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Abstract: Groundwater quality can be impacted by the backfilling of coal pits with waste rock
containing new mineral surfaces and nanomaterials. This study was implemented to identify newly
available arsenic and selenium sources in waste rock from the Cordero Rojo Mine in the Powder
River Basin, Wyoming, to highlight the alteration of contaminant sources with the transition from an
overburden geologic state to the mined waste rock. Basic kinetic models were constructed to replicate
the possible weathering modeling scenario derived from published sources of arsenic and selenium in
the Powder River Basin overburden—pyrite and gypsum, respectively. These basic prediction models
were unable to capture the arsenic and selenium trends recorded for a saturated column loaded with
waste rock from the Cordero Rojo Mine. Enhanced kinetic models were tested through trial and error
to capture newly available sources created by the mining of the waste rock. The incorporation of new
source contributions produced modeled arsenic and selenium trends similar to the observed trends
in water extracted from the column. The identification of newly available contaminant sources in
backfill waste rock is necessary to evaluate the potential release of contaminants and the exceedance
of water quality criteria for overburden formations that have not previously shown the potential for
water quality contamination.

Keywords: waste rock weathering; nanomaterial generation; contaminant modeling

1. Introduction

Post-mining remediation can include waste rock backfilling of open pits, which creates
aquifer matrices that are substantially different from the surrounding aquifer. Not only
is the physical structure of the waste rock different from its original geologic state, but
new mineral surfaces and easily weathered nanomaterials (e.g., very fine to ultrafine dust
particles) have been created that may impact water quality during and after groundwater
recovery [1-3]. Particle generation from mining, particularly open pit mining, can gener-
ate substantial and transportable particles that are traditionally viewed as air pollutants
(fugitive dust) [4] but also have the potential to influence water resources because of their
higher reactivity (e.g., high surface-to-volume ratio) and transportability during weath-
ering. The alteration from a geologic state to a post-mining, waste-rock fill that has been
cut, blasted, hauled, dumped, and graded creates potential new contaminant sources that
were previously unavailable, or had limited availability, in the original geologic state [5-8].
With groundwater recovery in a newly constructed backfill aquifer, a high and variable
solute load may propagate through the aquifer (Figure 1) as new mineral surfaces and
nanomaterials are exposed to weathering processes [9-14]. The potential for increased
mineral reactivity (e.g., fresh mineral surfaces or nanomaterials) and variable release of
solutes may produce conditions that are difficult to predict with hydrogeochemical models
using existing knowledge of the overburden/waste rock formations [15-17].
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Figure 1. Possible trend of solute release with weathering of fresh waste rock (modified from
Langman et al. [18]).

Coal mine waste rock (spoils) refers to low-grade ore and rock units overlying and
interbedded with economically viable coal layers. Commonly, this waste rock is stored and
then backfilled into the excavated areas as spoil dumps, which become backfill aquifers
with groundwater recovery. The hydrologic characteristics of the backfill aquifer will vary
depending on the method of mining, backfill placement/compaction, backfill composition,
and particle size distribution [19]. Excluding recharge and flow variability in the backfill
aquifer, the release of contaminants such as arsenic [As] and selenium [Se] from waste rock
will be determined by the availability and reactivity of their mineral sources that likely
were altered with mining [20-22]. If substantial new mineral surfaces and nanomaterials
were generated with mining, these new sources can result in a quicker contaminant release
and poor water quality during the initial weathering stage [23-26]. Water quality impacts
(exceedance of regulatory criteria) have been documented for up to 15+ years in backfill
aquifers in the Powder River Basin, Wyoming, USA (Figure 2) [9], where groundwater
extracted from the unmined overburden typically does not have water quality issues. The
length of this stage of poorer water quality with the initial weathering of the backfill is
dependent on weathering rates and the amount of newly exposed mineral surfaces and
nanomaterials generated from mining [18,27-31].

