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Abstract: In this research, data analytics and machine learning were used to identify the performance
metrics of loaders and haul trucks during mining operations. We used real-time collected data
from loaders and haul trucks operating in multiple quarries to broaden the scope of the study and
remove bias. Our model indicates relationships between multiple variables and their impacts on
production in an operation. Data analysis was also applied to ground engagement tools (GET)
to identify key preventative maintenance schedules to minimize production impact from capital
equipment downtime. Through analysis of the loader’s data, it was found there is an efficient cycle
time of around 35 s to 40 s, which yielded a higher payload. The decision tree classifier algorithm
created a model that was 87.99% accurate in estimating the performance of a loader based on a full
analysis of the data. Based on the distribution of production variables across each type of loader
performing in a similar work environment, the Caterpillar 992K and 990K were the highest-yielding
machines. Production efficiency was compared before and after maintenance periods of ground
engaging tools on loader buckets. With the use of maintenance and production records for these tools,
it was concluded that there was no distinguishable change in average production and percentage
change in production value before and after maintenance days.
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1. Introduction

The development of new technologies has opened a broader view into machines
and sensors through the expanded collection of big data. The Internet of Things (IoT)
has taken hold in the mining industry, allowing connections between equipment and
software to produce real-time data on numerous operation parts: hazard analysis, fleet
management, condition monitoring, alarm systems, and even process optimization [1–3].
Machine companies that design machines for mining purposes, such as Caterpillar, are
now fitting newer generations of machines with hardware to allow big data collection [4,5].
The new hardware connects sensors across the machine to user interfaces and maintains
records of all metrics. The new sensor–user interface connection then uses the structured
data to output analyses of performance metrics, efficiency, and overall machine health [6].

Although these technological improvements exist, they are not always being fully
utilized by companies in the mining industry. Mining is a mature industry that is accus-
tomed to how things have been done in the past because it is cheaper than adopting new
technologies in an ever-growing industry [1,7]. Technology can benefit the mining industry
by providing predictive analyses so that they can be proactive and not reactive to hazards
such as mine disasters or machines breaking down which delay operations. Being proactive
can help predict poor working conditions to improve the health of the workers, predict
the failure of machines due to parts breaking or fluid leaks causing structural damage, or
even prevent deaths such as the predicted landslide at the Bingham Mine in 2013 [8,9].
Aside from predictive analyses, the new technology can also help by determining the

Mining 2023, 3, 347–366. https://doi.org/10.3390/mining3020021 https://www.mdpi.com/journal/mining

https://doi.org/10.3390/mining3020021
https://doi.org/10.3390/mining3020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mining
https://www.mdpi.com
https://orcid.org/0009-0001-6477-8052
https://doi.org/10.3390/mining3020021
https://www.mdpi.com/journal/mining
https://www.mdpi.com/article/10.3390/mining3020021?type=check_update&version=1


Mining 2023, 3 348

optimal performance of machines, providing operators with a production goal allowing
the operation to achieve its full potential to keep up with demand.

The purpose of this exploratory study is to investigate the benefits of big data collection
and to facilitate the identification of key performance metrics using two Caterpillar software
tools, Cat Productivity (version 2.0, Caterpillar Inc., Irving, TX, USA) and Cat MineStar
Edge (version 1.5.20220804p2, Caterpillar Inc., Irving, TX, USA). The two pieces of software
are newer to the industry and are slowly being adopted. An analysis of the production
data output from the machines would be beneficial in determining optimal production
metrics to set goals for operations as well as visualizing maintenance benefits. In this
study, the collected data will be utilized to identify these optimal performance metrics
with the goal to increase yearly production. One hypothesis tested was to see if there
was an optimum point at lower cycle times, ideally in the 30 s to 45 s range, in which the
average payload will have a higher yield, thus setting a production goal for operators.
Another hypothesis evaluated whether the maintenance activity on GET loader buckets
is appropriate as operators currently determine the frequency of replacement. The last
hypothesis states that machine learning will yield a predictive model of loader type and
production values associated with that loader. Regression models can be used to find
additional variable relationships not already highlighted.

This research paper is set up to provide previous studies related to the work carried
out. Then, data are introduced as well as any preprocessing performed on the data before
analysis. Next, all the methods are discussed with their results and a discussion of these
results is detailed as well. Finally, the overall conclusions and future work are discussed.

