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Abstract: Here, a detailed mechanical characterization of five important anhydrous microporous alu-
minophosphate materials (VPI-5, ALPO-8, ALPO-5, ALPO-18, and ALPO-31) is performed using first
principles methods based on periodic density functional theory. These materials are characterized by
the presence of large empty structural channels expanding along several different crystallographic
directions. The elasticity tensors, mechanical properties, and compressibility functions of these mate-
rials are determined and analyzed. All of these materials have a common elastic behavior and share
many mechanical properties. They are largely incompressible at zero pressure, the compressibilities
along the three crystallographic directions being frequently smaller than 5 TPa−1. Notably, the
compressibilities of ALPO-5 and ALPO-31 along the three principal directions are smaller than this
threshold. Likewise, the compressibilities of ALPO-18 along two directions are smaller than 5 TPa−1.
All of the considered materials are shear resistant and ductile due to the large bulk to shear moduli
ratio. Furthermore, all of these materials have very small mechanical anisotropies. ALPO-18 exhibits
the negative linear compressibility (NLC) phenomenon for external pressures in the range P = 1.21 to
P = 2.70 GPa. The minimum value of the compressibility along the [1 0 0] direction, ka = −30.9 TPa−1,
is encountered for P = 2.04 GPa. The NLC effect in this material can be rationalized using the empty
channel structural mechanism. The effect of water molecule adsorption in the channels of ALPO-18
is assessed by studying the hydrated ALPO-18 material (ALPO-18W). ALPO-18W is much more
compressible and less ductile than ALPO-18 and does not present NLC effects. Finally, the effect
of aging and pressure polymorphism in the mechanical properties of VPI-5 and ALPO-5 is studied.
As hydration, aging leads to significant variations in the elastic properties of VPI-5 and increases
substantially its compressibility. For ALPO-5, pressure polymorphism has a small impact in its
elasticity at zero pressure but a large influence at high pressure.

Keywords: mechanical properties; compressibility; isotropy; ductility; negative linear compressibility;
anhydrous microporous aluminophosphate materials

1. Introduction

Aluminophosphate (ALPO) compounds are important synthetic microporous materi-
als whose structure is characterized by the presence of large structural channels expanding
along several different crystallographic directions [1]. Due to their high surface area and
pore volume, ALPO materials have been employed in a wide range of important appli-
cations [1]. However, the full tensorial elasticity of these compounds, determining their
behavior under stress and their mechanical performance in the applications, have sur-
prisingly not been studied. A detailed mechanical characterization of a representative
set of ALPO materials is performed in the present work. The set of materials considered
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includes VPI-5 [2–5], ALPO-8 [6,7], ALPO-5, [8,9] ALPO-18 [10,11], and ALPO-31 [12].
Specifically, the ALPO materials studied in this paper have been extensively used for com-
pound adsorption [13–23], encapsulation [13,18,24–26] and separation [27–29], synthesis
and catalysis [30–44], sensor fabrication [45], and energy storage and heat transformation
applications [46–49]. The most widely used ALPO material is ALPO-5, a highly versatile
material [14,18,19,23–26,30–36,40,45] which is very well-known for its applications in the
encapsulation of laser dyes [18,24] and as a host for the formation of single-walled carbon
nanotubes [30–36]. The range of applicability of aluminophosphate microporous solids
is being greatly extended from the well-known fields of absorption, catalysis, and ion
exchange. Important applications investigate their potential use as catalysts in the manu-
facture of chemicals, for increasingly selective acid and oxidation catalysis, in biomedical
applications as drug delivery, in devices that require special electronic or optical properties,
and as advanced functional materials [1].

The mechanical properties of natural and synthetic materials exhibiting high porosity
are extremely interesting from the point of view of applications, three important exam-
ples being those of zeolites [50–67], metal organic frameworks (MOF) [68–103], and 3D
carbon (3DC) materials [104–116]. Since their mechanical properties vary substantially
from one compound to other, they have a large spectrum of applications. Interesting
enhanced mechanical characteristics found for these materials include increased flexi-
bility [21,29,32,34,37,57–62] and responsible behavior upon guest molecule adsorption
and under temperature and pressure perturbations [56,57,67,69,76,98,99,110,111,117–128].
These properties make these materials exceptionally appropriate for mechanical
damping and mechanical energy storage [55,84–86,91,114,115,120], compound
adsorption [70,98,99,110,111,117–122], separation and storage [113,123,124], drug- delivery [125],
and sensing applications [45,116,120]. Furthermore, negative [64,71,73,74,77–79,92–101]
or zero [55] linear compressibility and negative [51,54,65,66,74,83,100] or zero [100] Pois-
son’s ratio phenomena have been encountered for many of these materials. The negative-
linear compressibility (NLC) [129–131], zero linear compressibility (ZLC) [132–135] and
negative Poisson’s ratio phenomena (NPR) [136–139] have multiple potential applica-
tions [129,131,133–135,139–148], the most well-known being the development of ultrasen-
sitive pressure sensors and actuators [129,139,140]. The relevance of the research on the
behavior of highly porous materials under the effect of pressure in materials science has
further increased since the application of high pressures to this type of materials has al-
lowed for the design of new advanced functional materials, thus expanding the limits of
conventional synthetic chemistry. Interesting amorphous materials, glasses, and crystalline
compounds have been obtained from pressure induced phase transitions and structural
rearrangements [149–164].

The enormous amount of research devoted to the synthesis and characterization of the
microporous aluminophosphate materials by X-ray, neutron and synchrotron diffraction,
NMR, and spectroscopic techniques and to the study of their thermal stability, thermody-
namic, and general physical and chemical properties is strongly in contrast with the poor
current mechanical characterization of these materials [165–172]. As far as we know, only
the compressibility and phase transitions induced by the application of isotropic pressures
in ALPO-5 [167], VPI-5 [168–170] and ALPO-17 [171,172] have been studied. Therefore, the
number of ALPO materials whose elasticity has been investigated is very small and the only
mechanical property considered is the compressibility. Although these studies provided
interesting results, the understanding of the mechanics of these materials is strongly defi-
cient. The importance of the knowledge of tensorial elastic properties of porous materials
is well-known in Earth sciences, where the effect of porosity on the elasticity of rocks and
minerals is an important topic of direct interest for applications in petroleum exploration
and production [173–178], clay swelling and radioactive nuclear waste storage [179–188],
and for characterizing mechanical instabilities as shear failures [183–188]. Knowledge of the
full elastic tensor is fundamental for assessing the mechanical stability of a given material or
structure [189–192]. In materials science and technology, mechanical engineering, the phar-
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maceutical industry, and many other branches of science [193–240], the knowledge of the
anisotropic mechanical properties, including the Young and shear moduli, Poisson’s ratio,
and elastic anisotropy measures, is fundamental for the assessment of many important prop-
erties of materials, composites and products as their hardness [193–197] ductility [198–204],
anisotropy [205–212] shear strength [74,82,215–217,225–227] compaction, tableting and milling
performance [88,217,218,221,222,227,234,235], durability and degradability [207,208,238,239],
and for the material screening and selection [217–223,228,239,240]. As shown in this paper,
the mechanical properties of different polymorphic forms of the same ALPO material vary
significantly. The knowledge of the elastic properties of the different polymorphic forms of
a given material is important for selecting the polymorph with the best performance for a
given application [217–223,226–231,234,236,237]. For microporous materials, the importance
of the analysis of the full tensorial elasticity has been highlighted by the study of the me-
chanical stability and mechanical properties of selected zeolites [51,54,60,61,64–66,241–243]
and MOFs [73,74,80,81,83,90,100,101]. A wide range of experimental methods, complemen-
tary to the use of diamond anvil cells (DAC) under hydrostatic pressures, such as elastic
wave propagation measurements [244–247], the inelastic X-ray scattering [242,243,248–251],
Brillouin scattering [53,54,252,253], nanoindentation [68,80,81,83,220,224,229–231,254–259]
and ellipsometry [81,260] techniques, impedance spectroscopy [261–264], real contact area
measurements [265], or methods based on DAC with non-hydrostatic pressures [168,264–270]
could be used to provide a more complete set of mechanical properties of ALPO materials. These
techniques have already been used in some cases for zeolites and MOFs [53,54,68,80,81,241,254].
Alternatively, force field [51,52,65,90,243,271–273] or accurate first principles
methods [60,61,64–66,68,71,87,100,101,264,274–276] could be employed. First-principles
calculations based on density functional theory represent a versatile, efficient, and accurate
method for calculating the mechanical properties of materials [60,61,100,101,264,270,277].

