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Abstract: So far, diesel particulate filters (DPFs) have been widely used to collect diesel particulates
including soot in the exhaust after-treatment. However, as the soot is continuously collected in the
porous filter, the exhaust pressure (pressure drop) increases. To optimize the filter design for reducing
its pressure drop, we need a numerical simulation. In this study, we simulated the particle-laden
flow across the DPF. Structure of SiC-DPF was obtained by an X-ray CT technique. We conducted
the numerical simulation by changing the soot aggregation diameter (simply called soot size), and
evaluated the time-variation of the pressure drop. For discussing the soot deposition process,
the contributions of the Brownian diffusion and the interception effect were separately estimated.
Especially, we focused on the soot deposition region which could affect the pressure drop, together
with the soot cake permeability and the soot packing density. Results show that, as the soot size is
smaller, more soot is trapped. As a result, the shift from the depth filtration to the surface filtration is
observed earlier. Therefore, for discussing the pressure drop, it is important to consider where the
soot deposition occurs as well as the deposited soot mass in the filter.

Keywords: particle-laden flow; filtration; diesel soot; soot layer; porous media

1. Introduction

In our daily life, the main energy resource is produced by combustion of oil, coal,
and natural gas, which ineluctably releases CO2 to the atmosphere. For solving the global
warming problem, CO2 emissions should be reduced. In general, the transport sector
is a significant contributor to CO2 emission in the world [1,2]. Diesel engines have an
advantage of lower fuel consumption, compared to gasoline engines [3]. However, there
are drawbacks in terms of NOx and particulate emissions. It is known that particulates
of diesel soot can penetrate into the lung, causing human carcinogenic effects [4,5]. Then,
in many countries, stricter exhaust emission standards such as Euro VI have been set.
Therefore, an after-treatment of diesel exhaust gas is needed [6–9].

In Japan, in order to realize further improvement of fuel economy and reduction of
tailpipe emissions, automakers have established a joint research organization, the Research
Association of Automotive Internal Combustion Engines (AICE) in 2014. The goal of AICE
is to utilize the research achievement and to accelerate the development activities of each
automaker. Our group in Nagoya University has joined AICE as one of the research players.
So far, we have conducted experimental and numerical research in their project [10,11].
One of our targets is to develop diesel particulate filters (DPFs) of the porous substrate
with higher filtration efficiency and lower pressure drop.

DPFs have been widely used to collect diesel particulates in the exhaust after-treatment.
A SCR (selective catalytic reduction) catalyst on the DPF substrate has been proposed,
called SCR-F, for reducing both PM and NOx emissions simultaneously [12]. Recently,
a gasoline particulate filter (GPF) has been also developed to trap particulates emitted
from gasoline direct injection GDI engines [13–16]. It should be noted that as the soot
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particle is continuously collected, the exhaust pressure (pressure drop across the filter)
increases. Consequently, the fuel consumption rate is unexpectedly worsened with the
reduction of the engine output. Therefore, the deposited soot in DPF is periodically burned,
which is called a filter regeneration process [17–21]. Since additional fuel consumption is
needed for this process, the filter with low pressure drop is better to use. To optimize the
filter substrate structure for the reduction of the pressure drop, it is efficient to conduct a
numerical simulation. We have developed a numerical model of soot filtration by a lattice
Boltzmann method (LBM) [22–27]. In this study, we simulated the particle-laden flow
across the porous SiC-DPF. The non-uniform structure of the filter substrate was obtained
by an X-ray CT technique. Mainly, we focused on the effect of soot aggregation size on the
filtration process and the pressure drop.