2. Previous Studies

Previous studies have explored the optimization of fleet interactions without the use
of technology that highly relies on equations that provide a number based on variables
gathered from visual guesses as well as manual measurements. Matsimbe (2020) performed
data analysis on shovel-truck interactions in a quarry in Malawi to determine if they could
optimize the fleet size using different numbers of haul trucks for one shovel [10]. Using a
stopwatch for the cycle time as well as numerous equations for the payload size that rely
on the user’s judgment of how full the shovel bucket is, they were able to determine the
increased fleet size with the current size shovel, resulting in the queuing time of the haul
trucks increasing by 6.40 min [10]. Nday et al. performed similar work in a mine in the
Democratic Republic of Congo, with hand calculations that considered the conditions of
haul roads and equipment as well as operator experience to lower cycle times by about
8% [11]. Finally, Samatemba et al. recently employed equations to discover the utilization
rate, production rate, equipment availability, efficiency, and performance rate for haul
trucks, loaders, and drill rigs in Chibuluma South Mine in Zambia [12]. With simple
analysis, these researchers were able to determine that all their machines were working
with less than a 50% effectiveness rate, translating to a large loss of revenue [12]. Imagine if
their machines related sensors to software that could accurately measure the payload, the
loader and hauler unit cycle times, and the trucks’ queuing time. Without using equations
that include user opinion, which risks potential user error, they could provide a more
accurate representation of how their fleet interacts with different sized shovels and fleets.
The common factor of the three mines is that they are in third-world countries without
wide means to access the technology to connect their machines to software. In the future,
technology access will become more cost-effective and readily available for developing
countries, thus yielding a potential evolution of adoption over time.

The Inclusion of sensors and data in machines allows predictive maintenance strategies
to be used more frequently. In the past, without access to technology to give information
on performance metrics and machine health, maintenance would occur when machines
broke down or when operators used visual or auditory cues to determine that damage
had already occurred [13]. The addition of sensors and algorithms to machines can help
circumvent this reactive maintenance planning. The equipment is more reliable, meaning
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less downtime when parts break, and there is a noticeable cost reduction since fewer pieces
of equipment are being repaired [14]. Algorithms such as those in machine learning can be
utilized to create predictive models from past data to forecast and schedule maintenance
for machines. Basri et al. conducted a review of this and found that through the computer-
based approach to predicting machine failures, companies achieved better performance
and productivity over time compared to reactive maintenance practices [15]. Due to current
supply chain disruptions, it is vital for operations to predict when machines need parts
instead of waiting until failure and potentially losing a machine for multiple months while
waiting on replacement parts.

Machine learning has been a popular topic in numerous research fields and recent
developments in technology allow for easy access and adoption. Researchers in the mining
industry have focused on this trend and are producing ever-growing research to see the
capabilities of these algorithms alongside the collection of big data. Nobahar et al. used
five algorithms: linear regression, decision tree, K-nearest neighbors, random forest, and
gradient boosting to simulate operations to optimize fleet selection [16]. The study found
that the gradient boosting regressor algorithm was accurately able to predict the best fleet
selection when given the performance metrics, weather conditions, and haul road routes
with an 85% accuracy rate. Baek et al. utilized a deep neural network algorithm to predict
the ore production of a mine in the Republic of Korea based on the performance metrics
of a fleet of haul trucks [17]. The machine learning algorithm was used on two sets of
data, one for morning production and one for afternoon production. The results of the
deep neural network algorithm were promising as their mean absolute percentage error
for morning production was 11.40% and for afternoon production, it was 8.87% [17]. A
mean absolute percentage error of less than 10 is excellent, while between 10 to 25 is low
but acceptable [18]. The mean absolute error compares the forecasted result to the known
value, and a percentage error is calculated based on their difference [18]. Machine learning
algorithms and results should continue to improve over time, and with the addition of
big data collection in the mining industry, they will expectantly be used for predicting
performance metrics and required maintenance.

3. Methodology
3.1. Data Collection

This study used data from two different pieces of software: CAT Productivity and CAT
MineStar Edge. This software is proprietary to Caterpillar and requires individual companies
to pay a subscription to have their machines connected to the network to access the data
collected by sensors on the machine. These machines are connected to the network using a
4G signal transferred through what is called the Product Link box. This Product Link box
allows for the health, utilization, production insights, and hours/location to be transferred
to the software dashboards for use by the customer or owner of the software [19–21]. In this
study, all machines used have a Product Link box of generation PLE641 which allows for the
advanced production metrics to be gathered. CAT Productivity had multiple loaders, aside
from the ones used in this study, that had PLE641 boxes but because the customers had not
subscribed to the software, these machines only presented utilization data as well as cycle
time metrics. These two pieces of software can present similar performance metrics, machine
health, and utilization but there are a few key differences. CAT MineStar Edge allows for
real-time data collection and playback recordings of what work machines are doing and easily
ties which hauler unit is being loaded by the front-end loader [22]. On the other hand, CAT
Productivity does not provide real-time data collection and does not provide as in-depth
insights as CAT MineStar Edge since it is a cheaper subscription product [23]. These data are
not publicly accessible, and they were provided by the company Carter Machinery Company
Inc. for use in this study. All data collected in this exploratory study were scrubbed of any
customer-identifying information as well as asset numbers to prevent insight into customer
production information.
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3.1.1. Cat Productivity Data Set