In the present work, first principles solid-state methodology is employed to deter-
mine the mechanical properties and compressibility functions of ALPO materials. From
a physical point of view, the increase in porosity in a given material should reduce its
bulk and shear moduli and isotropy, making the material weaker, more compressible, and
less shear resistant. However, these expectations are largely unsatisfied in many cases
and the mechanics of porous materials is highly variable. In the present work, anhydrous
ALPO compounds are surprisingly found to be very incompressible, ductile, and isotropic
materials. The ductility of these materials results from the high bulk to shear moduli
ratios [198,200], even although the shear moduli are quite significant. The incompressibility,
ductility, and isotropy of the anhydrous ALPO materials could make them advantageous in
many practical applications with respect to other more compressible, brittle, or anisotropic
materials due to their larger stability and controllability under operation. However, these
characteristics are shown to be highly dependent on the pressure and humidity conditions
and material aging. In recent works [100,101], the negative linear compressibility phe-
nomenon was found in some microporous metal organic frameworks due to the presence
of empty structural channels in their crystal structures. In these materials, the widening
of the channels along the direction of minimum compressibility under the effect of pres-
sure leads to an increase of the dimension of the crystal along this direction. This effect,
however, could or could not be found in multi-channel materials due to compensation
effects associated with the distinct compressional behavior of the different channels along
the several crystallographic directions. However, the present results show that the NLC
phenomenon is indeed observed in ALPO-18 material in which the compressional behavior
of its largest channels is dominant and leads to a substantial NLC effect along the [1 0 0]
crystallographic direction.

2. Methods

The mechanical properties and compressibility functions of the ALPO materials stud-
ied [2–12], were determined using first principles solid-state methods based on periodic
density functional theory, employing plane wave basis sets and pseudopotential functions
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for the description of the inner atomic electrons [278]. All of the computational works
were carried out utilizing the Cambridge Serial Total Energy Program (CASTEP) computer
code [279] interfaced with the Materials Studio program suite [280]. The main energy-
density functional used in this work was the specialized version of Perdew-Becke-Ernzerhof
(PBE) functional [281] for solid materials, PBEsol [282]. The PBE functional supplemented
with D2 Grimme empirical correction [283] was also employed to assess the importance
of the dispersion interactions in the structures and elastic properties of the selected AL-
POs and for the description of ALPO-18 hydrated material (ALPO-18W) [11]. The good
performance of PBEsol functional for anhydrous materials is well documented [284–290].
The pseudopotential functions utilized in this work were norm-conserving pseudopoten-
tials [291] provided by the CASTEP program. Further computational details and material
data of the compounds studied are given in Table S1 of the Supplementary Materials (SM).
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [292] was employed to optimize
completely all of the atomic positions and unit cell parameters of the studied materials.
The crystal structure optimizations were carried out, using the experimental structures as
starting point, with stringent convergence criteria. The thresholds in the variation of the
total energy, maximum atomic force, maximum atomic displacement and maximum stress
are 2.5× 10−6 eV/atom, 0.005 eV/Å, 2.5× 10−4 Å, and 0.0025 GPa, respectively. The soft-
ware REFLEX included in the Materials Studio program package [279] was used to derive
the X-ray powder diffraction patterns [293] of the selected ALPOs from the experimental
and computed crystal structures using CuKα radiation (λ = 1.540598 Å).

The elastic constants, the matrix elements of the stiffness tensor [294], needed to cal-
culate the mechanical properties of the materials considered and to study the mechanical
stability of their crystal structures, were determined from stress-strain relationships using
the finite deformation method (FDM) [295]. The theory of elasticity in solid state physics, is
a mathematically well-defined theory which relies on the quantum mechanical definition of
the stress tensor [296]. In the FDM, the individual elastic constants are determined from the
stress tensors resulting from the response of the material to finite programmed symmetry-
adapted strains [295]. The FDM has been satisfactorily utilized to describe the elastic response
of many solid materials, including uranyl-containing compounds [286,288,289,297–306],
organic crystals [307–311], and metal-organic compounds [100,101,290,312–314]. The re-
liability of this method has been confirmed recently by the experimental verification of
the negative area compressibility effect in silver oxalate [314] which was predicted us-
ing the first principles methodology [313]. The full set of elastic constants can also be
computed using other methods [315–323] such as density functional perturbation theory
(DFPT) [315–318] or the well-known strain or stress fluctuation formalisms from both
Monte Carlo and molecular dynamics simulations [319–323]. The ElAM computer pro-
gram [324] was employed to generate the tridimensional representations of the mechanical
properties as a function of the orientation of the applied strain.

3. Results and Discussion
3.1. Crystal Structures

The computed crystal structures of VPI-5, ALPO-8 and ALPO-31 are shown in Figure 1
and the structures of ALPO-18 and ALPO-18W are displayed in Figure 2. The structure of
VPI-5 [2–5], consists of alternating AlO4 and PO4 tetrahedra [325] which share vertices to
form four-and six-membered rings (4-MR and 6-MR). The four-and six-membered rings are
linked together in the (0 0 1) plane to form exceptionally large hexagonal 18-membered rings
(18-MR) with horizontal and vertical dimensions ω = 13.84 Å and h = 15.84 Å measured
as the distances between opposite oxygen atoms (see Figure 1A) These rings delimitate
empty structural channels expanding along [0 0 1], the 18-MR channels having hexagonal
cross-sections. The corresponding horizontal and vertical pore apertures for the 18-MR
channels can obtained by discounting two times the oxygen ionic radii (R(O) = 1.33 Å),
pω = 11.2 Å, and ph = 13.2 Å.
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The crystal structure of ALPO-8 [6,7], is formed by alternating corner sharing AlO4
and PO4 tetrahedra forming 4-, 6- and 14-membered rings as shown in Figure 1B. The
14-membered rings have a distorted rectangular shape and have horizontal and vertical
dimensions of ω = 11.40 Å and h = 10.55 Å (pore apertures of 8.7 and 7.9 Å). VPI-5 and
ALPO-8 belong to a group of molecular sieves with framework structures containing very
large channels. The term “extra-large pore” material was coined by Davis et al. [326] to
specify microporous materials having channels with apertures larger than those of the
classical 12-MR rings. ALPO-31 [12] contains one-dimensional channels circumscribed by
4-, 6-and 12-tetrahedrally coordinated atoms, that is, 4-, 6-and 12-membered rings in [0
0 1] plane (Figure 1C), the latter being nearly circular and having a diameter of d = 7.9 Å
(pore aperture pd = 5.2 Å). ALPO-5,8-9 as ALPO-31, contains 4-, 6-and 12-MR channels
expanding along [0 0 1], the latter having a nearly circular cross section with a diameter of
d = 10.1 Å (pore aperture pd = 7.4 Å).

As shown in Figure 2A, the structure of ALPO-18 [10,11] exhibits 4-and 8-membered
rings in (0 0 1) plane. The 8-membered nearly circular rings, have a diameter of d = 6.5 Å.
A perspective view of the 8-MR channels is plotted in Figure 2B. The ALPO materials have
commonly also channels expanding along several directions. While these channels have
generally smaller apertures, the case of ALPO-18 is noticeable since also large channels are
observed when the material is viewed from other directions. As can be observed in the
second and third subfigures of Figure 2A, large 8-membered rings are also observed when
the structure of ALPO-18 is seen from [1 0 0] and [1 1 0] directions. Figure 2C shows the
crystal structure of hydrated ALPO-18 (ALPO-18W). Two water molecules per formula
unit are adsorbed within the channels of ALPO-18. The structure of ALPO-18 changes
significantly upon hydration. The space symmetry of this material changes from monoclinic
(C2/c) to triclinic (P1). In fact, some of the aluminum atoms change their coordination
environment from tetrahedral to octahedral to account for the presence of additional water
molecules [11].

The computed lattice parameters for VPI-5, ALPO-8, ALPO-5, ALPO-18, ALPO-18W,
and ALPO-31 along with the experimental parameters are reported in Table 1. The average
difference of the computed and experimental unit cell volumes is quite good, 2.5 and 2.3%,
for the PBE and PBEsol functionals. The impact of introduction of dispersion corrections
in these materials is relatively small and the average difference of the computed and
experimental unit cell volumes is reduced by only 0.3%. Since the improvement due to
the inclusion of dispersion corrections was small, the PBEsol functional was used for all
anhydrous materials to retain the ab initio character of the computations. Additional
details about the impact of including dispersion interactions in the calculations will be
given in Section 3.6.3. Dispersion corrections were only included for ALPO-18W since, as
it is well-known [100,288–290], they significantly improve the hydrogen bond geometries
in the structures of hydrated materials. The X-ray diffraction patterns of VPI-5, ALPO-
8, ALPO-5, ALPO-18, and ALPO-31, generated from the computed and experimental
structures [4,6,9,10,12], are compared in Figure 3. The agreement is excellent. A detailed
comparison of the positions of the main reflections in the X-ray diffraction patterns for
these ALPO materials is provided in Tables S2–S6 of the SM. Similarly, Tables S7–S11 of the
SM provide a comparison of the computed and experimental interatomic distances in the
crystal structures of these materials. The computed PO and AlO average distances are 1.52
and 1.72 Å, respectively, which are in good agreement with the experimental values of 1.51
and 1.70 Å.



Solids 2022, 3 463

Table 1. Computed and experimental unit-cell parameters of the selected aluminophosphate materials.