2. Numerical Methods

To simulate the particle-laden flow with the soot deposition, the numerical scheme
of LBM was used. Equations for the flow and the soot deposition model were the same
as those of our previous studies [24,26]. Here, we explain the numerical procedure in the
lattice Boltzmann simulation. To realize the porous media flow in the uneven ceramic filter
substrate, the 3D model [28] was used, which is composed of 15 discrete velocities in the
lattice space, expressed by

[c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15]

=

 1 −1 0
0 0 1
0 0 0

0 0 0
−1 0 0
0 1 −1

1 −1 1
1 −1 1
1 −1 −1

−1 1 −1
−1 −1 1
1 1 −1

1 −1 0
−1 1 0
−1 1 0

 (1)

where cα (α = 1 to 15) is the gas velocity of each advection along the lattice coordinate. The
evolution equation for the convection of the flow is

pα(x + cαδt, t + δt)− pα(x, t) = − 1
τ
[pα(x, t)− peq

α (x, t)] (2)

Here, the time step is δt. The variable of τ is the relaxation time for controlling the rate
to the equilibrium distribution due to collision between gas in the flow, which is related with
the kinetic viscosity using ν = (2 τ − 1)/6 c2δt, showing that the Navier–Stokes equations
are derived by the Chapman–Enskog procedure [29]. The equilibrium distribution function,
pα

eq, is

peq
α = wα

{
p + p0

[
3
(cα · u)

c2 +
9
2
(cα · u)2

c4 − 3
2

u · u
c2

]}
(3)

where wα = 1/9 (α = 1:6), wα = 1/72 (α = 7:14), and w15 = 2/9. The sound speed, cs, is
c/
√

3 with p0 = ρ0RT0 = ρ0cs
2. Here, p0 and ρ0 are the pressure and density at the room

temperature. In the simulation, the temperature was constant. The pressure and the velocity
vector of u = (ux, uy, uz) are evaluated in terms of the low Mach number approximation [23],
together with the ideal gas equation.

All variables were converted to be dimensionless. Based on the similarity of the
Reynolds number (Re = UinW/ν), the real values such as flow velocity were treated in the
lattice space of the LBM, where Uin is the inflow velocity of the diesel exhaust, W is the
inlet width of the 3D numerical domain in Figure 1.

p = ∑
α

pα (4)

u =
ρ0

ρ

1
p0

∑
α

cα pα (5)
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As for the validity of the numerical model, previous simulations were compared with exper-
imental data. It was confirmed that mass of trapped soot during the filtration and the soot
oxidation rate of the filter regeneration were matched with those in the experiments [22,23].

In the simulation of the particle-laden flow, the soot particle in the gas phase is de-
posited on the fiber or the soot layer. The soot deposition is described by the modified
particle deposition model [30]. Different from the Lagrangian approach through the equa-
tion of motion, individual particles are not considered. Instead, the soot concentration is
monitored, so that we do not have to consider the complex geometry of nanoparticles [4,5].
The mass fraction of deposited soot is given by

YC,s(x, t + δt) = ∑
α

FC,α(x, t) · PD + YC,s(x, t) (6)

Here, PD is the soot deposition probability, which is a model parameter. It corresponds to
the deposition ratio which determines the local mass of deposited soot at each spatial grid.
In order to consider the soot size, the soot deposition probability in the new model [31] is
described by the Brownian diffusion and the interception effect [32], by which it is possible
to investigate the dependence of the soot size. Moreover, we can discuss the contributions
of the Brownian diffusion and the interception effect, separately.

Figure 1 shows the three-dimensional numerical domain used for the filtration simulation.
The inner structure of the SiC-DPF obtained by the X-ray CT was used. The porosity of the filter
was 0.38. In the coordinate system, the direction of exhaust gas passing through the filter wall is
defined as the x-axis, and the directions perpendicular to the x-axis are defined as the y- and
z-axis. The size of the calculation domain was 450 µm (x) × 60 µm (y) × 60 µm (z). The grid
size was 1 µm, corresponding to the spatial resolution of the X-ray CT measurement. The num-
ber of grid points are 451 (x) × 61 (y) × 61 (z). The filter of 300 µm (x) × 60 µm (y) × 60 µm (z)
is placed at the center of the calculation domain, and the lengths of inlet and outlet zones
are 120 µm and 30 µm, which are set before and after the filter, respectively.