The first data collected from CAT Productivity consisted of variables for basic pro-
duction information with a data set for each of the seven loaders. The first data group
used eight months of data from April to December 2022. The loaders used in this study
were in different quarries across Virginia with similar production conditions to each other.
These rock quarries, across Virginia, are surface operations that produce limestone, sand,
and gravel. The first group of data was collected using the software Cat Productivity. The
Caterpillar loader machines were of slightly different sizes based on their generation. The
seven Caterpillar loaders consisted of one 992K machine, two 990K machines, three 988K
machines, and one 988K XE machine. These machines are variable in size but are frequently
used for similar-size quarries based on company choice. The loader data were tied to each
haul truck, thus enabling the gathering of truck metrics as well. The data collected variables
for date and time, bucket payload (tons), truck total buckets and truck total payload (tons),
cycle time (seconds), and truck ID. Bucket payload is just the tonnage of the material that is
in the loader bucket before it is dumped into the haul truck. Truck total buckets is the total
number of loader buckets full of material that it takes to fill up the truck before it departs
the loading area. Truck total payload is the total tonnage of the material that the truck
departs the loading area with after being filled by the loader. The cycle time is in regard
to the loader, and it is measured in the total time of the following four phases: picking up
material from the working face to fill the loader bucket, swinging toward the haul truck,
dumping the material in the haul truck bed, and finally swinging back toward the working
face [24]. Truck ID is simply a way for the companies to distinguish which truck is being
loaded by the loader. Table 1 shows a sample of the data collected.

Table 1. Sample Cat Productivity production data for loaders from rock quarries.

Bucket Payload
Measurement Time

Bucket Payload
(tons)

Truck Total
Buckets

Truck Total
Payload (tons)

Cycle Time
(seconds) Truck ID

16 April 2022 16.94 4 68.93 45 1
12 May 2022 14.56 5 87.64 73 1

3.1.2. CAT MineStar Edge Data Set

The second data set consisting of the two loaders from CAT MineStar Edge had
numerous variables, but only a few can be utilized for performance metrics analysis. This
is because most of the information in this data set is made up of information sensitive to the
company such as load and dump location in X, Y, and Z as well as latitude and longitude
coordinates, haul routes with distinguishing information, and machine serial numbers.
Alongside the sensitive information, there was miscellaneous information that was omitted
due to it not being related to any performance metrics. For example, the variable cycle
type was omitted because every data point had the same value which was “HAUL” as
well as other variables such as haul operator which was not filled out for any data point.
The second group consisted of two loader machines of the generation Caterpillar 993K.
This second data set also consisted of eight months of data from a large-scale surface coal
mine located in West Virginia. These Caterpillar 993Ks are large pieces of machinery that
are capable of large production operations such as the surface coal mine this study was
conducted on. The most useful variables in the data set were date, load duration, truck
cycle time (seconds), plan distance full (m), loader dipper count, and resolved payload
(tons). Load duration is the length of time it took for these loaders to fill the haul trucks
with the material. Truck cycle time is the total time that the haul truck goes through the
phases of the start of loading, hauling to the dump site, dumping, hauling back to the
loading site, and then pulling up next to the loader again [25]. Plan distance full is the total
horizontal distance that the haul truck travels to reach the dump site from the loading site.
Loader dipper count is the number of loader buckets it takes to fill the bed of the haul truck
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before it departs for the dump site [26]. Resolved payload is another name for total truck
payload. Table 2 shows a sample of the data.

Table 2. Sample Cat MineStar Edge production data for loaders from the surface coal mine.

Load Duration Truck Cycle
Time (seconds)

Plan Distance
Full (m)

Loader Dipper
Count

Resolved
Payload (tons)

16 April 2022 16.94 4 68.93 45
12 May 2022 14.56 5 87.64 73

3.2. Data Preprocessing

Each data set downloaded from every loader was cleaned for data analysis to be
conducted and to be input into the models. This process included identifying the range
of cycle times for each loader (so they were neither too large nor too small, indicating
tasks other than loading haul trucks), deleting missing data, and filtering out unnecessary
variables that would not indicate production metrics. Given the lack of filled-out data for
some production variables, they were deleted from the data sets because of inconsistencies
in subsequent data collection across each loader. For example, data that did not indicate
production metrics were information such as coordinates of load and dump sites or names
of haul routes identifiable to the company.