Parameter α (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) Vol. (Å
3
) ρ (g/cm3)

VPI-5 (P63cm)

PBE 18.5665 18.5665 8.5330 90.0 90.0 120.0 2547.3630 1.431
PBE + Disp 18.5253 18.5253 8.5234 90.0 90.0 120.0 2533.2330 1.439

PBEsol 18.5430 18.5430 8.5398 90.0 90.0 120.0 2542.9495 1.433
Exp [4] 18.6005(6) 18.6005(6) 8.3664(4) 90.0 90.0 120.0 2506.7931 1.455

ALPO-8 (Cmc21)

PBE 33.5899 14.7280 8.5334 90.0 90.0 90.0 4221.5557 1.727
PBE + Disp 33.3954 14.6915 8.5222 90.0 90.0 90.0 4181.1994 1.744

PBEsol 33.5175 14.7223 8.5398 90.0 90.0 90.0 4213.9746 1.730
Exp [6] 33.29(2) 14.76(2) 8.257(4) 90.0 90.0 90.0 4057.1628 1.797

ALPO-5 (P6cc)

PBE 13.8671 13.8671 8.5350 90.0 90.0 120.0 1421.3670 1.710
PBE + Disp 13.8401 13.8401 8.5261 90.0 90.0 120.0 1414.3565 1.718

PBEsol 13.8645 13.8645 8.5382 90.0 90.0 120.0 1421.3642 1.710
Exp [9] 13.718(1) 13.718(1) 8.4526(5) 90.0 90.0 120.0 1377.5347 1.765

ALPO-18 (C2/c)

PBE 13.5704 12.6773 18.4699 90.0 90.01 90.0 3177.4870 1.529
PBE + Disp 13.5561 12.6613 18.4442 90.0 90.02 90.0 3165.7084 1.535

PBEsol 13.5788 12.6705 18.4592 90.0 90.01 90.0 3175.9001 1.530
Exp [10] 13.7114(1) 12.7314(1) 18.5703(1) 90.0 90.01(1) 90.0 3241.7302 1.500

ALPO-18 W (P1)

PBE 9.3276 9.4113 18.3376 88.24 91.77 88.97 1607.9391 1.957
PBE + Disp 9.2582 9.3513 18.2448 87.99 91.81 89.32 1577.6793 1.995

PBEsol 9.2487 9.3723 18.2507 88.66 91.93 88.54 1580.1187 1.992
Exp [11] 9.251 9.362 18.428 90.89 96.35 90.87 1585.7971 1.985

ALPO-31 (R
¯
3h)

PBE 20.9724 20.9724 5.0778 90.0 90.0 120.0 1934.2242 1.884
PBE + Disp 20.9230 20.9230 5.0683 90.0 90.0 120.0 1921.5046 1.897

PBEsol 20.9635 20.9635 5.0767 90.0 90.0 120.0 1932.1567 1.886
Exp [12] 20.827(1) 20.827(1) 5.003(1) 90.0 90.0 120.0 1879.3798 1.940



Solids 2022, 3 464

Solids 2022, 3, FOR PEER REVIEW 7 
 

 

Table 1. Computed and experimental unit-cell parameters of the selected aluminophosphate  

materials. 

Parameter 𝜶 (Å) 𝒃 (Å) 𝒄 (Å) 𝜶 (𝐝𝐞𝐠) 𝜷 (𝐝𝐞𝐠) 𝜸(𝐝𝐞𝐠) Vol. (Å𝟑) 𝝆(𝐠/𝐜𝐦𝟑) 

VPI-5 (𝑷𝟔𝟑𝒄𝒎) 

PBE 18.5665 18.5665 8.5330 90.0 90.0 120.0 2547.3630 1.431 

PBE + Disp 18.5253 18.5253 8.5234 90.0 90.0 120.0 2533.2330 1.439 

PBEsol 18.5430 18.5430 8.5398 90.0 90.0 120.0 2542.9495 1.433 

Exp [4] 18.6005(6) 18.6005(6) 8.3664(4) 90.0 90.0 120.0 2506.7931 1.455 

ALPO-8 (𝑪𝒎𝒄𝟐𝟏) 

PBE 33.5899 14.7280 8.5334 90.0 90.0 90.0 4221.5557 1.727 

PBE + Disp 33.3954 14.6915 8.5222 90.0 90.0 90.0 4181.1994 1.744 

PBEsol 33.5175 14.7223 8.5398 90.0 90.0 90.0 4213.9746 1.730 

Exp [6] 33.29(2) 14.76(2) 8.257(4) 90.0 90.0 90.0 4057.1628 1.797 

ALPO-5 (𝑷𝟔𝒄𝒄) 

PBE 13.8671 13.8671 8.5350 90.0 90.0 120.0 1421.3670 1.710 

PBE + Disp 13.8401 13.8401 8.5261 90.0 90.0 120.0 1414.3565 1.718 

PBEsol 13.8645 13.8645 8.5382 90.0 90.0 120.0 1421.3642 1.710 

Exp [9] 13.718(1) 13.718(1) 8.4526(5) 90.0 90.0 120.0 1377.5347 1.765 

ALPO-18 (𝑪𝟐/𝒄) 

PBE 13.5704 12.6773 18.4699 90.0 90.01 90.0 3177.4870 1.529 

PBE + Disp 13.5561 12.6613 18.4442 90.0 90.02 90.0 3165.7084 1.535 

PBEsol 13.5788 12.6705 18.4592 90.0 90.01 90.0 3175.9001 1.530 

Exp [10] 13.7114(1) 12.7314(1) 18.5703(1) 90.0 90.01(1) 90.0 3241.7302 1.500 

ALPO-18W (𝑷𝟏) 

PBE 9.3276 9.4113 18.3376 88.24 91.77 88.97 1607.9391 1.957 

PBE + Disp 9.2582 9.3513 18.2448 87.99 91.81 89.32 1577.6793 1.995 

PBEsol 9.2487 9.3723 18.2507 88.66 91.93 88.54 1580.1187 1.992 

Exp [11] 9.251 9.362 18.428 90.89 96.35 90.87 1585.7971 1.985 

ALPO-31 (𝑹𝟑̅𝒉) 

PBE 20.9724 20.9724 5.0778 90.0 90.0 120.0 1934.2242 1.884 

PBE + Disp 20.9230 20.9230 5.0683 90.0 90.0 120.0 1921.5046 1.897 

PBEsol 20.9635 20.9635 5.0767 90.0 90.0 120.0 1932.1567 1.886 

Exp [12] 20.827(1) 20.827(1) 5.003(1) 90.0 90.0 120.0 1879.3798 1.940 

 

Figure 3. X-ray diffraction patterns of (A) VPI-5; (B) ALPO-8; (C) ALPO-5; (D) ALPO-18; and (E) 

ALPO-31, derived from the computed and experimental [4,6,9,10,12] crystal structures using CuKα 

radiation (λ = 1.540598 Å). 

Figure 3. X-ray diffraction patterns of (A) VPI-5; (B) ALPO-8; (C) ALPO-5; (D) ALPO-18; and
(E) ALPO-31, derived from the computed and experimental [4,6,9,10,12] crystal structures using
CuKα radiation (λ = 1.540598 Å).

3.2. Stiffness Tensors and Mechanical Stability

The computed stiffness tensors of VPI-5, ALPO-8, ALPO-5, ALPO-18 and ALPO-31
are provided in Table 2. The number of non-vanishing and non-equivalent elements in the
matrix representation of the symmetric stiffness tensor depends on the space symmetry
of the corresponding crystal structure [192,325]. The P63cm and P6cc structures of VPI-5
and ALPO-5 are hexagonal and have nine non-vanishing elastic constants in their stiffness
matrices, five of which are non-equivalent (C11, C33, C44, C12, C13). ALPO-8 is orthorhombic
(Cmc21) and, therefore, its stiffness tensor has nine non-vanishing elements all of which
are non-equivalent. The number of nonvanishing elastic constants for the monoclinic
structure of ALPO-18 (C2/c), increases to thirteen due to its lower symmetry. For ALPO-31
(trigonal, R3h) there are fifteen non-vanishing elastic constants, seven of which are non-
equivalent (C11, C33, C44, C12, C13, C14, C15). A crystal structure is mechanically stable, if
an only if, the Born mechanical stability conditions are fulfilled [189–192]. The generic
Born mechanical stability condition can be written in mathematical form as an algebraic
condition on the eigenvalues of the matrix representation of the stiffness tensor: the elastic
matrix must be positive definite, that is, all its eigenvalues must be greater than zero [192].
A numerical diagonalization of the stiffness tensors of all of the ALPO materials was carried
out. Since all of the elastic matrix eigenvalues for all materials were positive, they are
mechanically stable.
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Table 2. Computed elastic constants of selected aluminophosphate materials. All of the values are
given in GPa.