Coal mining in the Powder River Basin, the largest coal mining region in the USA,
includes the removal of a sedimentary overburden that is temporarily stored before landscape
reconstruction (Figures 3 and 4). Surface water and shallow groundwater in the Powder
River Basin have shown exceedance of water quality criteria for As and Se at select times and
locations, which are attributed to coal mining and waste rock backfilling [32-36]. Waste rock
derived from the overburden at the Cordero Rojo Mine in the Gillette Coal Field of the Powder
River Basin (Figure 2) is composed of the Wasatch and Fort Union formations—sequences of
interbedded fluvial, lacustrine, and palustrine deposits [37-39]—that typically do not produce
groundwater with elevated As or Se concentrations [40,41]. The blasting and transport of the
overburden waste rock produces new mineral surfaces and nanomaterials that may increase
the availability of potential contaminants such as As and Se [11,20,27,42,43]. Transport of
nanomaterials (at least one dimension at the nanometer scale [10]) also can contribute to
the solute load through inclusion in the dissolved solute phase (< 450 pm filtering) [14] of
groundwater migrating through the backfill aquifer. The goal of this study was to evaluate



Mining 2024, 4 471

potential new sources of As and Se in the waste rock through a comparison of kinetic (forward
or predictive) models and kinetic column results from the weathering of the waste rock from
the Cordero Rojo Mine. The output of the mineral weathering models is used to highlight the
difficulty of predicting waste rock weathering from known contaminant sources present in
the geologic state of the overburden.

Powder River Basin
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Figure 2. Powder River Basin, Gillette Coal Field, and Cordero Rojo Mine, Wyoming, USA (modified
from Martin and Langman [31]).

Figure 3. Removal of overburden and waste generation during open-pit coal mining at the Cordero
Rojo Mine, Powder River Basin, Wyoming, USA (Martin and Langman [31]).
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Figure 4. Reconstructed landscape adjacent to the active Cordero Rojo Mine, Powder River Basin,
Wyoming, USA. The coal pit has been filled with waste rock (backfill), graded, and covered with
seeded topsoil along with reconstruction of water features.

1.1. Powder River Basin Waste Rock

Waste rock from the Cordero Rojo Mine is representative of the overburden for coal
mines in Gillette Coal Field, Wyoming, where open pit mines form the most prolific
coal mining region in the USA. The overburden consists of the siliciclastic Wasatch and
Fort Union formations (Figure 5) [44]. The waste rock derived from the overburden is
composed primarily of low-reactivity minerals (Supplementary Materials) (e.g., alumi-
nosilicates) derived from sequences of interbedded fluvial, lacustrine, and palustrine de-
posits [37-39]. These formations contain sandstone with smaller amounts of limestone and
relatively non-sulfidic mudstones (primarily phyllosilicate clays such as smectite, vermi-
culite, kaolinite, illite, and chlorite) [37] whose paleoenvironments produced the low sulfur
(typically < 1% [45]) coal found in this region [46—48]. The overburden that must be re-
moved for mining the coal (Figure 5) produces large waste piles (Figure 3) that are later
deconstructed and reworked during landscape reconstruction (Figure 4). Removal of the
overburden produces a waste rock with small amounts of coal and a very large grain size
distribution (clay to boulder, Figure 6). A grain size distribution analysis for the < 6.3 mm
waste rock samples used in the column study [31] indicated a greater fraction of clay-sized
particles in the Fort Union sample compared to the Wasatch sample, which translated to a
greater surface area of 14.2 m? /g for the Fort Union sample compared to the 5.1 m? /g for
the Wasatch sample.
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Figure 5. Overburden and coal seam at the Cordero Rojo Mine, Powder River Basin, Wyoming, USA
(Martin and Langman [31]).

Figure 6. View of the particle size variability in waste rock generated at the Cordero Rojo Mine in the
Powder River Basin, Wyoming, USA. Waste rock can range from clays to boulders.
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1.2. Arsenic and Selenium Sources

Weathering of the Wasatch and Fort Union waste rock is not expected to release
substantial As and Se because of the lack of these elements in regional groundwater
extracted from these formations [41]. Yet, backfill aquifers in this region have shown As
and Se concentrations exceeding water quality criteria [49]. Dissolution of salts that were
previously unavailable to groundwater in the overburden and the oxidation of contaminant-
bearing minerals associated with the coal have been hypothesized as the likely sources of
As and Se [9,35,50-52]. This perception of potentially no impact on groundwater quality
from backfill aquifers and multiple hypothesized sources of As and Se is the basis of this
study’s question regarding new mineral surface availability, generation of contaminant-
containing nanomaterials, and the need to identify such sources for prediction of future
groundwater quality. Removal of the overburden during mining can produce a wide
range of particle sizes (Figure 5), but it is the exposure of new mineral surfaces and the
generation of the nanomaterials that can produce high weathering rates and the substantial
release of potential contaminants [11,20,23,27,42,53,54]. The generation of nanomaterials
also produces particles that can be electrostatically sorbed to the larger bulk solids, which
can readily desorb and be transported with infiltrating water [53,55-58].

