Thickness-Dependent Sign Change of the Magnetoresistance in VTe2 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pop, E.; Sinha, S.; Goodson, K. Heat Generation and Transport in Nanometer-Scale Transistors. Proc. IEEE 2006, 94, 1587–1601. [Google Scholar] [CrossRef]
- Fuh, H.-R.; Chang, C.-R.; Wang, Y.-K.; Evans, R.; Chantrell, R.; Jeng, H.-T. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te). Sci. Rep. 2016, 6, 32625. [Google Scholar] [CrossRef] [PubMed]
- Montoya, E.; Heinrich, B.; Girt, E. Quantum well state induced oscillation of pure spin currents in Fe/Au/Pd (001) systems. Phys. Rev. Lett. 2014, 113, 136601. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; von Molnár, V.S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Shabbir, B.; Nadeem, M.; Dai, Z.; Fuhrer, M.S.; Xue, Q.-K.; Wang, X.; Bao, Q. Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies. Appl. Phys. Rev. 2018, 5, 041105. [Google Scholar] [CrossRef]
- Sagar, R.U.R.; Shabbir, B.; Hasnain, S.M.; Mahmood, N.; Zeb, M.H.; Shivananju, B.; Ahmed, T.; Qasim, I.; Malik, M.I.; Khan, Q.; et al. Large magnetotransport properties in mixed-dimensional van der Waals heterostructures of graphene foam. Carbon 2020, 159, 648–655. [Google Scholar] [CrossRef]
- Chen, P.; Pai, W.W.; Chan, Y.-H.; Sun, W.-L.; Xu, C.-Z.; Lin, D.-S.; Chou, M.-Y.; Fedorov, A.; Chiang, T.-C. Large quantum-spin-Hall gap in single-layer 1T′ WSe2. Nat. Commun. 2018, 9, 2003. [Google Scholar] [CrossRef]
- Xi, X.; Wang, Z.; Zhao, W.; Park, J.-H.; Law, K.T.; Berger, H.; Forró, L.; Shan, J.; Mak, K.F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2015, 12, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Musle, V.; Kumar, A.; Choudhary, S. Temperature dependent spin transport investigations in single layer VTe2. J. Alloy. Compd. 2018, 770, 345–349. [Google Scholar] [CrossRef]
- Vatansever, E.; Sarikurt, S.; Evans, R.F.L. Hysteresis features of the transition-metal dichalcogenides VX2(X = S, Se, and Te). Mater. Res. Express 2018, 5, 046108. [Google Scholar] [CrossRef]
- Pan, H. Electronic and Magnetic Properties of Vanadium Dichalcogenides Monolayers Tuned by Hydrogenation. J. Phys. Chem. C 2014, 118, 13248–13253. [Google Scholar] [CrossRef]
- Begunovich, L.V.; Kuklin, A.V.; Visotin, M.A.; Kuzubov, A.A.; Tomilin, F.N.; Tarasov, A.S.; Mikhalev, Y.G.; Avramov, P.V. Triple VTe2/graphene/VTe2 heterostructures as perspective magnetic tunnel junctions. Appl. Surf. Sci. 2020, 510, 145315. [Google Scholar] [CrossRef]
- Li, J.; Zhao, B.; Chen, P.; Wu, R.; Li, B.; Xia, Q.; Guo, G.; Luo, J.; Zang, K.; Zhang, Z.; et al. Synthesis of Ultrathin Metallic MTe2 (M = V, Nb, Ta) Single-Crystalline Nanoplates. Adv. Mater. 2018, 30, e1801043. [Google Scholar] [CrossRef]
- Wong, P.K.; Zhang, W.; Zhou, J.; Bussolotti, F.; Yin, X.; Zhang, L.; N’Diaye, A.T.; Morton, S.A.; Chen, W.; Goh, J.; et al. Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular Beam Epitaxy Grown Monolayer Vanadium Ditelluride. ACS Nano 2019, 13, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, J.; Li, J.; Wang, Y.; Peng, H.; Yu, P.; Duan, W.; Zhou, S. Evidence of charge density wave with anisotropic gap in a monolayer VTe2 film. Phys. Rev. B 2019, 100, 241404. [Google Scholar] [CrossRef]
- Coelho, P.M.; Lasek, K.; Nguyen Cong, K.; Li, J.; Niu, W.; Liu, W.; Oleynik, I.I.; Batzill, M. Monolayer Modification of VTe2 and Its Charge Density Wave. J. Phys. Chem. Lett. 2019, 10, 4987–4993. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Wu, X.; Shao, Y.; Qi, J.; Cao, Y.; Huang, L.; Liu, C.; Wang, J.-O.; Zheng, Q.; Zhu, Z.-L.; et al. Epitaxially grown monolayer VSe 2: An air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419–425. [Google Scholar] [CrossRef]
- Feng, J.; Biswas, D.; Rajan, A.; Watson, M.D.; Mazzola, F.; Clark, O.J.; Underwood, K.; Marković, I.; McLaren, M.; Hunter, A.; et al. Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe2. Nano Lett. 2018, 18, 4493–4499. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xue, Y.; Shi, J.-A.; Guzman, R.A.; Zhang, P.; Zhou, Z.; He, Y.; Bian, C.; Wu, L.; Ma, R.; et al. Observation of the Kondo Effect in Multilayer Single-Crystalline VTe2 Nanoplates. Nano Lett. 2019, 19, 8572–8580. [Google Scholar] [CrossRef]