ij

Cij

VPI-5 ALPO-8 ALPO-5 ALPO-18 ALPO-31

P63cm Cmc21 P6cc C2/c R
¯
3h

11 85.17 82.23 124.23 105.68 109.15
22 85.17 102.00 124.23 98.33 109.15
33 158.27 187.62 192.56 105.82 138.05
44 19.10 23.94 26.24 13.99 30.81
55 19.10 25.96 26.24 18.71 30.81
66 21.79 23.35 28.22 28.90 23.01
12 41.59 53.01 67.80 68.62 63.13
13 43.66 48.05 59.70 57.17 61.58
14 0.0 0.0 0.0 0.0 5.76
15 0.0 0.0 0.0 −2.42 0.46
16 0.0 0.0 0.0 0.0 0.0
23 43.66 51.17 59.70 52.13 61.58
24 0.0 0.0 0.0 0.0 −5.76
25 0.0 0.0 0.0 −1.73 −0.46
26 0.0 0.0 0.0 0.0 0.0
34 0.0 0.0 0.0 0.0 0.0
35 0.0 0.0 0.0 3.16 0.0
36 0.0 0.0 0.0 0.0 0.0
45 0.0 0.0 0.0 0.0 0.0
46 0.0 0.0 0.0 −1.21 −0.46
56 0.0 0.0 0.0 0.0 5.76

3.3. Mechanical Properties

The computed stiffness tensors were employed to determine the mechanical properties
of polycrystalline aggregates of the considered ALPO materials using the Voigt [327],
Reuss [328] and Hill [329] schemes. The corresponding formulas for these approximations
may be found in several sources (for example, Weck et al. [330]). The results obtained using
the three approaches were quite similar for all materials. As was found in many previous
papers [100,101,286,288,290,298–313,331], the values of the calculated bulk moduli in the
Reuss approximation gave the best approximation to the single crystal bulk moduli of
these materials. The mechanical properties for VPI-5, ALPO-8, ALPO-5, ALPO-18 and
ALPO-31 in the Reuss approximation are given in Table 3. As can be observed, these
five materials are characterized by very small elastic anisotropies, since the universal
anisotropy indices (AU) [212] are 0.66, 0.83, 0.49, 0.46, and 0.36, respectively. The similarity
of the computed mechanical properties in the Voigt, Reuss, and Hill approximations is a
direct consequence of the low mechanical anisotropy. For crystalline systems with strong
anisotropy, large differences should be expected [286,330,331]. The single-crystal bulk
moduli, Bsc, reported in Table 3, were not determined from fits of calculated pressure-
volume data to high-order Birch-Murnaghan equations of state [332], as was customary in
previous works [100,101,286,288,290,298–313,331], since the fitting parameters were rather
dependent on the range of pressure employed. Similar difficulties were found in the study
of the compressibility of several minerals [333]. The computed bulk moduli were derived
from the compressibility functions reported in Sections 3.5 and 3.6, which were determined
from accurate six order polynomial fits to pressure-volume data in the pressure range from
0 to 5 GPa.
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Table 3. Computed mechanical properties of selected aluminophosphate materials. The values of the
bulk, shear and Young’s moduli (B, G and E ) are given in in GPa. The single-crystal bulk moduli
(Bsc ) are also given in the last row of the table for comparison.

Property
VPI-5 ALPO-8 ALPO-5 ALPO-18 ALPO-31

P63cm Cmc21 P6cc C2/c R
¯
3h

B Bulk modulus 60.49 ± 0.56 68.27 ± 0.87 88.22 ± 0.60 73.56 ± 0.95 80.17 ± 1.16
G Shear modulus 22.67 25.56 30.24 19.34 26.41
E Young’s modulus 60.46 68.18 81.43 53.35 71.39
ν Poisson’s ratio 0.33 0.33 0.35 0.38 0.35
D Ductility index 2.66 2.67 2.92 3.80 3.04
DI Intrinsic ductility index 0.37 0.43 0.51 1.02 0.45
H Hardness index 0.94 1.22 1.13 0.63 0.70

AU Universal anisotropy 0.66 0.83 0.49 0.46 0.36
Bsc Bulk modulus (SC) 60.74 ± 0.81 72.60 ± 0.42 87.27 ± 1.36 73.85 ± 2.92 90.14 ± 1.56

The computed values of the bulk modulus, B, the inverse of compressibility, are
significant: 60.49, 68.27, 88.22, 73.56, and 80.17 GPa for VPI-5, ALPO-8, ALPO-5, ALPO-
18 and ALPO-31, respectively. This means that these materials are very incompressible
under the effect of external isotropic pressures. ALPOs are also resistant with respect to
the application to uniaxial pressures since the values of the Young’s moduli, 60.46, 68.18,
81.43, 53.35, 71.39 GPa, respectively, are substantial. The shear modulus, G, represents
the resistance to plastic deformation. The calculated values of G, 22.67, 25.56, 30.24, 19.34,
and 26.41 GPa, respectively, are quite large is comparison with the values found for other
microporous materials [53,54,64,66,72–75,80–82,100]. Therefore, ALPOs are resistant with
respect to the application of external uniform and uniaxial pressures and shear stresses.

The Cauchy pressure term, defined in terms of the elastic constants as CP = (C11 − C44),
was proposed by Pettifor [199] as an indicator of the angular character of atomic bond-
ing. The values of CP are positive and large, 22.49, 29.07, 41.56, 54.63, and 32.32 GPa,
for VPI-5, ALPO-8, ALPO-5, ALPO-18, and ALPO-31, respectively, reflecting a largely
angular bonding in these materials. The value of the Cauchy pressure term is particularly
large for ALPO-18. CP is also related with the brittle/ductile character of
crystals [198,200–204]. Large values of CP are associated with highly ductile materials. The
ductility index, D = B/G, was proposed by Pugh [198], as a standard measure of the duc-
tility of a material. A value of D = 1.75, separates the brittle and ductile materials [201,208].
All of the computed values of D, 2.66, 2.67, 2.92, 3.80, and 3.04, for VPI-5, ALPO-8, ALPO-
5, ALPO-18, and ALPO-31, respectively, are much larger than 1.75. Therefore, the five
materials are ductile. An improved ductility criterium has been provided recently by
Niu et al. [200]. In their work, these authors noticed that the intrinsic ductility index, de-
fined as the ratio of the Cauchi pressure term to the Young’s modulus, DI = (C11 − C44)/E,
is strongly correlated hyperbolically with the Pugh’s ratio. As shown in Table 3, the values
obtained for the intrinsic ductility index for the ALPO materials considered ranges from
1.02 to 0.18 and are in the same range as that for common metals [200]. The value of DI

for ALPO-18, 1.02, is close to that of Pt (0.98 ± 0.01) or Nb (1.00 ± 0.01). For ALPO-5,
DI = 0.51, coincides with that of K (0.51 ± 0.01). The intrinsic ductility indices of ALPO-31
and ALPO-8, 0.45, and 0.43, respectively, are close to the ductility for Al (0.44 ± 0.04).
Finally, the value of DI for VPI-5, 0.37, is near to that of Cu (0.38 ± 0.04).

The Vickers hardness (H) measures the resistance of a given material to indentation. A
series of representative values of H for interesting materials may be obtained from several
published papers [193–197]. As a reference, talc and halite (H = 0.26 and 0.30) are very
weak, calcite and sphalerite (H = 1.5 and 1.8) are weak, fluorite and apatite (H = 3.0 and 5.1)
have medium hardness, quartz and zirconia (H = 11.1 and 13.0) are hard and corundum
and diamond (H = 21.5 and 96.0) are very hard. The computed values of H for VPI-5,
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ALPO-8, ALPO-5, ALPO-18, and ALPO-31 are 0.94, 1.22, 1.13, 0.63, and 0.70, respectively,
which correspond to relatively weak materials.

3.4. Mechanical Properties as a Function of the Orientation of the Applied Strain

In the previous subsection, a general view of the elasticity of the ALPO materials
was achieved and average values of the elastic moduli, Poisson’s ratios, and ductility,
hardness, and elastic anisotropy indices were reported. A more detailed understanding
of the elasticity of these materials is provided by the analysis of the variation of the
mechanical properties with the strain orientation. Three dimensional representations of
the dependence of the elastic moduli and Poisson’s ratios for VPI-5, ALPO-8, ALPO-5,
ALPO-18 and ALPO-31 with respect to the direction of the applied strain are displayed in
Figures 4–8, respectively. These figures explain the low elastic anisotropy of these materials
since all elastic moduli have a smooth variation with respect to the direction of the applied
strain. The elastic properties of VPI-5 and ALPO-5 (with hexagonal space symmetries)
show a nice orientational dependence which is axially symmetric around z axis.
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Figure 4. (A) Mechanical properties of VPI-5 (P63cm) as a function of the orientation of the applied
strain: k-compressibility, E-Young modulus, G-Maximum shear modulus, and ν-Maximum Poisson’s
ratio; (B) bidimensional projections on the xy plane; (C) bidimensional projections on the xz plane.
The projections of the surface of minimum shear modulus are also displayed using green color in
panels (B,C).
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Figure 5. (A) Mechanical properties of ALPO-8 (𝐶𝑚𝑐21) as a function of the orientation of the ap-

plied strain: 𝑘-compressibility, 𝐸-Young modulus, 𝐺-Maximum shear modulus, and 𝜈-Maximum 
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Figure 5. (A) Mechanical properties of ALPO-8 (Cmc21) as a function of the orientation of the applied
strain: k-compressibility, E-Young modulus, G-Maximum shear modulus, and ν-Maximum Poisson’s
ratio; (B) bidimensional projections on the xy plane; (C) bidimensional projections on the xz plane.
The projections of the surface of minimum shear modulus are also displayed using green color in
panels (B,C).
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Figure 6. (A) Mechanical properties of ALPO-5 (𝑃6𝑐𝑐) as a function of the orientation of the applied 

strain: 𝑘-compressibility, 𝐸-Young modulus, 𝐺-Maximum shear modulus, 𝜈-Maximum Poisson’s 

ratio; (B) bidimensional projections on the 𝑥𝑦 plane; (C) bidimensional projections on the 𝑥𝑧 plane. 