For the first data set from Cat Productivity, numerous data points needed to be deleted.
Machines are hooked up to the software through devices called Product Link boxes. Product
Link boxes have multiple generations that gather varying amounts of data based on the
generation employed. For example, many of the loaders used the generation 541 Product
Link box while two loaders used the 641 Product Link boxes. Given the mixed Product Link
box generations among loaders, some variables were deleted from the data set because of
inconsistencies in subsequent data collection across each loader. These variables included
bucket payload sequence, truck total buckets, truck total payload, and hauling unit. The
loaders with the 641 Product Link boxes were set up to identify how many bucket cycles it
took to load the haul truck, the overall tonnage of the haul truck when full, and the haul
truck associated with that cycle.

For the Cat MineStar Edge data set, the only variables that were deleted were asso-
ciated with the loading area, the coordinates of the haul route, and the slope of the haul
route. Each loader had its cycle time analyzed in a distribution to determine the frequency
of task achievement, creating low and high bounds for a cut-off time. Loader operators
may perform multiple tasks while waiting for haul trucks to position themselves next to
the loader at the mining face. On the low end, they may be cleaning the face or floor by
picking up and dumping material repeatedly in a quick fashion. On the high end, they
could be sitting with a bucket full of material waiting for a haul truck to pull up.

3.3. Data Analysis

After the collection of the eight months of data for each loader from CAT Productivity
and CAT MineStar Edge, data cleaning was conducted. Microsoft Excel was used to clean
and prepare the data sets to verify the accuracy and reliability of the data. The data cleaning
process involved removing sensitive information from the companies and variables that
consistently had a lack of information. Following the removal of data, the fill factor for
the CAT Productivity set of loaders was calculated which was conducted by dividing each
bucket payload by the maximum payload possible for that machine. Due to a lack of
individual cycle bucket payloads in the CAT MineStar Edge data set, the fill factor was
not able to be calculated for the two loaders in the surface coal mine. Following the data
cleaning process, the PivotTable function within Microsoft Excel was used to calculate the
average payload for each cycle time. To determine the most common cycle times for each
loader, the frequency at which each cycle time appears was calculated in each data set. This
provides insights into the payload distribution and to help identify any patterns or trends
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in the data. Next, the average payload and frequency of the cycle times was imported
into the software Google Colab (version 3.9, Google, Mountain View, CA, USA). Utilizing
this software with Python libraries, Matplotlib (version 3.7.1), Pandas (version 1.5.3), and
Numpy (version 1.22.4), scatter plots were created to display the distribution of data for the
average payload vs. the cycle time, and histograms were created to visualize the frequency
of the cycle time for each of the loaders. These figures allow for insight into the relationships
between the variables and to identify any outliers in the data.

3.4. Statistical Analysis

Google Colab was used to perform statistical analysis, calculations, and data visual-
ization for all data sets. The first step was to calculate the measures of central tendency
for the chosen major production metrics for each set of loaders. The measures of central
tendency included the mean, standard deviation, and first and third quartile. For the
CAT Productivity loaders, the seven loader units in this set were compared based on the
variables of loader cycle time, fill factor, and bucket payload. For the CAT MineStar Edge
loaders, the two loader units in this data set were compared based on the variables of total
truck payload, loader cycle time, and truck cycle time. Through calculating the measures of
central tendency, a visualization of the distribution of data as well as any trends or patterns
that may appear were obtained. These can provide insights into the performance of each
loader compared to each other as well as show any areas of improvement. The probability
density function (PDF) is calculated using these measures of central tendency in order to
visualize the distribution of the data. Through visualization of the PDF across each loader
for each variable, any significant differences between the performance of the loaders in
each set can be identified to gain a better understanding of the underlying data. There is a
lack of significant production variables to compare across the data, so this is a limitation.
Necessary judgments were made as to which variables to focus on for the comparison of
the production metrics.

3.5. GET Maintenance Applications

The GET maintenance analysis was conducted using Microsoft Excel and Google
Colab. Excel was primarily used for collecting average values of production and for cost
analysis. Two data sets were initially combined, the data set of production metrics for
the 988K loader that maintenance occurred on and the data set of maintenance days for
replacing the GET life. Initially, the average payload value for each day was calculated
using the PivotTable function. These data for the average payload across each day were
then matched up with the days that maintenance was performed. The average value for
payload was then calculated for a period of five days before and after maintenance, four
days before and after, three days before and after, two days before and after, one day before
and after, and on the day of maintenance. This gave a table of 11 values that showed the
average production before and after every day of maintenance. Google Colab was then
used with the matplotlib.pyplot library in Python to create a visual of the distribution of
these average payload values around maintenance. Then, a cost analysis was conducted of
the production value of these periods. This was achieved using some assumptions that are
listed in Table 3. A price of USD 5 per ton of product was chosen for a speculative analysis
of limestone rock at the time.