Powder River coal is relatively low in As (median 1.9 ppm) compared to more As-
rich coal from Appalachia (8 to 29 ppm) and the Western (14 ppm) and Eastern (10 ppm)
Interior [59]. Iron sulfides such as pyrite [FeS;], and arsenides such as loellingite [FeAs;],
can be hosts for As in such geologic environments [60]. Arsenic has been detected in the
Fort Union Formation, which contains the deltaic deposits that produced the sulfides and
the mined Wyodak-Anderson coal seam of the Tongue River Member [37,61]. The As can be
found sorbed to iron- and manganese-oxides [61], in pyrite (e.g., As-bearing pyrite), and, to
a lesser extent, in organic portions of the coal [59]. As-bearing pyrite is a common source for
the release of As with weathering of mine waste [62], and nanoparticle pyrite (nanopyrite)
has been found in coal mine waste rock along with associated substitution elements such
as As [63,64]. During groundwater recovery, the oxidative dissolution of newly exposed
As-bearing pyrite could release soluble As** and As>* complexes [65]. Given the known
As association with pyrite and the incorporation of small amounts of pyrite-containing coal
in the Cordero Rojo waste rock, the release of As from the weathering of the waste rock can
be modeled by the oxidative dissolution of As-bearing pyrite [66].

Selenium is typically found in the environment as selenide (H,Se, HSe™), selenium
(SeY), selenite (SeO3%7), or selenate (SeO,427), depending on the pH and redox conditions
during deposition [67]. Selenite and selenate will be the dominant forms available as poten-
tial solutes, but selenite typically will sorb to particles, particularly iron (oxyhydr)oxides,
while selenate is soluble and mobile because of its weak sorption to particles [68]. Within
the Powder River Basin, Se is found in the coal, in coal-associated pyrite or other sulfides,
in water-leachable salts, and sorbed to particles [69]. Dreher and Finkelman [35] indicated
that Se salts from past oxidation of pyrite may be the primary source of Se in the Pow-
der River Basin overburden. Sharmasarkar and Vance [70] found Se strongly correlated
with clay fractions in Powder River Basin overburden formations. Selenium salts readily
dissolve, but the dissolution of Se salts may not contribute substantial soluble Se species
(e.g., HSeO3~ or SeO,2") if selenite is produced, given its preference to readily sorb to sedi-
ments [71-74]. For the weathering of Powder River Basin waste rock, Se can be modeled as
the dissolution of Se-containing gypsum [CaSOy]. The incorporation of Se into gypsum
would be expected (Se is a common substitute for S), given the past oxidation of pyrite and
coal as indicated by the significant presence of gypsum in Powder River Basin sedimentary
formations [49,75-78].

1.3. Kinetic Modeling

Simplified predictive (kinetic reaction) mineral-weathering models were created with
PHREEQC 3 for As and Se release from the Cordero Rojo waste rock based on the perceived
sources in the overburden formations (e.g., pyrite and gypsum). Such models represent
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the likely predictive element-release tool that could be derived from the available informa-
tion for estimating potential impacts on groundwater quality with weathering of known
contaminant-containing sources that were present in the overburden and now present in
the waste rock. The model application used PHREEQC's capability to simulate the dynamic
process of reaction kinetics (e.g., RATES and KINETICS code blocks for mineral weathering)
to reflect the contributions of the contaminant sources within the waste rock. Enhanced
predictive models were constructed to account for new mineral surfaces and the generation
of nanomaterials, given the substantial alteration of the overburden during mining. The
goal was to compare typical mineral-weathering models built around As and Se release
from known sources to enhanced models focused on replicating the contribution from the
weathering of newly available sources generated from the mining process.

2. Materials and Methods

To evaluate the application of the kinetic models for estimating the potential release of
As and Se from the waste rock, a saturated column experiment was conducted to provide a
temporal trend of the release of As and Se from fresh waste rock collected from the Cordero
Rojo Mine. Availability of the As and Se temporal trends from the water extracted from the
column allowed for the identification of possible additional sources of these contaminants
that were not considered in the basic predictive models derived from a review of the
literature regarding As and Se sources in the overburden formations. The use of the models
and comparison between the basic and enhanced model outputs is not to create predictive
models for future waste rock analysis but to evaluate the As and Se source alteration from
the overburden geologic state to the mined waste rock state. This evaluation highlights the
difficulty in using published sources of the contaminants in the geologic state to determine
potential water quality impacts.