The projections of the surface of minimum shear modulus are also displayed using green color in 
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Figure 6. (A) Mechanical properties of ALPO-5 (P6cc) as a function of the orientation of the applied
strain: k-compressibility, E-Young modulus, G-Maximum shear modulus, ν-Maximum Poisson’s
ratio; (B) bidimensional projections on the xy plane; (C) bidimensional projections on the xz plane.
The projections of the surface of minimum shear modulus are also displayed using green color in
panels (B,C).
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Figure 7. (A) Mechanical properties of ALPO-18 (𝐶2/𝑐) as a function of the orientation of the ap-

plied strain: 𝑘-compressibility, 𝐸-Young modulus, 𝐺-Maximum shear modulus, and 𝜈-Maximum 

Poisson’s ratio; (B) bidimensional projections on the 𝑥𝑦 plane; (C) bidimensional projections on the 

𝑥𝑧 plane. The projections of the surface of minimum shear modulus are also displayed using green 

color in panels (B,C). 

Figure 7. (A) Mechanical properties of ALPO-18 (C2/c) as a function of the orientation of the applied
strain: k-compressibility, E-Young modulus, G-Maximum shear modulus, and ν-Maximum Poisson’s
ratio; (B) bidimensional projections on the xy plane; (C) bidimensional projections on the xz plane.
The projections of the surface of minimum shear modulus are also displayed using green color in
panels (B,C).
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Figure 8. (A) Mechanical properties of ALPO-31 (𝑅3̅ℎ) as a function of the orientation of the applied 

strain: 𝑘-compressibility, 𝐸-Young modulus, 𝐺-Maximum shear modulus, and 𝜈-Maximum Pois-

son’s ratio; (B) bidimensional projections on the 𝑥𝑦 plane; (C) bidimensional projections on the 𝑥𝑧 

plane. The projections of the surface of minimum shear modulus are also displayed using green 

color in panels (B,C). 

Figures 4–8 (𝑘 and 𝐸) show that there are not preferred directions along which the 

compressibility and Young’s modulus are negative, near to zero or particularly small. 

Therefore, ALPOs are very incompressible in all directions and there are not clear direc-

tions for material fracture when isotropic or uniaxial pressures are applied. Likewise, 

these figures show a smooth directional dependence of the shear modulus (𝐸), without 

Figure 8. (A) Mechanical properties of ALPO-31 (R3h) as a function of the orientation of the applied
strain: k-compressibility, E-Young modulus, G-Maximum shear modulus, and ν-Maximum Poisson’s
ratio; (B) bidimensional projections on the xy plane; (C) bidimensional projections on the xz plane.
The projections of the surface of minimum shear modulus are also displayed using green color in
panels (B,C).

Figures 4–8 (k and E) show that there are not preferred directions along which the
compressibility and Young’s modulus are negative, near to zero or particularly small.
Therefore, ALPOs are very incompressible in all directions and there are not clear directions
for material fracture when isotropic or uniaxial pressures are applied. Likewise, these



Solids 2022, 3 472

figures show a smooth directional dependence of the shear modulus (E), without special
directions associated with small values of this property (see the projections of the surfaces
of minimum shear modulus). Therefore, there are not crystallographic planes along which
shear failure can be predicted. The presence of shear slippages imposed serious limitations
to the mechanical properties of some microporous materials including MOFs [72,75,80–82]
and carbon nanotube composites [215,216]. No signs of auxeticity (negative Poisson’s
ratios [334]) were found for any of the materials investigated since the Poisson’s ratios
are always positive for all strain directions. This is in contrast with the elasticity of other
microporous materials (for example for zeolites), for which negative or zero Poisson’s ratios
were frequently encountered [51–54,64–67].

3.5. Compressibility Functions

The crystal structures of VPI-5, ALPO-8, ALPO-5, ALPO-18, and ALPO-31 were fully
optimized under different external isotropic pressures in the pressure range from −0.5
to 5.0 GPa. The computed unit cell volumes and lattice parameters for VPI-5, ALPO-
8, ALPO-5, ALPO-31 and ALPO-18 at different pressures are plotted in Figures 9–13,
respectively. The calculated volumetric compressibilities, kV = −1/V·(∂V/∂P)P, and the
linear compressibilities, kl = −1/l·(∂l/∂P)P (l = a, b, c) along the three crystallographic
directions between P = 0.0 and P = 4.0 GPa are also displayed in these figures. The values
of the calculated unit cell volumes, lattice parameters and compressibilities are given in
Tables S12–S21. The structure of ALPO-18 was also optimized under the effect of different
uniaxial pressures (see Figure 14 and Tables S22 and S23). The calculated compressibilities
of these materials at zero pressure are collected in Table 4. From this table, it follows that
the volumetric compressibilities at zero pressure are very small, the most compressible
material being VPI-5 (kV = 16.46 TPa−1) and the less compressible one being ALPO-31
(kV = 11.06 TPa−1).
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Figure 9. Computed unit cell volume (A) and lattice parameters 𝑎 = 𝑏 (B) and 𝑐 (C) of VPI-5 

(𝑃63𝑐𝑚) for different isotropic pressures. The volumetric compressibilities (D) and the linear com-

pressibilities along 𝑎 (E) and 𝑐 (F) directions are shown in the panels of the right-hand side. The 

blue horizontal lines in panels (E,F) mark 𝑘𝑙 = 10 TPa−1. 

Figure 9. Computed unit cell volume (A) and lattice parameters a = b (B) and c (C) of VPI-5 (P63cm )
for different isotropic pressures. The volumetric compressibilities (D) and the linear compressibilities
along a (E) and c (F) directions are shown in the panels of the right-hand side. The blue horizontal
lines in panels (E,F) mark kl = 10 TPa1.
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Figure 10. Computed unit cell volume (A) and lattice parameters (B–D) of ALPO-8 under different
external isotropic pressures. The volumetric compressibilities (E) and the linear compressibilities
along a, b and c (F–H) directions are shown in the panels of the right-hand side. The blue horizontal
lines in panels (F–H) mark kl = 10.0 TPa−1.
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Figure 12. Computed unit cell volume (A) and lattice parameters 𝑎 = 𝑏 (B) and 𝑐 (C) of ALPO-31 
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Figure 11. Computed unit cell volume (A) and lattice parameters a = b (B) and c (C) of ALPO-5 (P6cc )
for different isotropic pressures. The volumetric compressibilities (D) and the linear compressibilities
along a (E) and c (F) directions are shown in the panels of the right-hand side. The blue horizontal
lines in panels (E,F) mark kl = 10.0 TPa−1.
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Figure 12. Computed unit cell volume (A) and lattice parameters a = b (B) and c (C) of ALPO-31 (R3h)
for different isotropic pressures. The volumetric compressibilities (D) and the linear compressibilities
along a (E) and c (F) directions are shown in the panels of the right-hand side. The blue horizontal
lines in panels (E,F) mark kl = 10.0 TPa−1.
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Figure 13. Computed unit cell volume (A) and lattice parameters (B–D) of ALPO-18 under different 
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Figure 13. Computed unit cell volume (A) and lattice parameters (B–D) of ALPO-18 under different
external isotropic pressures. The volumetric compressibilities (E) and the linear compressibilities
along a, b and c (F–H) directions are shown in the subgraphs of the right-hand side. The blue
horizontal lines in panels (F–H) mark kl = 10.0 TPa−1.
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uniaxial pressures applied along the direction of minimum compressibility, [1 0 0]. The volumetric
compressibilities are shown in panel (E) The green horizontal line in panel (E) mark kV = 0.0 TPa−1.

Table 4. Calculated volumetric compressibilities and linear compressibilities at zero pressure for
VPI-5, ALPO-8, ALPO-5, ALPO-18 and ALPO-31.

Material kV(TPa−1) ka(TPa−1) kb(TPa−1) kc(TPa−1)

VPI-5 (P63cm ) 16.46 6.95 6.95 2.56
ALPO-8 (Cmc21 ) 13.77 6.93 5.04 1.81
ALPO-5 (P6cc) 11.45 4.61 4.61 2.25

ALPO-18 (C2/c) 13.54 3.40 5.17 4.97
ALPO-31

(
R3h ) 11.09 4.43 4.43 2.23

The linear compressibilities along the different directions are frequently smaller than
5 TPa−1. For ALPO-5 and ALPO-31, the three linear compressibilities are smaller than
this threshold. The same occurs for two linear compressibilities of ALPO-18, although the
compressibility along b direction is also very near to this limit (kb = 5.17 TPa−1). For VPI-5
and ALPO-8, only the compressibilities along c direction satisfy kc < 5 TPa−1. However, the
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value of kc for ALPO-8 is the lowest linear compressibility found for all of the ALPO materi-
als considered, (kc = 1.81 TPa−1). The criterium usually used for zero linear compressibility
(ZLC) [102,103,132–135] is that the absolute value of the linear compressibility along a
certain direction is smaller than 1.0 TPa−1, | kl | ≤ 1.0 TPa−1 [133]. While this criterium
is not met for ALPOs, the presence of three simultaneously small linear compressibilities
is very infrequent. The term near zero tridimensional linear compressibility (NZTLC) is
proposed for materials satisfying, 1 ≤ | kl | ≤ 5.0 for l = a, b, c. ALPO-5, ALPO-31 and, in
practical terms, ALPO-18 are NZTLC materials at zero pressure.