Next, the boundary conditions of the flow and concentration fields are explained. In
the simulation, the soot aggregation diameter (simply called soot size) was changed by
keeping the soot concentration (the soot mass fraction) in the exhaust gas. The exhaust
gas whose temperature was 300 ◦C [23] evenly flowed at the inlet. The inflow velocity
was 1 cm/s. At the outlet, the pressure was constant, with atmospheric pressure. The four
boundaries at the upper, lower, right, and left sides of the numerical domain were treated
as symmetrical boundaries with slip boundaries. A non-slip boundary for the flow was
adopted on the surface of the filter substrate.

As for the soot concentration field, the soot mass fraction was constant at 0.005, at the
inlet. At the four boundaries at the upper, lower, right, and left sides, the concentration
gradient along the y-, z-axis was zero. At the outlet, a developed boundary condition was
adopted, where the gradient of soot concentration along x-axis was zero. As mentioned
before, the soot was trapped by the Brownian diffusion and the interception effect, and
the local mass of deposited soot at each computational grid was calculated. Resultantly,
the soot layer (the soot cake) was formed by the deposited soot. The permeability of the
soot layer was given by the function of the flow velocity, the soot size, and the diffusion
coefficient of the soot [32].
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3. Results and Discussion 
3.1. Soot Deposition Region and Pressure Drop 

First, we explain the soot deposition region. Figures 2 and 3 show two sets of slice 
images obtained at z = 21 μm or y = 35 μm. In this case, the soot size is 100 nm. Three 
profiles of different times are shown at t = 10, 20, 50 s. Initially, the soot passes through 
the surface pores of the porous filter and is deposited inside the filter wall. Namely, the 
so-called depth filtration [33] is observed. As more soot is deposited, pores on the filter 
surface are gradually covered by the soot deposition. At t = 20 s, all pores seen in Figure 3 
are plugged with soot, but in Figure 2, there is one pore which is not covered with soot. 
By checking three-dimensional images of the soot deposition region, all pores on the filter 
wall surface are plugged with soot at t = 45 s. After that, as seen in the profile at t = 50 s, 
the soot layer is formed on the filter wall surface. As more soot is deposited, the thickness 
of the soot layer is thicker and thicker, corresponding to the surface filtration. 

 
Figure 2. Soot deposition regions of the x–y plane at z = 21 μm are shown at three different times. 

Figure 1. Three-dimensional numerical domain used for the particle-laden flow across the porous
SiC-DPF is shown. The total size is 450 µm (x) × 60 µm (y) × 60 µm (z), with the grid size of 1 µm.

3. Results and Discussion
3.1. Soot Deposition Region and Pressure Drop

First, we explain the soot deposition region. Figures 2 and 3 show two sets of slice
images obtained at z = 21 µm or y = 35 µm. In this case, the soot size is 100 nm. Three
profiles of different times are shown at t = 10, 20, 50 s. Initially, the soot passes through
the surface pores of the porous filter and is deposited inside the filter wall. Namely, the
so-called depth filtration [33] is observed. As more soot is deposited, pores on the filter
surface are gradually covered by the soot deposition. At t = 20 s, all pores seen in Figure 3
are plugged with soot, but in Figure 2, there is one pore which is not covered with soot. By
checking three-dimensional images of the soot deposition region, all pores on the filter wall
surface are plugged with soot at t = 45 s. After that, as seen in the profile at t = 50 s, the
soot layer is formed on the filter wall surface. As more soot is deposited, the thickness of
the soot layer is thicker and thicker, corresponding to the surface filtration.

