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Abstract: Specific heat at constant pressure is traditionally a difficult thermodynamic quantity to
obtain from first-principles calculations. While theoretical avenues to Cp(T) do exist—most notably,
the quasi-harmonic approximation—there are many materials for which this approximation is not
valid. One of those materials is Ge. In this paper, we demonstrate how a new method—termed the
Beyond Quasi-Harmonic method—takes into account all anharmonic vibrations by showing how
our results are significantly better than those achieved through using the quasi-harmonic model. In
addition, we calculate Cp(T) for 3C-SiC, a material for which there are surprisingly few experimental
results. For 3C-SiC, our results agree well with the available experiments, and for Ge, our results
agree very well with the generally accepted values.

Keywords: Beyond Quasi-Harmonic method; specific heat; heat capacity; supercell preparation;
vibrational enthalpy; vibrational energy; phonon; anharmonic; anharmonic vibration

1. Introduction
1.1. Background

Specific heat at constant pressure (Cp(T)) is a thermodynamic quantity used by a wide
range of academic fields of science and engineering. Unfortunately, Cp(T) has historically
been difficult to calculate. The quasi-harmonic approximation is indeed available, and
for stiff materials it seems to work well for a broad range of temperatures, as in the case
of ZrC [1,2]. However, for materials such as Ge, it has been shown that the anharmonic
effects play a much larger role, and the quasi-harmonic approximation is not justified [3,4].
Without the quasi-harmonic approximation, Cp(T) is much trickier to calculate. Indeed,
one of the first things taught to young physicists is that Cp(T) is easy to measure be-
cause it only requires the researcher to keep the force (pressure) constant but difficult to
calculate because it requires the inclusion of the quasi-harmonic and anharmonic vibra-
tional mode contributions. Conversely, specific heat at constant volume Cv(T) is easy to
calculate because it only requires the harmonic contributions, but is difficult to measure
because the experimenter must keep the system’s volume strictly constant. Work in this
area has been limited to low-temperature, harmonic systems which satisfy the approxi-
mation Cp ∼ Cv [5], or the quasi-harmonic approximation which does not fully account
for the anharmonic contributions properly—until recently [1,6]. Certainly, these various
approximations are appropriate for stiff materials, such as diamond carbon [5] or rock
salt ZrC [1,2,7], but are demonstrably inappropriate for more flexible (and therefore more
anharmonic) materials, such as c-Ge [3,4].

1.2. Motivation/Purpose

For common materials many high-quality, consistent experiments have been con-
ducted, and the values of Cp(T) have been agreed upon for some time. However, for
other common materials, such as wurtzite GaN, even when experimental literature is
extensive, those experiments can be highly varied in their results [6]. In these situations,
first-principles calculations are useful in determining which experiments are most likely to
be the most accurate.
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Furthermore, researchers do not always use common materials. Oftentimes, the
system under study is a new material, such as a quasi-crystal [8] or a quantum dot [9,10], a
complicated multi-component alloy [11], a carbon nanotube [12,13], or even one which is
found in biology, such as spider silk proteins [14] or DNA [15]. For these types of materials,
it is questionable whether experimental results are readily available; even if they are, there
could be huge variability in the results, as was previously mentioned in the case of GaN [6].
This leaves the researcher to either perform the experiment herself, collaborate with an
experimentalist, or complete the ab-initio calculations. Given the large investment of time
and money that any experiment would require—this material would need to be fabricated
and likely imaged before the experiment is even conducted—ab-initio simulations are a
compelling option. Clearly, a method that allows for the quick, computationally efficient,
reliable calculation of Cp(T) for an arbitrary material, would be extremely valuable.

1.3. Status of the Field

Until recently [1,6,11], obtaining Cp(T) from first principles was computationally
prohibitive, as the third-order (or higher) vibrational modes were necessary [16]. Thank-
fully, both of the recent methods are computationally modest. However, the latter of the
two developed by Duff and coworkers and termed the two-stage upsampled thermodynamic
integration using Langevin dynamics (TU-TILD) uses finite-temperature density functional
theory (FTDFT) for which, as of the time of this writing, no standardized codes exist.
Therefore, FTDFT, and by extension TU-TILD, require considerable expertise to use ef-
fectively, not least of all because there is no known standardized way to develop reliable
exchange-correlation functionals [17]. So while this method is very valuable and provides
detailed information, particularly if one needs electron entropy (e.g., for a metal), TU-TILD
is likely to be judged to be at least as difficult to implement as an experiment itself for many
researchers.