- Shi, J.; Huan, Y.; Zhao, X.; Yang, P.; Hong, M.; Xie, C.; Pennycook, S.; Zhang, Y. Two-Dimensional Metallic Vanadium Ditelluride as a High-Performance Electrode Material. ACS Nano 2021, 15, 1858–1868. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Yang, Q.; Cao, Z.; Wang, Y.; Meng, S.; Sun, J.; Gao, H. Monolayer puckered pentagonal VTe2: An emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling. Nano Res. 2021, 15, 1486–1491. [Google Scholar] [CrossRef]
- Hossain, M.; Iqbal, M.A.; Wu, J.; Xie, L. Chemical vapor deposition and temperature-dependent Raman characterization of two-dimensional vanadium ditelluride. RSC Adv. 2021, 11, 2624–2629. [Google Scholar] [CrossRef]
- Lasek, K.; Coelho, P.M.; Zberecki, K.; Xin, Y.; Kolekar, S.K.; Li, J.; Batzill, M. Molecular Beam Epitaxy of Transition Metal (Ti-, V-, and Cr-) Tellurides: From Monolayer Ditellurides to Multilayer Self-Intercalation Compounds. ACS Nano 2020, 14, 8473–8484. [Google Scholar] [CrossRef]
- Won, D.; Kiem, D.H.; Cho, H.; Kim, D.; Kim, Y.; Jeong, M.Y.; Seo, C.; Kim, J.; Park, J.; Han, M.J.; et al. Polymorphic Spin, Charge, and Lattice Waves in Vanadium Ditelluride. Adv. Mater. 2020, 32, e1906578. [Google Scholar] [CrossRef]
- Dai, T.; Kang, S.; Ma, X.; Dang, S.; Li, H.; Ruan, Z.; Zhou, W.; Hu, P.; Li, S.; Wu, S. Multiple Transitions of Charge Density Wave Order in Epitaxial Few-Layered 1T′-VTe2 Films. J. Phys. Chem. C 2019, 123, 18711–18716. [Google Scholar] [CrossRef]
- Liu, M.; Wu, C.; Liu, Z.; Wang, Z.; Yao, D.-X.; Zhong, D. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738. [Google Scholar] [CrossRef]
- Ma, X.; Dai, T.; Dang, S.; Kang, S.; Chen, X.; Zhou, W.; Wang, G.; Li, H.; Hu, P.; He, Z.; et al. Charge Density Wave Phase Transitions in Large-Scale Few-Layer 1T-VTe2 Grown by Molecular Beam Epitaxy. ACS Appl. Mater. Interfaces 2019, 11, 10729–10735. [Google Scholar] [CrossRef]
- Fewster, P.F. X-ray Scattering from Semiconductors. X-ray Scatt. Semicond. 2003. [Google Scholar] [CrossRef]
- Ngabonziza, P.; Stehno, M.P.; Myoren, H.; Neumann, V.A.; Koster, G.; Brinkman, A. Gate-Tunable Transport Properties of In Situ Capped Bi2 Te3 Topological Insulator Thin Films. Adv. Electron. Mater. 2016, 2, 1600157. [Google Scholar] [CrossRef]
- Hoefer, K.; Becker, C.; Wirth, S.; Tjeng, L.H. Protective capping of topological surface states of intrinsically insulating Bi2Te3. AIP Adv. 2015, 5, 097139. [Google Scholar] [CrossRef]
- Sugawara, K.; Nakata, Y.; Fujii, K.; Nakayama, K.; Souma, S.; Takahashi, T.; Sato, T. Monolayer VTe2: Incommensurate Fermi surface nesting and suppression of charge density waves. Phys. Rev. B 2019, 99, 241404. [Google Scholar] [CrossRef]
- Ding, X.; Xing, J.; Li, G.; Balicas, L.; Gofryk, K.; Wen, H.-H. Crossover from Kondo to Fermi-liquid behavior induced by high magnetic field in 1T−VTe2 single crystals. Phys. Rev. B 2021, 103, 125115. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concepción, O.; Mulder, L.; Wielens, D.H.; Brinkman, A. Thickness-Dependent Sign Change of the Magnetoresistance in VTe2 Thin Films. Solids 2022, 3, 500-507. https://doi.org/10.3390/solids3030033
Concepción O, Mulder L, Wielens DH, Brinkman A. Thickness-Dependent Sign Change of the Magnetoresistance in VTe2 Thin Films. Solids. 2022; 3(3):500-507. https://doi.org/10.3390/solids3030033
Chicago/Turabian StyleConcepción, Omar, Liesbeth Mulder, Daan H. Wielens, and Alexander Brinkman. 2022. "Thickness-Dependent Sign Change of the Magnetoresistance in VTe2 Thin Films" Solids 3, no. 3: 500-507. https://doi.org/10.3390/solids3030033
APA StyleConcepción, O., Mulder, L., Wielens, D. H., & Brinkman, A. (2022). Thickness-Dependent Sign Change of the Magnetoresistance in VTe2 Thin Films. Solids, 3(3), 500-507. https://doi.org/10.3390/solids3030033