2.1. Collection of Waste Rock for the Column Experiment

Waste rock samples of the Wasatch and Fort Union formations were collected within
2 weeks of initial excavation from the Cordero Rojo Mine in the Powder River Basin.
Samples of the waste rock generated from the Fort Union and Wasatch formations were
separately collected (the two types are segregated during mining) through a random
selection method per standard practice for sampling aggregates [79,80] and screened to
< 6.3 mm in the field [81-83].

2.2. X-ray Analysis of Arsenic and Selenium Sources

Wasatch and Fort Union waste rock were evaluated for major and minor element
concentration by X-ray fluorescence (XRF) at the Washington State University GeoAna-
lytical Laboratory (Advant’XP+ sequential XRF, fused beads). Additionally, samples of
Fort Union and Wasatch waste rock were examined by scanning electron microscope (Zeiss
Supra 35 Variable-Pressure FEG SEM with Noran System Six EDS) at the University of
Idaho Electron Microscopy Center to confirm potential sources of As and Se indicated by
existing literature and to evaluate potential new sources derived from the mining process.
Given the expectation of As association with pyrite in coal particles incorporated into the
waste rock during overburden removal, an additional Fort Union sample was screened for
coal particles by flotation for SEM analysis. For this flotation separation, 75 g of Fort Union
waste rock was placed in a 1-L beaker with 500 mL of deionized water and agitated with
an orbital shaker for 2 h. Approximately 2 g of coal particles floated to the water surface
and were collected and inserted into a lyophilizer for 24 h.

2.3. Column Experiment

A 20-week, kinetic column experiment was conducted to evaluate the temporal trend
of the release of As and Se from newly available sources in the waste rock collected at the
Cordero Rojo Mine [31]. A warm-room (20 + 1 °C), 0.6 m (H) x 0.1 m (W) PVC column was
loaded with 0.8 kg of Wasatch waste rock and 3.2 kg Fort Union waste rock to mimic the



Mining 2024, 4

476

overburden distribution at the Cordero Rojo Mine, which is replicated during landscape
reconstruction. The weathering cycle for the column consisted of a twice-weekly schedule
of the drip introduction of 1-L of deionized water and full saturation of the waste rock
for 72 h, followed by a 2-h drain period (minimal disturbance of the waste rock with a
K<10°m/ s) and a 6-h unsaturated period before re-saturation of the column. This is
a modification of the standard humidity cell protocol [83,84] to simulate saturated (e.g.,
aquifer) conditions and allow for the collection of sufficient water volume for analysis of
environmental parameters and solutes [31]. The twice-weekly collection of water from
the column was analyzed for pH (£0.01 pH), Eh (£0.2 mV), and specific conductance
(£0.01 uS/cm) with calibrated Orion 3-Star meters/probes and analysis of As and Se as
unfiltered, 0.45-um filtered, and 0.20-pm filtered samples. The As, Se, and additional
elements, such as Fe, were determined by inductively coupled plasma optical emission
spectrometry (ICP-OES) for larger concentrations (Perkin Elmer Optima 8300 ICP-OES)
and inductively coupled plasma mass spectrometry (ICP-MS) for smaller concentrations
(Agilent 7800 ICP-MS) at the University of Idaho Analytical Services Laboratory. Greater
detail of the column experiment is presented in Martin and Langman [31], which describes
an evaluation of column solute trends for field parameters and high-concentration solutes
released from the waste rock.

2.4. Particle Size and { Potential

Immediately after sample collection, unfiltered column water was measuredfor particle
size distribution and ¢ potential, using a Brookhaven NanoBrook ZetaPALS. Samples were
analyzed by dynamic light scattering for particle size distribution in water at 25 °C with
a viscosity of 0.89 cP, a refractive index of 1.33, at a scattering angle of 90°, a dielectric
constant of 78.54, a laser wavelength of 659 nm, and inputted pH and conductivity values.
Analysis of ¢ potential was performed as laser Doppler electrophoresis (phase analysis light
scattering). The laser beam was passed through the sample undergoing electrophoresis,
and the scattered light from the moving particles was frequency shifted, from which the
electrophoretic mobility (m? V! s71), U, was determined given the laser wavelength and
the scattering angle. The  potential was calculated from the electrophoretic mobility using
the Smoluchowski solution ({ = pU/¢€), where ¢ is the electric permittivity of the solution
(C2N~1 m—2) [85].