Table 3. Assumed values for calculation of production value for each set of production days leading
up to and after maintenance.

Average Price of
Product (USD/ton)

Average
Maintenance Time

(hour)

Production Time
Per Day (hours)

Average Number of
Buckets Per Truck

Average Cycle
Time (seconds)

Price of Teeth
(USD)

5 1 7.5 7 50 2181.76
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Once the production values for each period before and after maintenance were calcu-
lated, a percentage change was then calculated by comparing the before and after values of
each maintenance day. These percentage changes and maintenance days were then input
into Google Colab, and again, with the matplotlib.pyplot library, they were plotted for data
visualization.

3.6. Machine Learning

The machine learning set-up and analysis were conducted using Google Colab since
it has access to the machine learning libraries within Python. Initially, all of the loader’s
data were combined into the same data set. Using Google Colab, they were initially put
into a linear regression algorithm to determine correlations between the data in the data
set. R-squared is used as an indication of model performance with these regression models.
Due to the poor results, another linear regression model was created using only a random
fraction of the data set to test if there were clearer results. Since linear regression produced
poor results, polynomial regression was then chosen to visualize the correlation between
values in the data. The data were pushed through this polynomial regression model, and
the R-squared was produced. Once this was completed, a heat map was created to visualize
the correlations between the variables in the data. The next step was to create models for
the machine learning prediction algorithms. The four models used in this analysis were the
prediction algorithms based on K-nearest neighbors, polynomial regression, decision tree,
and random forest. The data input into these models were based on training and testing
sets. Approximately 20% of the data were chosen as the testing set while 80% were used as
the training data set. The accuracy score is the output from these models which indicates
model performance.

4. Results and Discussion
4.1. Data Analysis

Through data analysis of each loader’s data set, a distribution of the average payload
for each cycle time was obtained. These data were split to determine if there is an optimum
point for each loader at which the average payload per bucket can be increased at faster
cycle times to yield higher production down the line. The frequency of each cycle time was
also included to determine the spread of the data and how often the operators are achieving
each cycle time. Each loader was analyzed between cycle times that were determinants of
its distribution of data. The cycle time of the seven loaders that operate in rock quarries
is approximately between 25 s to 80 s. Figures 1–7 show the scatterplots of the average
payload vs. cycle time and the histograms of the frequency of each cycle time.
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Of the data that were collected and displayed for the seven loaders in the rock quarries,
three of them showed promising results, two showed inconclusive and two showed poor
results concerning the cycle times and yields. The scatterplots of Figures 3, 6 and 7 show the
promising results. These figures indicate an optimum point around a cycle time of about
35–40 s in which the payload results in a higher yield. The trends of the scatterplots illustrate
an increase in payload yield as they approach the higher bound of the cycle time. The increase
in the payload is theorized as the fact that in a longer cycle time, operators repeatedly shovel
into the blasted rock piles to gain higher fill factors for their buckets. The scatterplots of
Figures 1 and 2 show the inconclusive results. Figures 1 and 2’s plots are inconclusive because
although there appears to be an optimum point for a cycle time that averages a high payload
yield, it appears to level out after this point and only has slight changes to the average payload
at each cycle time. The optimum point for these figures also appears to be around 35 to 40 s.
Figures 4 and 5 show the poor results. Figures 4 and 5 have a negative trend with many
outliers without a clear optimum point for high production except at the lower bound for the
cycle time. The lower bound of the cycle time was positioned outside of generally accepted
reasonable cycle times, which could suggest poor results.

The histograms of the frequency of each cycle time for each loader mainly show a
normal distribution around the cycle times that represent the optimum point for a high
yield in the payload. A few of the histograms, namely in Figures 2, 3 and 7, are skewed to
the right, which could suggest the operators are multitasking rather than simply loading
haul trucks. More data near the higher bound of the cycle time could suggest operators are
taking unnecessary lengths of time to load a truck or clean the floor of the pit which could
affect downstream production. The normal distribution in these graphs suggests that the
operators of these loader units are performing exceptionally. This skew means that there
are numerous more high payload data points at these cycle times which could inflate the
data. Figures 4 and 5 show no normal distribution and instead are heavily skewed to the
right. The right-hand skew goes against reasonable cycle times as they would be too fast at
these points and would not reasonably be able to maintain a high payload yield and dump
into the haul truck in the same minimum length of time. Figures 4 and 5 suggest either
abnormalities or mistakes in the data and would need to be studied further with a site visit
to analyze operations.

