. For kL > 1, ω±(k) increase linearly with increasing k. As well
known, this stands in contrast with the LDM, by which the frequency would approach the
universal constant.
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Figure 4. Maps of the quantity
∣∣∣ 1

ε+(k,ω)

∣∣∣2 +∣∣∣ 1
ε−(k,ω)

∣∣∣2 showing the dispersion of SPWs hosted on
a metal film of width L and surface roughness p. (a–d) are for Lωp/vF = 100 and (e–h) are for
Lωp/vF = 500. τωp = 50.
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Figure 5. SPW peaks for various combinations of k and p. (a–h): Lωp/vF = 100; (i–p): Lωp/vF = 500.
(a–d,i–l): symmetric modes; (e–h,m–p): anti-symmetric modes. τωp = 50.

While little affecting the SPW dispersion, surface roughness—as reflected in the value
of p—does significantly affect the spectral weight of the SPW resonances. The spectral
weight for a Lorentzian peak is given by its height. As seen in Figure 5, the peak height
quickly diminishes as p increases, and vanishes at p = 1. We found that the height roughly
goes as h0(1− p), where h0 depends on k.

We have extracted the full width at full maximum (FWFM) of the SPW resonance peaks
using Lorenzian fitting. It is emphasized that the peaks are nicely fitted by Lorentzians
for all values of k but the smallest, for which the as-obtained FWFM—which equals 2ν±—
should be taken with a grain of salt. The results are displayed in Figure 6 for a thin film
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(L = 100vF/ωp) alongside a thick one (L = 500vF/ωp). One may note that, for a not-so-
small k, the FWFM increases linearly with k and the resulting ν± can be well fitted by
ν±(k) ≈ ak + b. Here, both the coefficient a > 0 and the residual b vary with p. In Figure 6,
one may see that a decreases with p, yet b increases with p. However, b seems to be
bounded by 1/τ from below, i.e., ν±(k) ≥ τ−1. Such a linear increase is a characteristic
of Landau damping [77,78]. As k decreases toward zero, ν±(k) starts to deviate from the
linear dependence and rises up to a high value, which may be due to the strong coupling
between the surfaces. For thicker films, such coupling occurs for smaller k and, hence, the
linear dependence persists to a lower value of k, as can be seen by comparing the upper
two rows of panels to the lower two in Figure 6.
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Figure 6. FWHM of SPW resonance peaks at various values of p. (a–e,k–o): symmetric SPWs;
(f–j,p–t): anti-symmetric SPWs. τωp = 50.

In previous works [67,71,73,79,80], one of us studied SPWs for a semi-infinite metal
with a similar method. It was shown there that surface roughness could alter the SPW
frequency, in disagreement with the present finding. This discrepancy occurs because in
those works the term H′± in Equation (48) was neglected. The present work shows that
H′± is essential to obtain the correct SPW frequency, even though its elements are small.
Moreover,H′± represents surface scattering effects and contributes to the decay of SPWs.
Without this term, which is indeed negligible for VPWs, the decay rate ν± could go below
1/τ for a small k, as shown in those works.

4. Summary

In summary, we have provided a generic formalism for evaluating the charge density–
density response function for a metal film with the conductivity tensor as the only input.
We then applied the semi-classical model to calculate the conductivity, thereby establishing
a kinetic theory for the response function. The main advantage of the kinetic theory is
that it enables a simple way to study the effects of surface roughness through the Fuchs
parameter p.

As an application, we employed the theory to analyse the properties of SPWs and
VPWs. We found that the SPW dispersion does not depend much on p, whereas the decay
rate of SPWs increases mildly as p increases. The most significant effect of surface roughness
is seen in the spectral weight of the SPW resonances, which is drastically reduced as p
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increases. For specularly reflecting surfaces, the spectral weight vanishes, in accordance
with the fact that SPWs are not supported in this case.
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