As shown in Figure 9, the compressibilities of VPI-5 along the three crystallographic
directions are lower than 10 TPa−1 for the full range of pressure considered. The compress-
ibility along the c direction is smaller than 5 TPa−1 from 0 to 4 GPa except for applied
pressures near 4.0 GPa. Therefore, as shown in Figure S1, the isotropic compression of
VPI-5, leads to very small changes of its structure. For ALPO-8 (Figure 10), although the
linear compressibility along a direction remains small from 0 to 4 GPa and attains a mini-
mum near P = 2.75 GPa (ka = 3.4 TPa−1), kb and kc increase rapidly and reach maxima near
P = 2.5 GPa. Consequently, the volumetric compressibility increases from 0 to 2.5 GPa and
then decreases up to 4 GPa. Since the compressibility along c direction is very small at zero
pressure, and it is a strongly decreasing function as the pressure diminishes, the presence
of negative values of ka under tension (negative pressure) is highly probable. For ALPO-5
(Figure 11), as for VPI-5, the linear compressibilities remain small in the range from 0 to
4.0 GPa. However, for ALPO-31 (Figure 12), as for ALPO-8, the compressibilities increase
largely as the pressure increases and the volumetric compressibility reach a maximum
near P = 2.0 GPa. The behavior of ALPO-18 under pressure is extremely anomalous and is
studied in the next Subsection.

3.6. Negative Linear Compressibility (NLC) in ALPO-18
3.6.1. Isotropic Negative Linear Compressibility (INLC)

The three lattice parameters of VPI-5, ALPO-8, ALPO-5, and ALPO-31 decrease invari-
ably under isotropic compression. However, as can be observed in Figure 13B, the a lattice
parameter of ALPO-18 increases sharply from P = 1.21 to P = 2.70 GPa. Therefore ALPO-18
exhibits the isotropic negative linear compressibility (INLC) phenomenon [129–131] in
this pressure range. The minimum value of the compressibility along the a direction is
encountered at P = 2.04 GPa, ka = −30.9 TPa−1.

The INLC effect in ALPO-18 can be rationalized in terms of the empty channel struc-
tural mechanism [100,335]. The deformation of the crystal structure of ALPO-18 induced
by the application of increasing isotropic pressures is illustrated in Figure 15. In this figure,
the optimized crystal structures at five different pressures, P = 1.00, 1.75, 2.00 2.25, and
2.50 GPa, are displayed.

As can be observed, the width and height of main 8-MR channels expanding along [0
0 1] increase and decrease substantially under increasing pressure. The widening of the
channels along [1 0 0], which coincides with the direction of minimum compressibility in
ALPO-18 (see Figure 7), leads to an increase of the a lattice parameter and to the INLC
effect in this material. The impact of the deformation of the channels expanding along [1 0
0] and [1 1 0] (Figure 2) in the dimensions of the crystal is much smaller, as shown in Figure
S2. Therefore, the dominance of the deformation of the 8-MR channels expanding along
[0 0 1] makes observable the NLC effect based in the empty structural mechanism in the
multichannel ALPO-18 material.
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Figure 15. Two contiguous 8-MR channels expanding along [0 0 1] in the crystal structure of ALPO-18
under increasing isotropic pressures: 1.0, 1.75, 2.0, 2.25, and 2.50 GPa. The meaning of the width of a
channel (ωch) as measured by the distance between two opposite oxygen atoms is illustrated in the
structure at P = 1.0 GPa. The values of ωch are 6.453, 6.722, 7.049, 7.551, and 7.829 Å, respectively.

3.6.2. Anisotropic Negative Volumetric Compressibility (ANVC) Effect

In previous works, the INLC effect due to the empty channel structural mechanism was
observed to be accompanied by the anisotropic volumetric NLC effect (ANLC) [100,336],
i.e., the increase of the volume of a material when an external anisotropic pressure is applied
to it. This effect was discovered in 2015 by Baughman and Fonseca [336] in porous materials
and, independently, by Colmenero in 2019 for non-porous materials as the cyclic oxocarbon
acids [307], oxalic acid [308] and uranyl squarate monohydrate [311]. The unit cell volumes,
lattice parameters and compressibilities of ALPO-18 under the effect of increasing uniaxial
pressures along the direction of minimum compressibility, [1 0 0], are shown in Figure 14
and provided in Tables S22 and S23 of the SM. As can be appreciated, the unit cell volume
increases under tension from P = −1.0 up to P = −0.20 GPa. Therefore, ALPO-18 exhibits
the ANVC effect in this pressure range. The minimum value of the compressibility is found
at P = −0.76 GPa, kV = −6.0 TPa−1.
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3.6.3. Effect of Dispersion Interactions in the NLC Effect of ALPO-18

In Section 3.1, the influence of dispersion interactions in the crystal structures of the
considered ALPO materials was shown to be small. However, due to the relevance of
the NLC phenomenon, the crystal structure of ALPO-18 was also completely optimized
under the effect of different isotropic pressures using the PBE functional supplemented
with Grimme’s dispersion corrections [283] The computed values of the a lattice parameter
are compared with those obtained using the PBEsol functional in Figure 16. The results
are quite simitar, thus confirming the NLC effect in ALPO-18 and the good performance
of the PBEsol functional for the description of anhydrous materials [191–284]. Using the
dispersion corrected treatment, ALPO-18 displays an even larger isotropic NLC effect from
P = 0.61 GPa to P = 2.50 GPa. The minimum value of the compressibility along the [1 0 0]
direction is ka = −38.7 TPa−1 at P = 1.74 GPa.
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Figure 16. Comparison of the computed a lattice parameter of ALPO-18 under the effect of different
external isotropic pressures using the PBEsol functional and the PBE functional supplemented with
dispersion corrections.

3.7. Effect of Hydration in the Mechanical Properties of ALPO-18

In this Section, the effect of the presence of water molecules adsorbed in the structural
channels of ALPO-18 on the mechanical properties of this material is studied. This is
relevant from the point of view of applications since if one desires to take advantage of the
mechanical properties of ALPOs, such as their large incompressibility and ductility, the
influence of water adsorption should be considered. If the impact in the elastic properties is
large, hydration should be avoided as much as possible. The calculated lattice parameters
of ALPO-18W are in given in Table 1. The computed unit cell volume differs from the
experimental value [11] by only 0.5%. The computed stiffness tensor and mechanical
properties of ALPO-18W are reported in Tables 5 and 6, respectively, and the dependence of
its mechanical properties on the orientation of the applied strain is shown in Figure S3. The
unit cell volumes, lattice parameters and compressibilities of ALPO-18W under different
isotropic pressures are shown in Figure S4 and given in Tables S24 and S25.
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Table 5. Computed elastic constants of VPI-5 (C1m1 ), ALPO-5 (Pcc2 ), and ALPO-18W (P1 ). All of
the values are given in GPa.

ij
Cij

VPI-5 ALPO-5 ALPO-18W
C1m1 Pcc2 P1

11 69.66 120.90 92.30
22 68.50 127.95 103.17
33 79.68 193.34 103.75
44 18.75 26.30 25.58
55 19.61 26.04 24.06
66 19.38 25.61 25.81
12 31.53 67.01 37.53
13 14.04 60.75 42.27
14 0.0 0.0 −2.52
15 −0.05 0.0 −5.10
16 0.0 0.0 7.90
23 12.60 62.53 41.38
24 0.0 0.0 6.67
25 −0.20 0.0 −0.47
26 0.0 0.0 3.03
34 0.0 0.0 0.50
35 0.42 0.0 −3.83
36 0.0 0.0 −1.19
45 0.0 0.0 1.85
46 0.20 0.0 0.58
56 0.0 0.0 1.37

Table 6. Computed mechanical properties of VPI-5 (C1m1 ), ALPO-5 (Pcc2 ) and ALPO-18W (P1 ).
The values of the bulk, shear and Young’s moduli (B, G and E ) are given in in GPa. The single-crystal
bulk moduli (Bsc ) are also given in the last row of the table for comparison.