The Beyond Quasi-Harmonic method, however, requires only standard (Telectron = 0 K)
density functional theory [6]. Specifically, we use the SIESTA code [18–20], but any of the
many standardized codes available should work (VASP, Quantum Espresso, Abinit, etc.).
The computational costs are modest, with the SiC system presented here representing
22 node hours on Stampede2, which, with parallel computing, can easily be brought down
to 1–3 h of wall clock time.

In this paper, we calculate Cp(T) for SiC and Ge, two common semiconducting mate-
rials which are lacking a set of reliable values in the literature for one or more temperature
ranges. Our results for SiC are in excellent agreement with the available experiments we
were able to find. We chose SiC because of its many applications—especially in semicon-
ductor design, where overheating is a particular concern—and SiC is seen as a promising
replacement to Si because of its good thermal properties [21,22]. Furthermore, we chose
Ge because it is a well-known anharmonic material [3,4] that will provide a good demon-
stration of the ability of the Beyond Quasi-Harmonic method to account for anharmonic,
rather than simply quasi-harmonic, effects.

1.4. Scope of the Paper/Summary of Paper

We organized the paper as follows: In Section 2, we describe the particular systems
that we use in our example calculations, as well as the density functional theory (DFT)
settings used to describe each atom involved. We then give a brief discussion of the Beyond
Quasi-Harmonic method. In Section 3, we present data to determine what supercell size is
best and acceptable for most materials given the nature of the anharmonic contributions
we are trying to capture, and we present a set of recommended values for both the SiC and
Ge materials. In Section 4, we summarize our findings and draw conclusions.
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2. Methods
2.1. Density Functional Theory

We employ density functional theory for all our calculations; specifically, we use the
SIESTA method [18–20]. The exchange–correlation potential is that of Ceperley–Alder [23],
as parametrized by Perdew and Zunger [24] in the local density approximation. Norm-
conserving pseudopotentials in the Kleinman–Bylander [25] form are used to remove the
core electron orbitals from the calculations. We use double zeta basis sets for the C atoms
and double zeta polarized (d-orbitals) for the Ge and Si atoms.

In order to study SiC and Ge, we built three supercells, one of which (216 Ge) is shown
in Figure 1. The yellow atoms in Figure 1 are Ge atoms, which denote the hot block atoms,
will be discussed in Section 2.2. Each of the three supercells is of the Zincblende structure,
each of the SiC and Ge supercells we used for the calculations were 216 atoms, and a single
64-atom Ge supercell was used to determine the size of the effect on the system. We found
the lattice constant for SiC to be 4.373 A, and 5.79 A for Ge. For both 216-atom supercells,
we used a mesh cutoff of 250 Ry and a PAO energy shift of 0.2 eV, but a PAO energy shift of
0.25 eV for the 64-atom Ge supercell.
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Figure 1. Shown above is an example of one of the supercells used in our calculations. The blue and
yellow atoms are both Ge, where the yellow atoms denote the hot block atoms.

2.2. Beyond Quasi-Harmonic Method

The Beyond-Quasi Harmonic method has been described in detail previously [6], so it
will only be summarized here. The central concept behind it is that supercell preparation is
able to set up a system at a specific temperature without the use of a thermostat [26]. It is
normally used to study heat flow [26,27]. The temperature of a region or system is defined
by scaling the amplitudes of the normal vibrational modes by an amount determined
by an inverse transform based on the Bose–Einstein distribution. However, supercell
preparation only considers harmonic energy. So, the system is given a specific amount of
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harmonic energy at a specific temperature, and then density functional theory is used to
tell us—via the Kohn-Sham energy equations—how much energy the system really has,
with the difference being the vibrational anharmonic energy of the system. However, it
should be noted that these initial results from DFT cannot be used to calculate the enthalpy
of the system because supercell preparation assumes that the average energy is 3NKBT,
where N is the number of atoms, T is the temperature, and KB is the Boltzmann constant.
Since this implicitly assumes equipartition, and therefore, that Cv = 3NKB = constant,
we lose all detail about Cv(T). Therefore, the anharmonic energy is calculated at a set
number of temperatures and is fit to a polynomial to find the anharmonic energy as a
function of the temperature. Then, a derivative is taken, thus obtaining an equation for
Cp(T). However, when this is completed with an entire supercell, because of the repeated
boundary conditions used, anharmonic energy is never seen, because the system’s volume
is kept strictly constant. For that reason, only 1/8 of the supercell is heated up to hotter and
hotter temperatures, but the overall harmonic temperature (and energy) of the supercell is
kept at a constant 200 K. Implicitly, this assumes that there are no anharmonic effects at
200 K. This process is repeated many times (i.e. many microstates) for each temperature,
and the results are averaged together.