The two loader units from the surface coal mine were analyzed similarly to the seven
loaders from the rock quarries. These loader units, however, did not have individual cycle
times for each bucket payload in their data set. As a result, Figures 8 and 9 show the
average payload per truck vs. the cycle time to fill that haul truck as well as the frequency
of each cycle time shown next to it.
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Figure 9. Distribution of variables within the second 993K data set: (a) scatterplot of average payload
per bucket and cycle time and (b) histogram of the frequency of each cycle time occurring in the
data set.

The two 993K loaders do not concretely contain an optimum point around a cycle
time that shows high payload yields. Although the scatterplots do not show an optimum
point, they do have a positive trend with some outliers. The positive trend confirms the
hypothesis that as you increase the cycle time, you may have higher payload yields due to
repeatedly shoveling into the blasted rock piles to achieve a higher fill factor. Although
this is true, the longer loading strategy must be tempered because there could then be an
unintended effect where loading one haul truck for larger amounts of time could back up
the entire operation. The low production for the shift could be due to longer cycle times or
a back-up due to long queue times at the loading site.

The histograms of the two 993K loaders at the surface coal mines primarily show a
normal distribution centered around the cycle time of 250 s. This centered point could
suggest that these larger operations, such as these surface coal mines, ideally operate
around these times since they are more frequently hitting them. The normal distribution
with a wide range also suggests that these loading units are not just used for loading haul
trucks. They could be used for floor clean-up as well as moving material from stockpiles
into crushers to continue production down the line.

4.2. Statistical Analysis

Statistical analysis was conducted on certain variables in the data to visualize their
distribution for comparison. Cycle time, fill factor, payload, truck payload, and truck cycle
time, were determined to be the best for determining the production performance of the
loader units in their respective operation. The data were again split into two sets in this
analysis based on quarry type. One data set included the rock quarries consisting of the
seven loader units discussed in the data collection section. The other data set included the
two loader units in the surface coal mines also discussed in the data collection set. The
variables for the first set that were analyzed were the cycle time, fill factor, and payload
(Figures 10–12). The variables presented in Figures 10–12 were chosen because all their
data points were filled out across the seven loaders in the data set.
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Figure 12. Normal distribution of the variable payload for the seven loaders in the rock quarries.

The normal distributions of the cycle times for the seven loaders were generally
like each other. The distributions were centered around different values, but multiple
distributions had similar size spreads. Multiple distributions were centered around a cycle
time of approximately 50 s, suggesting that this is the average cycle time for rock quarries of
this size. The two 988Ks had the best average cycle time of around 39 s, which indicated they
were the fastest loaders, but looking at Figure 12 shows they did not have great payload
values. The normal distributions of the fill factors for each of the loaders were considerably
different. Many of them had low fill factors, indicating that the operators are not utilizing
the size of their buckets to their fullest extent. One reason for the underutilization of
buckets could be a lack of operator experience as well as loading units frequently being
used for other purposes such as cleaning the face while registering these tasks as a loading
cycle. Four loaders, 992K, one 990K, one 988K, and the 998K XE, showed optimal fill factors
of about 80% or higher. The high fill factors are ideal because the operators are utilizing
the machines to almost their full extent to fill the trucks, resulting in fewer cycles per truck
and lower truck cycle times. The normal distributions for the bucket payload of each of
the loading units vary considerably. Each generation of loading units has different sizes
with different-sized buckets that allow for larger or smaller payload values. Although the
distributions show their varying capacities, the quarries they operate in are nearly the same
size as similar yearly production. Given the quarries’ similar profiles and different machine
options, the 992K loader would be the most beneficial for this type of operation with the
correct operator. The 992K generally was one of the best-performing loading units in each
of the variables shown in these distributions. The 992K had a higher average cycle time
than some of the other loaders but remained near the lower range of the ideal cycle time
for loaders in this type of operation.

Total truck payload, loader cycle time, and truck cycle time were analyzed in the
second data set of surface coal mines consisting of the two loader units. The surface coal
mine data sets for the 993K truck had more data filled out, allowing for the variables most
related to production metrics to be analyzed. Figures 13–15 show the normal distributions
of these two loaders. The variable bucket payload was not available for this data set because
the software Cat MineStar Edge shows the total payload for each truck instead of each
cycle’s payload.
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Figure 15. Normal distribution of the variable truck cycle time for each loader in the surface coal mine.