Property VPI-5 ALPO-5 ALPO-18W
C1m1 Pcc2 P1

B 37.06 ± 0.81 88.62 ± 0.37 58.82 ± 0.94
G 20.98 29.58 25.81
E 54.24 79.87 67.56
ν 0.26 0.35 0.31
D 1.77 3.00 2.28
DI 0.24 0.51 0.18
H 3.10 1.02 2.11

AU 0.29 0.50 0.24
Bsc 33.85 ± 1.90 87.71 ± 0.27 58.80 ± 1.84

Since ALPO-18 is triclinic, all of the elements of the matrix representation of its
elastic tensor are non-vanishing and non-equivalent. As with ALPO-18, ALPO-18W is
characterized by large bulk, Young’s, and shear moduli. However, due to the adsorption of
water molecules, the bulk and shear moduli of ALPO-18W become much smaller and larger,
respectively, than those of ALPO-18. Consequently, although ALPO-18W is also ductile, the
ductility index is smaller. Since the intrinsic ductility index (DI) is strongly correlated with
Pugh’s ratio [190], its value is reduced from 1.02 to 0.18. Therefore, hydration makes this
material more compressible and less ductile. The universal anisotropy index is very small,
AU = 0.24, as with the other ALPO materials. As expected from the small elastic anisotropy
index, the dependence of the mechanical properties on the direction of the applied strain is
smooth. No preferred directions for fracture or shear failures nor negative Poisson’s ratios
are observed.
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In a recent work [100], a strong reduction of the NLC effect in titanium oxalate dihy-
drate was also found as a result of water molecule adsorption, although the NLC effect
in this microporous metal organic framework does not disappear completely. In contrast,
for some microporous zeolites and MOFs [56,57,98,99], water intrusion leads to a strong
increase of the unit-cell volume and NLC effects. The strong influence of the presence of
guest molecules in the structural channels of porous materials in their mechanical prop-
erties has been found by several research groups in previous works [87,88,337]. In fact,
Terracina et al. [88], showed that the main source of structural instability in the MOF
HKUST-1 during compaction was the presence water molecules adsorbed by the powdered
samples and a new tableting method preserving the crystal structure and porosity of the
pristine powders was reported. The influence of guest molecule adsorption in the elastic
properties of microporous materials is highly dependent on the material under study and
the type of interaction between the molecules with the walls of the channels and between
the molecules themselves. The presence of water in contact with the material may increase
the internal tensions, lead to phase transformations or even be the origin of crack propa-
gation and fracture [238]. The important NLC effect induced by water or guest molecule
intrusion should be distinguished from the conventional NLC phenomenon, encountered
for ALPO-18 in this paper, due to the need of specifying the origin of pressure and the
requirement of the description of the interaction of a variable number of guess molecules
with the material for his theoretical study. It is a common belief that the absorption of water
molecules in the channels of a microporous material should reduce its compressibility due
to the stiffening of the structure due to increased density [338]. However, the opposite its
true in ALPO-18. The counterintuitive softening upon adsorption of guest molecules in
microporous materials was first observed by Mouhat et al. [339] and Canepa et al. [340].
It is difficult to find an explanation for the softening in ALPO-18 based on the changes in
the chemical bonding due to the drastic geometric rearrangement occurring upon water
absorption. This requires a further study which is out of the scope of the present work.

The great influence of water adsorption in the structure of ALPO-18, underlines the
need of using non-hydrous pressure transmitting media (PTM) to measure their com-
pressibilities or experimental methods which are not based in the use of DAC in order
to study its full tensorial elasticity. The compressibility of hydrated ALPO-5 [165–167]
material was measured experimentally using DACs and different pressure transmitting
media. The measured compressibilities were highly dependent of the PTM used. Fur-
thermore, the compressibilities measured using the same PTM vary significantly from
one study to another. For example, the volumetric compressibilities of ALPO-5W using a
16:3:1 methanol-ethanol-water (MEW) mixture as PTM measured by Kim et al. [166] and
Lotti et al. [167] were 19.8 and 45.0 TPa−1 (corresponding to measured bulk moduli of
50.5(7) and 22.2(9) GPa), respectively. For VPI-5W, Alabarse et al. [168], using silicone oil as
PTM, obtained of volumetric compressibility of 41.2 Tpa−1 (B = 24.3(5) Gpa). The present
results for anhydrous VPI-5 and ALPO-5 and the experimental results for VPI-5W and
ALPO-5W show that, as for ALPO-18, the influence of the presence of water in the channels
of these materials in the elastic properties are substantial. Again, the use of complementary
experimental methods not based in the use of DAC with a PTM for the study of the full
tensorial elasticity of these materials is suggested.

3.8. Effect of Aging in the Elastic Properties of VPI-5

De Oñate Martinez et al. [5], noted that the space symmetry of VPI-5 depends on the
method of preparation of this material and that aging also leads to space symmetry varia-
tions. Clearly, the origin of this effect is the small differences in the relative thermodynamic
stabilities of the different crystal structures of ALPO materials [341,342]. Therefore, to
assess the influence of aging, the monoclinic C1m1 crystal structure reported by De Oñate
Martinez et al. [5] obtained from an aged sample of anhydrous VPI-5 was employed in
order to compute its mechanical properties. The computed lattice parameters are given
in Table S26 of the SM and the calculated stiffness tensor and mechanical properties are
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given in Tables 5 and 6, respectively. The dependence of its mechanical properties on the
direction of the applied strain is shown in Figure S5. The bulk modulus for the monoclinic
structure of VPI-5 diminishes significantly with respect to that for hexagonal VPI-5 (from
60.5 to 37.1 GPa) and, consequently, the ductility index is largely reduced (from 2.66 to 1.77).
The elastic anisotropy in monoclinic VPI-5 (AU = 0.24) is smaller than in hexagonal VPI-5
(AU = 0.66). Although the directional dependence of the elastic properties for the mono-
clinic structure are significantly modified, the axial symmetry around z axis is conserved
(Figure S5B) and no preferred directions for fracture and shear failure are observed. There-
fore, aging in VPI-5, as hydration in ALPO-18, reduces its incompressibility and ductility.
The computed unit-cell volume, lattice parameters and compressibilities of monoclinic
VPI-5 as a function of the external isotropic pressure are shown in Figure S6 and given in
Tables S27 and S28 of the SM. While the linear compressibilities of hexagonal VPI-5 remains
small as pressure increases, the same is not true for the monoclinic structure.

3.9. Effect of Pressure Polymorphism
3.9.1. VPI-5

Since in this paper we are interested in studying the behavior of ALPO materials under
the effect of pressure, the relative thermodynamic stability of the P63cm4 and C1m1 [5]
structures of VPI-5 under pressure was investigated. Both crystal structures were fully
optimized under the effect of different external isotropic pressures and the correspond-
ing enthalpies were determined. As shown in Figure S7 of the SM, the X-ray diffraction
patterns of both structures at zero pressure are remarkably similar. The positions of
the main reflections in the X-ray diffraction patterns of both structures are reported in
Tables S2 and S29, respectively. The computed unit cell volumes and enthalpies are com-
pared in Figure 17. In this figure the volumes and enthalpies of the P63cm structure have
been doubled since the unit-cell of the C1m1 structure is twice as large as the hexagonal unit
cell. As can be seen, while the enthalpies of both structures are very close at zero pressure,
the monoclinic structure is increasingly more stable as pressure increases. The difference
of the enthalpies of both polymorphs, 0.3 kJ per formula unit at zero pressure, becomes
28.6 kJ at P = 5.0 GPa. Therefore, the VPI-5 monoclinic polymorph appears to be signif-
icantly more stable than the hexagonal one at high pressure conditions. The transition
pressure between these structures is conditioned by thermodynamic and kinetic consid-
erations [343]. In the initial studies concerning the structures of ALPO materials [344],
great effort was devoted to the identification of the symmetry of their structures. Present
results show that the difficulty in the identification, is further complicated by pressure
polymorphism. At the same time, the results point to a form of obtaining monoclinic VPI-5
by submitting hexagonal VPI-5 to high isotropic pressures. As was shown in Section 3.8,
the hexagonal-monoclinic polymorphic transformation reduces the incompressibility and
ductility of VPI-5 substantially. It should be noted that an additional monoclinic C1m1
structure for VPI-5 under pressure was also recently obtained by Fabbiani et al. [345] with
a volume four times that of the hexagonal structure and two times that of the monoclinic
structure reported by De Oñate Martinez et al. [5]. As shown in Table S30, the X-ray diffrac-
tion pattern derived from the structure of De Oñate Martinez et al. [5] is nearly the same
as that derived from this structure, the difference in the positions of the main reflections
being lower than 0.1◦. This structure was obtained under the effect of isotropic pressure, in
agreement with the present results favoring the monoclinic structures under pressure.
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3.9.2. ALPO-5