2.5. Kinetic Models and Parameters

Four mineral-weathering models were constructed with PHREEQC: (1) As-bearing
pyrite oxidation, (2) As-bearing pyrite oxidation + nanomaterial contribution, (3) Se-bearing
gypsum dissolution, and (4) Se-bearing gypsum dissolution + nanomaterial contribution.
Each model combined a well-oxygenated (pe of 12.5), near-neutral water (pH of 6) at 20 °C
(replicative of column (ultrafiltration) water) with the likely As and Se sources found in the
Wasatch and Fort Union formations. The column experiment resulted in a near-neutral,
oxidizing environment throughout the experiment period [31], and the similar pH and
oxidizing condition (not rate limited) of the model environment would not alter solute
release over the model time period. To compare column and model results, the model As
and Se outputs represent a total solution concentration.

The initial (basic) kinetic models (no nanomaterial source) were built on geochem-
ical reactions of the bulk solid source of each of the contaminants—As-bearing pyrite
(95% pyrite + 5% loellingite [FeAs,]) and Se-bearing gypsum (95% gypsum + 5% nesto-
laite [CaSeQOg3]). Arsenopyrite was not chosen for the oxidation reaction because it has
not been identified in Powder River Basin coal and is structurally different (monoclinic
and prismatic) compared to As-bearing pyrite (pyrite = cubic and diploidal + loellingite
= orthorhombic and dipyramidal). The available amounts of the As-bearing pyrite and
Se-bearing gypsum were set to the total release of As or Se from weathering during the col-
umn experiment to align output scales for comparison of the temporal trends of the model
outputs and the column results. These batch model simulations (no transport incorporated)
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were aligned with the associated interval of new water inputs to the column experiment.
The initial models represent the likely mineral-weathering modeling for the prediction of
water quality impact from the generation and weathering of the waste rock given known
information about the overburden material.

The initial As model was established as the oxidative dissolution of the As-bearing
pyrite based on parameters described by Williamson and Rimstidt [86], which has a log k
of —8.19 for pyrite. The initial Se model was established as the simplified dissolution of a
dissolvable salt (log k = —7 for gypsum) given an initial area (Ag) to volume (V) ratio of
1.67 and an initial molar concentration (mg). This simplified reaction rate removes concerns
regarding surface area availability and roughness, while conveying the likelihood of the
substantial dissolution of the gypsum following the production of the waste rock, which can
produce very small and roughened particles but still retains partially bound (limited surface
availability because of incomplete liberation) mineral forms that lessen reactivity [87]. The
saturation index of gypsum was not incorporated into the reaction rate (negative feedback)
given the limited amount of reacted gypsum (no saturation of the mineral phase). These
parameters and reaction rate were evaluated against the column results to determine the
applicability of the model parameters for replicating the initial reaction and mineral release
of Se (dominant surface reaction as opposed to a surface-diffusion reaction [88]) that was
expected during the early weathering stage of the column experiment. Enhanced models
were constructed through trial and error of additional As or Se sources to produce a trend
similar to the column output. The goal of the enhanced models was to identify potential
source types that deserve consideration for predictive modeling of fresh waste rock where
the act of mining has increased the availability of the target elements.

3. Results and Discussion
3.1. Arsenic and Selenium Source Identification

The XRF analysis of the waste rock indicated 7 ppm of As in the Fort Union sample
and 2 ppm in the Wasatch sample (Se was not part of the XRF analysis). Examination of the
waste rock with the SEM-EDS (examples shown in Figures 7 and 8) indicated the presence
of As in coal particles (Fort Union sample) and distributed concentrations of Se (0.5 wt. %)
in areas with high clay content (Fort Union and Wasatch samples). Analysis of the floated
coal particles from the Fort Union waste rock indicated that As was consistently present in
trace amounts (0.1 to 0.6 wt. %) throughout the coal particles, and Se was detected (up to
7 wt. %) as clay particles sorbed to larger particle surfaces. Results suggest a coal source
for As and sorbed or precipitated Se particles with a greater abundance of both elements in
the Fort Union waste rock.