The two 993K loading units are the same type and size of machine, but one of the units
outperformed the other in two of the three variable distributions. Examining the total truck
payload distributions in Figure 13, the 993K machine, represented by the blue line, had
a higher total truck payload of approximately 15 tons. The 993K, depicted as the orange
line in Figures 14 and 15, had lower loader and truck cycle times by a small margin. In the
future, the 993K loader could show higher production even though it lagged slightly behind
in cycle time. Production variables can also be heavily influenced by operator experience,
the location of operation within the same mine, and the type of material the loading units
are working on within the quarry. Different materials could be harder to dig into or fully
fragmented from blasting, allowing for easier digging and impacting production.

4.3. GET Maintenance Applications

Using the payload production values from Cat Productivity and the maintenance
records of GET changes, an analysis was conducted on the change in production before
and after maintenance. Only one maintenance record was obtained for a single 988K
loading unit from one rock quarry. This maintenance record contained only the dates of
maintenance. This was paired with production metrics throughout the time of maintenance
for the purpose of analysis. Current maintenance practices are determined by the machine
operator. If they believe that the teeth are worn out based on the feel of the machine,
then they request a change. Unfortunately, many operators may not record when they
perform maintenance or use paper records, which can easily be misplaced, to identify when
GET maintenance operations have occurred. Figure 16 shows the average production of
each selection of days leading up to maintenance. The selection of days leading up to
maintenance means that −4 identifies the four days preceding maintenance, −2 identifies
the two days preceding maintenance, 2 identifies the two days after maintenance, and so
forth up to five days before and after maintenance. Figure 17 shows the percentage change
in production value. The maintenance date is based on the date of each change in GET
conducted on the 998K machine. The average payload used in the production cost analysis
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was determined by taking the set of days from the previous maintenance day up to the
day in question and then also taking the set of days from the next maintenance day to the
previous day in question. The percentage change was calculated based on these days.
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Figure 17. For one of the 988K loaders, the percentage change in production value from before and
after the date of maintenance.

The production average leading up to and after maintenance presented in Figure 16
suggests there is no distinguishable material change in production once the GET were
replaced on the loader bucket. Two sets of production days, −4 and −5, have low average
payloads, but when comparing the sets of −3 to −1 to the sets of 2 to 5, there is relatively
no change in the average production. Production is increasing before maintenance, and on
the day of maintenance, it is high compared to the other values. The high value could be
due to maintenance being performed at the start of the shift but there is no other indicator
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besides the date in the records of the time when maintenance occurred. The set of one day
after maintenance has the highest production average but has the potential to be considered
an outlier when tied with the sets of days after maintenance.

Figure 17 illustrates the percentage change in production value around the day of
maintenance and suggests there is no distinguishable material change in production due to
maintenance. The percentage change spans an even split of values in negative and positive
change. It is worth noting that the positive percentage change has a higher range going
up to approximately 32% while the negative percentage change goes down to only about
−15%. Initially, it was speculated that if the GET were changed on the bucket, it would
benefit the operation, and production would increase. This would be a result of the new
teeth allowing for easier digging. Based on the data and the results calculated from these
data, the results are inconclusive as to whether the current process of GET maintenance is
beneficial or if operators are changing the GET too frequently. GET maintenance is generally
determined by the operator’s decision because they experience a harder time digging into
the rock face or they visually notice too much wear. Therefore, for better results in the
future, there should be a standard low measurement for the teeth that objectively indicates
maintenance to be performed to change them out.

4.4. Machine Learning

Using Python, machine learning methods were used to analyze the data sets to initially
determine correlations between the variables included. The first machine learning analysis
used was to test linear regression. Because payload is a key indicator of performance, it was
correlated to the cycle time. Using the associated linear regression libraries within Python,
a test and a training data set were identified. The two sets were then used in the linear
regression algorithm to test the variables. The correlation coefficients were output for the
test set after training was complete. The correlations were all less than 0.01 for each loader,
indicating that there was no significant linear correlation between the input variables from
the loader and hauler machines.

Due to the poor results obtained from the linear regression model, the data were
analyzed using a polynomial regression model. After inputting the data for all of the
loaders and running them through the respective Sklearn polynomial regression library,
Figure 18 shows a heat map of the correlation between the variables in the data set.
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The polynomial regression algorithm results were not promising. Despite a higher
correlation between multiple variables compared to the linear regression algorithm, a
certain group of variables with a significant correlation between them did not emerge.
This result was unexpected because the large amount of data in the data set was expected
to at least suggest some form of correlation between a few of the variables. Namely, an
expectation of a higher correlation between the variables of payload and cycle time would
be anticipated. The correlation result between the payload and cycle time was only 0.06.
We hypothesized that there would be a significant correlation shown, but with the data
and the models created, this relationship was not found. Due to the unusual nature of the
results, future research would need to be conducted with additional types of machines and
more data with all variables filled out. This research would be beneficial for future model
generation.