To discuss the shift between the depth filtration and the surface filtration, the time-
variations of the deposited soot mass and the pressure drop were examined. Results are
shown in Figure 4. The soot size is 100 nm. The deposited soot mass divided by the filter
volume is shown in Figure 4a. The resultant time-variation of the pressure drop is shown
in Figure 4b. It is seen that the deposited soot mass gradually increases. On the other hand,
the pressure drop steeply increases. Once all pores on the filter wall surface are covered
with the deposited soot, the surface filtration appears. After that, the filtration efficiency is
100%, because all soot is trapped by the soot layer. The resultant pressure increase seems to
be linear. That is, the constant pressure rise is observed. In this case, the thickness of the
soot cake is proportional to the time [32]. According to the theoretical model [34,35], the
increase of the pressure drop is always proportional to the mass of deposited soot, which is
apparently different from our predictions in Figure 4.
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Figure 3. Soot deposition regions of the x–z plane at y = 35 µm are shown at three different times.
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Next, to see the main contribution of the soot deposition quantitatively, the Brownian
diffusion and the interception effect during the filtration were considered separately. Three
cases were tested; (i) both effects were considered, (ii) only the Brownian diffusion was
considered, and (iii) only the interception effect was considered. Figure 5 shows the slice
images in the z–y plane obtained at z = 21 µm for three cases. These profiles are obtained at
t = 110 s, and the soot size is 100 nm. It is found that the soot deposition regions in cases
(i) and (ii) are almost matched, showing the same thickness of the soot layer. On the other
hand, as seen in case (iii), most of the soot is trapped deeply inside the filter wall. Besides,
there is no soot layer on the filter wall surface.

Solids 2022, 2, FOR PEER REVIEW 5 
 

 

 
Figure 3. Soot deposition regions of the x–z plane at y = 35 μm are shown at three different times. 

To discuss the shift between the depth filtration and the surface filtration, the time-
variations of the deposited soot mass and the pressure drop were examined. Results are 
shown in Figure 4. The soot size is 100 nm. The deposited soot mass divided by the filter 
volume is shown in Figure 4a. The resultant time-variation of the pressure drop is shown 
in Figure 4b. It is seen that the deposited soot mass gradually increases. On the other hand, 
the pressure drop steeply increases. Once all pores on the filter wall surface are covered 
with the deposited soot, the surface filtration appears. After that, the filtration efficiency 
is 100%, because all soot is trapped by the soot layer. The resultant pressure increase seems 
to be linear. That is, the constant pressure rise is observed. In this case, the thickness of the 
soot cake is proportional to the time [32]. According to the theoretical model [34,35], the 
increase of the pressure drop is always proportional to the mass of deposited soot, which 
is apparently different from our predictions in Figure 4. 

 
Figure 4. Time-variations of (a) deposited soot mass and (b) pressure drop are shown. 

0

1.0

2.0

3.0

ρ s
 [g

/L
]

(a)

0 25 50 75 100 1250.1

0.15

0.2

0.25

0.3

t [s]

Pr
es

su
re

 d
ro

p 
[k

Pa
] (b)
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To see the difference between three cases, the time-variations of the deposited soot
mass and the pressure drop were compared. Results are shown in Figure 6. The soot size
is 100 nm. As seen in Figure 6a, the time-variations of the deposited soot mass are the
same for cases (i) and (ii). Furthermore, the same pressure drop is observed in Figure 6b.
Therefore, the soot deposition occurs mainly due to the Brownian diffusion. However,
when only the interception effect is considered, the deposited soot mass as well as the
pressure drop is much smaller. As shown in case (iii) in Figure 5, the pores on the filter wall
surface are not covered with the deposited soot by time t = 110 s. This is because there is
some leakage through the filter wall, resulting in the small deposited soot mass. Therefore,
it can be concluded that the soot deposition is mainly caused by the Brownian diffusion,
which plays an important role in formation of the soot layer on the filter wall surface.
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3.2. Effect of Soot Size on Pressure Drop