High As zone
& " ! b Coal particle
(-

Possible As‘pyrite -

Sorbed particles A\ / gore
r~-

Figure 7. The likely presence of arsenic [As] as arsenic-bearing pyrite and sorbed particles on a
pre-experiment coal particle from the Fort Union waste rock.
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Figure 8. The likely presence of a sorbed selenium particle (e.g., selenite [SeO3]) on pre-experiment
aluminosilicate (e.g., plagioclase) particle in the Fort Union waste rock.

3.2. Waste Rock Column Arsenic and Selenium Release

The release of As and Se from the waste rock in the column experiment was part of the
release of the larger solute body [31] that produced a typical weathering trend (Figure 1) as
indicated by a quick and early peak in specific conductance followed by a slower decrease
until Day 40 and a final stage of apparent steady-state weathering (Figure 9). The As
release was reflective of the assumed oxidative dissolution of As-bearing pyrite, with a
slow increase in concentration until Day 20, followed by a slower decline in concentration
reflective of the consumption of the available pyrite (Figure 9). Selenium release consisted
of a quick peak at Day 3 and a slightly slower decline until Day 20, after which Se was no
longer detected in the column water (Figure 9). The substantial difference in As and Se
concentration trends is not unexpected given the likely association of As with pyrite [89]
and Se in salts [31,32,35,41]. Some of the As trend represents the oxidation of the sulfide
surface (shrinking core model of sulfide weathering [28,90-94]), which is controlled by the
inward diffusion of oxygen given the blocking effect of Fe and S precipitates [95]. The quick
release of Se indicates the likely dissolution of Se salts or desorption of Se-bearing particles,
followed by the flushing of remaining Se-bearing particles and the continuing contribution
from Se salt dissolution. Some of the released As and Se occurred as nanoparticles as
indicated by particle size analysis (Figure 10). Large particles (mean > 3000 nm) were
initially flushed from the column during the first week, followed by mean particle sizes in
the 100 to 300 nm range until after Day 60 when the mean particle size increased to near
400 nm, then decreased. The associated ( potential values varied between negative and
positive values during the first 70 days reflective of the higher solute period where the
greater reactivity of the mineral sources produced a range of cationic and anionic particles.
The mean particle size in the column water increased after Day 90 until plateauing after
Day 110, and the C potential remained positive during this period.
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Figure 9. Specific conductance and total (unfiltered) concentrations of arsenic and selenium in the
in water collected from the kinetic column containing the waste rock from the Cordero Rojo Mine.
Non-detected selenium concentrations were set to 0.006 pmol/L (half the reporting limit).
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Figure 10. Mean particle size and  potential of water collected from the kinetic column containing
the waste rock from the Cordero Rojo Mine.

3.3. Initial Arsenic Model vs. Column Experiment

The initial or basic As model did not produce an output trend similar to any of the
As trends (unfiltered or filtered) from the column experiment (Figure 11). The model
produced an As trend that would be expected from unweathered, As-bearing pyrite with
a relatively quick peak followed by a slow decline in concentration. The unfiltered and
filtered As concentrations recorded during the column experiment indicated an initial
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peak (or shoulder) followed by a larger peak before a substantial drop in As release
near Day 20 (unfiltered) or Day 24 (filtered values). The unfiltered As trend is more
variable compared to the filtered As trends, likely because of larger particles moving
through the column. The two-peak release (shoulder and main peak) in the As trend likely
occurred because of multiple source contributions, such as initial nanoparticle flushing
(no differences in unfiltered or filtered As concentrations during the first week) and the
subsequent degradation of the bulk sulfide mineral source with oxidative dissolution of
As-bearing pyrite.

012 L 'l Ll l Ll l L] ' L) l Ll l Ll

i —— As, unfiltered
-=-- As, 0.45-umfilter _
o As, 0.20- pm filter
— Basic As model

1

- 0.08
[e)
=
5 006
=
Q
L
<< 0.04

0.02

0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120
Day

Figure 11. Arsenic results for the basic arsenic model with oxidative dissolution of arsenic-bearing
pyrite and total (unfiltered) and filtered arsenic concentrations from the column experiment.