The next machine learning technique attempted was prediction models. The models
utilized in this study were K-nearest neighbors, decision trees, random forests, and polyno-
mial regression. The full data set was run through each of these machine learning classifier
algorithms and output an accuracy score. This accuracy score identifies how well the
algorithm can predict values based on the training data set initially used in the algorithm.
Table 4 shows the accuracy scores of the four models from the greatest to the least.

Table 4. Accuracy scores of the four machine learning algorithms used on the data set for predictions.

Machine Learning Method Accuracy of Prediction

Decision Tree Classifier 0.8799
Random Forest 0.8149

K-Nearest Neighbors 0.766
Polynomial Regression 0.455

Of the four algorithms used, the decision tree classifier was the most accurate followed
closely by the random forest and K-nearest neighbors algorithms. With 87.99% accuracy, the
decision tree classified model was able to estimate the performance of any loader based on
the full analysis of the performance metrics input. Future research and additional loaders’
data collection would allow for predicting a loader’s production metrics in an operation
given the type of operation and the type of loader.

5. Conclusions and Future Work

This exploratory study of data from nine loading units utilized data analysis, statistical
analysis, and machine learning techniques. Seven of these loading units came from the
software CAT Productivity while the other two came from the software CAT MineStar Edge.
Key production parameters were identified using multiple variables which include bucket
payload, loader cycle time per bucket, fill factor, truck cycle time, truck total payload, and
loader cycle time per truck. Following these analyses, an analysis of production before
and after maintenance of the ground engaging tools was conducted to determine the
effectiveness of these maintenance practices. Data analysis was used to find a relationship
between the average payload of each loader and their cycle times. This relationship was
inconclusive in determining the optimum point at which production can be increased down
the line. A large variety of data across each loader between cycle time and average payload
was found. However, three loaders indicated an optimum cycle time between 35–40 s to
yield a higher payload.

The statistical analysis conducted was used to compare the distribution of production
variables across the loaders performing in a similar work environment. The Caterpillar
992K and one of the 990K loading units were found to be the highest-yielding machines. In
the CAT MineStar Edge data set, one of the Caterpillar 993K loading units outperformed
a similar 993K machine in all production variables for unknown reasons that will be the
basis of future research. The influence on these results could be due to operator experience,
the location of operation within the same mine, and the type of material.
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Machine learning was initially used to investigate the correlations between the vari-
ables in the data sets. Through the linear and polynomial regression models that the
data were put through, there was no significant correlation between any of the variables.
Although there is a correlation between the plan distance full and the truck cycle time, this
relationship is expected because the further the trucks travel then the higher the cycle time.
This indicates that future research should be carried out to investigate why this correlation
was not what it theoretically should be. With the use of four prediction algorithms, the
decision tree classifier algorithm produced the best results in estimating the performance
of a loader based on a full analysis of all the data with an accuracy of 87.99%. The next best
model was random forest with an accuracy of 81.49%. In future operations, given the type
of loader, we will be able to predict what its production metrics should be.

After generating an average production comparison before and after maintenance
and a percentage change in production value for the ground engaging tools on the loader
bucket of one of the 988Ks, it was found that there was no material change in the average
production of the mine. This analysis still does not answer the question of whether the
GET are replaced too frequently. A future analysis would attempt to create a prediction
model for optimal maintenance intervals for the GET.

The CAT Productivity data varied greatly from CAT MineStar Edge as they were found
to be less detailed and largely subject to human error since numerous variables needed to be
deleted. The loading task is repetitive because the cycle is short (less than a minute each) and
performed over long shifts (eight to ten hours). Data reliability is low due to operator input.
Future work could help improve the models described in the paper. An additional year of
research will provide more data and yield more precise models. Additional digitization
of machine information will populate the software with additional variables and a wider
variety of machine types for further refinement of predictive models. This would also
include data from haul truck units as well. As remote monitoring popularity increases,
more companies will pay for subscriptions to this software, allowing for more machines to
be used in analyses. Site visits would help with future research to better understand the
operation and everyday tasks performed by each loader. Irregularities in the data could be
identified by not only these site visits but also time studies could be included to determine
choke points in operations. Additional research should be carried out on better ways to
determine whether GET are worn out instead of just operator opinion deciding when they
should be changed, as this can eliminate the potential for human error.
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