3. Results and Discussion

Our results for the SiC system are shown in Figure 2. We can see that the data agree
very well with our calculations. The polynomial that we would recommend using for the
SiC system is given in two separate tables, which show the coefficients of a polynomial
whose form is given in Equation (1), below. The coefficients are given in Tables 1 and 2
below, which are valid from 50 to 600 K and from 600 K to at least 1600 K, respectively.

Cp(T) = AT5 + BT4 + CT3 + DT2 + ET + F (1)
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Table 1. Coefficients for Equation (1) for the temperature range 50 K to 600 K, SiC (J/mol/k).

A −2.812090475 ×10−12

B 5.690248937 × 10−9

C −4.285321740 × 10−6

D 1.344371869 × 10−3

E −6.020640219 × 10−2

F 6.053784794 × 10−1

Table 2. Coefficients for Equation (1) for the temperature range 600 K to 1600 K, SiC (J/mol/K).

A –
B −8.136069952 × 10−12

C 4.358400273 × 10−8

D −9.051433696 × 10−5

E 9.223260826 × 10−2

F 10.52098061

Our results for both the 64-atom and 216-atom Ge supercell are shown in Figure 3.
As pointed out by Nelin [3] and Leadbetter [4], the results of the quasi-harmonic results
significantly differ from the generally accepted values. Conversely, the Beyond Quasi-
Harmonic method is much better at reproducing the generally accepted experimental
results as measured in reference [30] than the quasi-harmonic approximation. This indicates
that 216 atoms are likely more than sufficient for the overwhelming majority of materials.
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Figure 3. Shown above are our results for the 216- and 64-atom systems of Ge. The solid black line is
the 216-atom cell from this work, and the blue circles are the 64-atom cell, also from this work. The
grey dotted line represents the calculated values of Cv(T) (included for reference). The green triangles
are the values from reference [30], and the red squares are the quasi-harmonic values calculated in
reference [3].

We can see the 64-atom cell is almost as good as the 216-atom cell for temperatures
of up to about 600 K. However, as the temperature increases, it begins to resemble the
inadequate values calculated in reference [3].
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This is intimately linked to our rationale for believing the 64-atom cell does not
adequately account for the anharmonic contributions. In the phonon density of states of the
64-atom cell, the normal modes are farther apart in frequency (and energy), and therefore,
have a much lower probability of interacting. This relationship is seen mathematically
from the interaction probability of two quantum particles (here, phonons; see chapter 3 of

reference [16]): P(i, f ) = 2|〈i|H′| f 〉|2 1−cos(E f−Ei)t/ћ
(E f−Ei)

2 ; where i and f are the initial and final

states respectively, E is energy, t is time, ћ is the reduced Plank’s constant, and H′ is the
interaction Hamiltonian. This then means the increases in extra-harmonic energy above
a certain temperature depend almost entirely on increases in volume rather than phonon
interactions; this, in turn, means Cp(T) can only depend on the volume changes and is then
forced to match the quasi-harmonic approximation—exactly the behavior seen in Figure 3.
This demonstrates that our method does, in fact, account for all the anharmonic vibrations.

Lastly, to our knowledge, there has not been a set of recommended values for Ge
above 700 K. While there are some experiments [30–33], and some recommended values do
exist up to 700 K [34], with one exception [33], we are unaware of anything that goes above
700 K. Furthermore, the results of reference [33] have a kink starting around 900 K, which
we believe is likely a symptom of impurities on the sample or other difficulties arising
from such a complicated experiment. For this reason, data from reference [33] was not
considered when calculating our set of recommended values. However, for reference, all
experimental data are shown in Figure 4. We give our recommended values for Ge from
300 K to 1200 K in Table 3 below:
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Table 3. Coefficients for Equation (1) for the temperature range 300 K to 1200 K for Ge (J/mol/K).

A –
B −1.238264848 × 10−11

C 4.420007261 × 10−8

D 5.902203596 × 10−5

E 3.773481439 × 10−2

F 16.13836107

4. Conclusions

In conclusion, we demonstrated that the Beyond Quasi-Harmonic method takes into
account all anharmonic vibrations of a dielectric material, by showing that we could exceed
the results of the quasi-harmonic approximation in an anharmonic material, Ge. In addition,
we also added a much-needed set of recommended values for the specific heat at constant
pressure for SiC and Ge. From these values, one can easily calculate the vibrational enthalpy
from the equation E(T) =

∫ T
0K Cp(T′)dT′, where T is the temperature and E is the enthalpy.

Future work will likely extend the BQH method to include other geometries, such as
surfaces, nanotubes, and nanowires, among others.
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