The delay in As release from the column waste rock likely is a result of the multi-step
release of As from pyrite, where As is initially released from the degrading mineral as a
non-soluble species (As** or AsO3 %) that will be sorbed before full oxidation to the more
soluble As®* or AsO, 3 [96,97]. Arsenic released from the pyrite mineral structure can be
retained by co-precipitation (e.g., ferric arsenates) and adsorption to Fe (oxyhydr)oxides
that slow As release into solution [98]. Additionally, Cen et al. [97] found that the release of
As3* from the oxidative dissolution of arsenopyrite decreases with the presence of biochar,
a similar inorganic/organic carbon form to coal. Such factors indicate the likelihood of
the limiting of As release until full oxidation of the element and degradation or transport
of sorbing surfaces. Therefore, the weathering processes for explaining the dual peak
visible in the As released during the column experiment likely are an initial transport of
As-bearing nanoparticles (e.g., sorbed to Fe (oxyhydr)oxides or As-bearing nanopyrite)
followed by the greater release of As with the oxidative dissolution of the bulk As-bearing
pyrite, and a subsequent slow decline as the sulfide mineral surface is decreased with
further weathering.
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3.4. Enhanced Arsenic Model vs. the Column Experiment

The weathering regime to be tested with the enhanced As model is the meshing
of nanomaterial contribution and bulk solid weathering to capture the two-peak trend
identified in the column results (Figure 11). An examination of the release of Fe during
the column experiment indicates a similar trend of two peaks during the first 30 days of
the column experiment (Figure 12). There appears to be a flushing of Fe-bearing particles
that may be carrying As. The range of particle sizes (e.g., nanoscale to microscale) were
large given the filtered Fe concentration was substantial during the first peak (0.06 pmol/L)
compared to the total Fe concentration (0.07 umol/L) and the mass of As (~0.03 pmol/L in
the total and dissolved concentrations). The initial peak of As and Fe likely is the result of
the flushing of mostly nanoparticles with some larger particles from the waste rock before
the onset of pyrite oxidation and release of fully oxidized As. This flushing of As and Fe
is a result of their association where As is commonly sorbed to Fe (oxyhydr)oxides [99].
Nanoparticle Fe (oxyhydr)oxides are common and have a high surface energy that will
readily sorb other metal(loid)s such as As [14,100,101].
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Figure 12. Unfiltered and 0.45-um filtered iron and arsenic concentrations recorded during the
column experiment.

The enhanced model (Figure 13) for As release incorporated the nanomaterial contri-
bution (second source) through the dissolution of arsenolite [As;Og], an oxidation product
of arsenic sulfide, to replicate nanoparticle desorption (initial concentration peak) to com-
plement the As release from the oxidative dissolution of pyrite (second concentration peak
from the primary source (basic model)). The arsenolite dissolution was set to a typical fast
dissolving salt (log k = —12) to replicate the quick release into solution. The enhanced mod-
eled As release trend is similar to the filtered As release trend from the column experiment,
although a larger release of As was present in the column experiment during the second
peak. This additional mass of As in the filtered column water likely is the continued release
of As-bearing particles moving through the low permeability waste rock (a 2-h drain period
was necessary to capture drainable water from the approximate 0.5-m column of saturated
waste rock). The removal of transportable particles from the column and reduction of
the early availability of a substantial portion of pyrite surface area produced a post-Day
30 weathering trend representative of the slow release of As from pyrite oxidation as the
available surface area was reduced.
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Figure 13. Arsenic concentrations predicted from the enhanced arsenic model of nanoparticle
contribution and oxidative dissolution of arsenic-bearing pyrite compared to the column experiment’s
filtered (<450 um) arsenic concentrations.

3.5. Initial Selenium Model vs. the Column Experiment

Analysis of Se in the unfiltered (total), 0.45-pm filtered, and 0.20-um filtered column results
indicate similar Se concentrations for all sample types. The presence of Se salts in the waste
rock [35,69] and the results of the column experiment suggest that Se was present as Se ions
or flushed from the waste rock as <0.20-um nanomaterials. The column Se results indicated
an initial spike in Se concentrations that quickly declined to very low concentrations by Day
10 and non-detectable levels by Day 17 (Figure 14). Such a quick Se release and decline are
indicative of a fast mineral reaction (e.g., salt dissolution) and/or flushing of a nanomaterial
source (e.g., desorption of selenite/selenate particles). Given the solubility of selenate, limited
mobility of selenite, and oxygenated conditions recorded during the column experiment, Se
likely was present as selenate derived from the oxidative dissolution of Se salts.
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Figure 14. Selenium results for basic selenium model with dissolution of a selenium-bearing gypsum
and total (unfiltered) and filtered selenium concentrations recorded during the column experiment.
Selenium concentrations recorded from the column experiment were the same for the total, 0.45-um
filtered, and 0.2-um filtered concentrations.
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The initial Se model was based on the dissolution of a Se-bearing salt (95% gypsum +
5% nestolaite) given the presence of substantial gypsum in the waste rock formations and
noticeably quick release of Se with weathering of the waste rock in the column experiment.
The basic model of Se salt dissolution produced a similarly quick concentration peak
comparable to the Se release from the column experiment, but the modeled Se trend
indicated that all Se was quickly released, not the quick concentration peak and slower
concentration decline visible in the column concentrations (Figure 14). This contrast in Se
release trend is suggestive of a second, yet slightly slower, process of Se release from the
waste rock that is necessary to account for the slower decline in concentrations visible in
the column results.