In the previous section, it is found that the Brownian diffusion is the main factor for
the soot deposition mechanism. Needless to say, the Brownian diffusion largely depends
on the soot size. Then, we investigated the effect of soot size, dsoot. Figure 7 shows the soot
deposition regions at t = 90 s. It is the slice image in the x–y plane at z = 21 µm. These
are the profiles of dsoot = 75, 100, 125, 150 nm. Since they are the results obtained at the
same period, it is expected that the soot mass supplied into the filter is the same. For all
cases, the soot deposition region is observed relatively in the upstream region of the filter
wall. As the soot size is larger, the soot layer forming on the filter wall surface becomes
thinner. For further discussion, we evaluated the soot mass deposited on the filter wall.
Figure 8a shows the time-variations of the deposited soot mass by changing the soot size.
The resultant pressure drop is also shown in Figure 8b. As seen in Figure 8a, less soot is
deposited with an increase in the soot size. It seems very reasonable, because the smaller
soot is more efficiently deposited by the Brownian diffusion. On the other hand, it may not
be easy to explain the resultant pressure drop in Figure 8b. It is expected that the smaller
soot shows the larger pressure drop due to the efficient deposition. In fact, the pressure
drop of dsoot = 75 nm is initially larger. However, when time elapses, the pressure drop of
the larger soot is conversely superior, which is the same tendency reported by the engine
test bench [36].
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To discuss the pressure drop, we need to consider where the soot is deposited during
the filtration process. Additionally, by considering the Darcy’s law, it is necessary to
examine the permeability of the soot layer as well as the soot density. Figure 9 shows the
soot density at the same location and period in Figure 7. It is found that the soot density is
higher as the soot size is larger. That is, the soot layer becomes sparse when the smaller soot
is deposited. It is reasonable, because the soot layer of the smaller soot is thicker even at the
same period as shown in Figure 7. The resultant soot permeability is shown in Figure 10.
As the smaller soot has a sparse soot layer, its soot permeability is larger, showing smaller
pressure drop. That is why the pressure drop of the smaller soot is relatively reduced at
t > 55 s in Figure 8b, although the pressure drop of dsoot = 75 nm is even higher than those
of other three cases at t < 50 s. Then, we further discuss the soot deposition region.

Figure 11 shows the profiles of the deposited soot mass of dsoot = 75, 100, 125, 150 nm.
The abscissa is the x-coordinate of the flow direction of the exhaust gas. By considering that
the soot layer has a three-dimensional structure, the deposited soot mass is integrated in
the y–z plane. Then, we can discuss the difference between the soot deposition profiles. To
focus on the soot layer formation, the profiles of t = 45 s are shown. As shown in Figures 2
and 3, it is the time when all pores on the filter wall surface are covered with soot. As
seen in this figure, dependent on the soot size, a clear difference is observed. That is, as
the soot size is smaller, the soot is deposited more upstream. In other words, in the case
of dsoot = 150 nm, more soot is trapped by the depth filtration. Since the smaller soot is
efficiently deposited due to the Brownian diffusion, it is understandable to consider that
the smaller soot is trapped at the more upstream region. Resultantly, the surface filtration
appears earlier with a linear pressure increase in Figure 8b. Hence, when we discuss
the pressure drop during the filtration process, it is important to consider where the soot
deposition occurs, together with the deposited soot mass.
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4. Conclusions

In this study, we simulated the particle-laden flow across the SiC-DPF. Focusing on the
soot size, we discussed the filtration process and the pressure drop. The following results
were obtained.

(1) The contributions of the Brownian diffusion and the interception effect were evaluated
quantitatively. The soot deposition mainly occurs due to the Brownian diffusion. The
soot deposition region is restricted to the area of the upstream of the filter wall surface.

(2) Independent of the soot size, the shift from the depth filtration to the surface filtration
is observed. By checking the soot deposition region, the pressure drop increases
steeply during the depth filtration. Once all pores on the filter wall surface are covered
with soot, the pressure rise is reduced, showing the linear increase during the surface
filtration. As the soot size is smaller, the shift to the surface filtration appears earlier.

(3) As the soot size is smaller, the soot layer forming on the filter wall surface becomes
sparse. The resultant soot permeability of the smaller soot is larger. Then, due to the
larger soot permeability, the pressure drop of the smaller soot is expectedly reduced.
However, the smaller soot is trapped more efficiently by the Brownian diffusion.
Then, only in the earlier stage of the filtration, the pressure drop of the smaller soot is
larger. After that, the pressure drop is conversely smaller. Therefore, for discussing
the pressure drop, it is important to consider where the soot deposition occurs as well
as the deposited soot mass in the filter.
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