For ALPO-5, the relative thermodynamic stability of the Pcc2 [8] and P6cc [9] structures
under pressure was investigated. Figure S8 of the SM shows the great similarity of X-
ray diffraction patterns of both structures at zero pressure. The positions of the main
reflections in the X-ray diffraction patterns of both structures are given in Tables S4 and
S31, respectively. The unit cell volumes and enthalpies associated with both structures
under the effect different external pressure are compared in Figure 18. The volumes and
enthalpies of the P6cc structure were doubled in Figure 18 (the orthorhombic unit cell is
twice as large as the hexagonal one). Both structures are nearly degenerate at zero pressure.
However, the orthorhombic structure is increasingly more stable as the pressure increases.
The enthalpy difference becomes 12.1 kJ per formula unit (AlPO4) at P = 5.0 GPa. The
hexagonal-orthorhombic polymorphism in the anhydrous and hydrated forms of ALPO-5
is a long-standing problem [8,9,346–356]. The presence of one or another polymorph is not
only dependent on the temperature but also on the method used for the synthesis of this
compound [356]. The results obtained here show that the orthorhombic structure is the
high-pressure polymorph. The orthorhombic structure should be obtainable submitting the
hexagonal polymorph to high pressure. Similarly, the synthesis of ALPO-5 at sufficiently
high pressure should favor the production of the orthorhombic form, independently of the
synthetic method employed.
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The computed lattice parameters of the Pcc2 structure [8] at zero pressure are given
in Table S26 of the SM. The calculated stiffness tensor and mechanical properties are
reported in Tables 5 and 6, respectively. The dependence of its mechanical properties on the
direction of the applied strain is shown in Figure S9. In contrast with the result obtained
for VPI-5 in previous Section, the variation of the elastic properties for the orthorhombic
structure with respect to those of the hexagonal one is exceedingly small. For example,
the bulk modulus for the hexagonal polymorph, B = 88.2 GPa, becomes 88.6 GPa. The
intrinsic ductility index, DI = 0.51, is unchanged. The directional dependence of the elastic
properties for the two polymorphs is quite similar. The axial symmetry around the z axis for
the hexagonal structure is slightly distorted in the orthorhombic polymorph (Figure S9B).
Consequently, the impact of pressure polymorphism in the mechanical properties of ALPO-
5 at zero pressure is very small. The computed unit-cell volumes, lattice parameters, and
compressibilities of orthorhombic ALPO-5 as a function of the applied isotropic pressure
are displayed in Figure S10 and given in Tables S32 and S33 of the SM. Although the
influence of the pressure polymorphism in the elastic properties of ALPO-5 is small, the
linear compressibilities along a and c directions and the volumetric compressibility of the
orthorhombic polymorph are strongly affected by the increase of pressure. Only the linear
compressibility b direction remains nearly constant under pressure with a value close to
kb= 5 TPa−1.
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3.10. Comparison with Experimental Data

There are very few data to compare the results of the present paper with experimental
data [165–172]. They are mostly for hydrated ALPO materials and limited to compressibility
values measured using the DAC technique using a given PTM. There appears to exist a
large difference between the experimental values of the compressibility measured using
this technique and the theoretical results for empty porous structures. The same is true for
the experimental results obtained with and without a PTM [150], using two different PTMs
or from two different studies using the same PTM [166–168]. For different PTMs, involving
different molecules, the collisions of molecules with the surfaces of the material considered
produce different effects. In many cases, pressure induced transitions and pressure induced
amorphizations (PIA) appear at very different pressures for different PTMs [166–168]. For
instance, for ALPO-5W [166], a PIA was observed at 15.9 GPa using liquid nitrogen as PTM
and at 8.5 GPa using silicone oil (non-pore-penetrating PTM). For dense crystal structures
accurate values of the compressibilities are generally obtained [314]. The measurements
performed for some ALPO materials indicate large compressibilities. For example, for a
crystalline sample of dehydrated VPI-5, Alabarse et al. [169] using a DAC with silicone oil
observed a pressure induced phase transition to ALPO-8 beginning at 0.8 GPa, which do
not appear from the theoretical calculations, obtained a compressibility of k = 80.6 TPa−1

(bulk modulus B = 12.4(2) GPa) for VPI-5 from a fit to a to a second order Birch−Murnaghan
(2-BM) equation of state (EOS) from pressure−volume data below 1.6 GPa and the same
value for ALPO-8 from data below 3.4 GPa. For dehydrated ALPO-17, Alabarse et al. [171]
using a DAC with silicone oil observed a pressure induced amorphization beginning at
1 GPa and obtained a compressibility of k = 32 TPa−1 (bulk modulus B = 31.2(5) GPa) from
a fit to a to a 3-BM EOS from pressure−volume data below 3.1 GPa. The results obtained
in this work showed that the compressibilities obtained from fits to a BM EOS are highly
dependent on the pressure range used in the fits and that many pressure-volume data points
should be used to obtain reliable compressibilities. Furthermore, the emergence of pressure
induced amorphizations should influence substantially in the measured compressibilities
due to the reduction of the volume involved in the pore collapse. NLC phenomena were
also observed for ALPO materials in previous works. However, the NLC effects observed
were much less significant than that found for ALPO-18 in this work. For ALPO-17,
Alabarse et al. [171], found a small increase of the a lattice parameter near the PIA associated
to the pore collapse. Likewise, for ALPO-5W, Kim et al. [166] found that a lattice expands
at small pressures before it starts to contract using a MEW mixture as a PTM (probably due
to molecule pore intrusion).

The results obtained using theoretical techniques are unique. The underlying reason
for the different theoretical and experimental results based in DAC must be the different
origin of pressure in these experimental techniques (collisional mechanism) and in the
theoretical calculations. In the theoretical calculations, the pressure is defined in terms of the
stress tensor and the elastic properties are determined from the stress tensor resulting from
an applied strain and the action of molecules over the material is not invoked. The data
presented in this paper are rigorous quantum mechanical results and were fully revised
and carried out twice to check their reproducibility. Furthermore, the compressibilities
obtained from the computed elastic tensors and fits of computed pressure-volume data are
in excellent agreement. Thus, it is concluded that the data obtained from the theoretical
calculations and experimental measurements using DAC correspond to different physical
quantities for highly porous materials. To obtain a better agreement between theoretical
and experimental results, either experimental measurements not based in DAC or quantum
molecular dynamic calculations with specific solvents simulating the effect of the different
PTMs should be carried out. The effect of temperature should also be investigated since
the present theoretical results correspond to zero temperature.
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4. Conclusions

In this work, the crystal structures, mechanical properties, and compressibility func-
tions of five important anhydrous microporous aluminophosphate materials have been
determined using first principles methods based on density functional theory. The calcu-
lated crystal structures and associated X-ray diffraction patterns are in good agreement
with their experimental counterparts. The elastic tensors of all of these materials have
been reported and the mechanical stability of their structures has been confirmed. A de-
tailed mechanical characterization is performed, and a rich set of mechanical properties
was derived. This set includes the bulk, shear and Young’s moduli, as well as ductility,
hardness, and elastic anisotropy indices. The elastic behavior of the five materials shares
many common mechanical properties such as high incompressibility, ductility, and low
elastic anisotropy. Their intrinsic ductility indices are in the same range as that for common
metals. The analysis of the dependence of the mechanical properties of ALPOs in the
orientation of the applied strain, show that they are resistant with respect to the applica-
tion of external isotropic and uniaxial pressures and shear stresses. A smooth directional
dependence is found in all of the cases and no special directions for material fracture or
shear instability are encountered. The only previous study from which some clue about the
incompressibility of ALPO materials was found is the work by Polisi et al. [210] where the
dehydration mechanism of hydrated ALPO-5 was studied. The small volume change of
this material under the effect of temperature led these authors to state that ALPO-5 was
one of the most rigid zeolite frameworks. While this finding concerns only the thermal
behavior of hydrated ALPO-5, the present results show that high incompressibility is a
general property of anhydrous ALPO materials under the effect of pressure.

The crystal structures of all of the materials were completely optimized under the
effect of different isotropic pressures and the linear and volumetric compressibilities were
determined. At zero pressure, the ALPO materials have small linear compressibilities along
the three crystallographic directions. The tridimensional incompressibility of ALPO-5,
ALPO-18 and ALPO-31 is notable since the compressibilities along the three principal direc-
tions are lower or close to 5 TPa−1. The incompressibility ALPO-8 and ALPO-31 materials
is lost at high pressures. ALPO-18 displays an extremely anomalous mechanical behavior
at relatively low external pressures. It exhibits a large negative linear compressibility effect
between P = 1.21 and P = 2.70 GPa. The minimum value of the compressibility along [1 0 0]
direction, ka = −30.9 TPa−1, is encountered at P = 2.04 GPa. The NLC phenomenon in this
material can be rationalized using the empty channel structural mechanism. The width and
height of main 8-MR channels expanding along [0 0 1] increase and decrease substantially
under increasing pressure. The widening of the channels along [1 0 0], coinciding with
the direction of minimum compressibility in ALPO-18, leads to the increase of the a lattice
parameter and to the NLC effect in this material. Furthermore, ALPO-18 exhibits the
anisotropic negative volumetric compressibility effect for uniaxial pressures applied along
the [1 0 0] direction.

The effect of water molecule adsorption in the channels of ALPO-18 in its elastic
properties is assessed by studying the mechanical behavior of the hydrated ALPO-18
material (ALPO-18W). ALPO-18W is much more compressible and less ductile than ALPO-
18 and does not present the NLC effect found in ALPO-18. The effect of aging and pressure
polymorphism in the mechanical properties of VPI-5 and ALPO-5 is also studied. As
hydration, aging and pressure polymorphism leads to significant variations in the elastic
properties of VPI-5 and reduces its incompressibility and ductility. For ALPO-5, pressure
polymorphism has only a small impact in its elasticity at zero pressure but a large influence
at high pressure.
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