3.6. Enhanced Selenium Model vs. the Column Experiment

The initial Se model identified the timing of the Se peak in the column results but not
the post-peak decline of column concentrations (Figure 14). A model of salt dissolution and
bulk solid Se-bearing pyrite would not replicate the column results but simply add to the
peak concentration followed by a slower decline in concentrations, similar to the As-bearing
pyrite oxidation and As release. An enhanced model of Se salt dissolution (part of peak
concentration) and oxidation of Se-containing nanopyrite (surface-to-volume ratio of 4.2 but
same log k of —8.19 for pyrite [86]) was able to replicate the column results (Figure 14). The
enhanced model identified a peak concentration from salt dissolution and greater release of
Se with oxidation of a nanopyrite that produced a near replication of the post-peak decline
visible in the column experiment concentrations (Figure 15). An increase of the surface-
to-volume ratio from the standard 0.3 value used for pyrite oxidation [86] represents a
substantial increase in potential weathering applicable to nanomaterials generated during
mining. Nanomaterials can be highly reactive because the area-to-volume ratio substantially
increases as particle size decreases, which allows for a much greater available surface for
reactions [102]. The change in particle size during waste rock generation should depend
on the mineral type, composition, and original particle shape [10]. The identification of
nanopyrite in coal mine waste rock [63] supports the inclusion of such reactive sources for
potential contaminants, such as Se.
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Figure 15. Selenium concentrations predicted from the enhanced selenium model of dissolution of
selenium-bearing gypsum and selenium-bearing nanopyrite compared to the column experiment
selenium concentrations (total and filtered selenium concentrations were identical during the column
experiment).
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4. Conclusions

The complexity of predicting the water quality of a backfill aquifer is a result of the
change in the waste rock from its overburden state to its mined state. The alteration of the
material with mining exposes previously bound mineral surfaces and generates very fine to
ultrafine particles or nanomaterials. These newly available mineral surfaces and nanomate-
rials may contain contaminants that are now available for release in greater concentrations
than predicted from the historical water chemistry of groundwater extracted from unmined
overburden formations. Traditional geochemical modeling of known contaminant sources
associated with overburden formations can capture the likely process(es) of mineral weather-
ing and contaminant release, but additional source contributions from new mineral surfaces
and nanomaterials likely are necessary to capture the high and variable solute load typically
associated with the early weathering stage of fresh waste rock. The identification of such
sources and potential water quality impacts may be difficult without characterization and
weathering of the waste rock to identify these more reactive sources.

The release of arsenic and selenium from the weathering of coal mine waste rock in
the Powder River Basin of Wyoming is not expected to be significant because of historical
records that indicate the limited presence of these contaminants in groundwater extracted
from the overburden formations. The column experiment with waste rock from the Cordero
Rojo Mine in the Powder River Basin was evaluated for the temporal release of arsenic and
selenium, which was compared to the the release of these elements from basic predictive
models. Each model produced a poor fit in comparison to the release of arsenic and
selenium from the weathering experiment. Additional sources of each contaminant were
added to the models to account for new reactive sources that allowed for the greater release
of each element in the early weathering stage of the waste rock. The inclusion of the new
sources produced near exact fits of the model outputs compared to the column experiment
concentrations. It is unlikely that an arsenic or selenium kinetic model could have been
developed that would have predicted the potential release of the elements without the
results of the column experiment to guide the parameterization of the models. Therefore,
predictive models for estimating potential water quality impacts in backfill aquifers require
waste rock mineral and particle analysis to estimate potential new sources of contaminants
made available during the mining process. Such an investigation will require not only
characterization of the waste rock that is typically completed as part of the disposal process
but solute characterization because of the greater availability of the potential contaminants
in the waste rock state.
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