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Abstract: Mining-induced subsidence can have significant environmental and infrastructural impacts,
making subsidence engineering a crucial consideration. However, the unique nature of salt caverns
and the increasing demand for reliable subsidence prediction models in the context of energy storage
require special attention. This study provides a comparative analysis of existing prediction models
and highlights their advantages and disadvantages to determine the most appropriate approach. The
study primarily focuses on theoretically developing an empirical influence function for asymmetrical
subsidence prediction. It significantly contributes to the field by correcting and extending the existing
method, providing a generalized solution applicable to any type of asymmetrical distribution around
the cavern. Future research directions include implementing the proposed model in relation to
real-world data. The insights gained from this study can help advance subsidence prediction models
in the field of salt cavern energy storage, addressing a significant need in the industry.

Keywords: salt caverns as energy storage; subsidence prediction; asymmetrical subsidence model;
salt cavern convergence

1. Introduction

Salt caverns are artificially constructed cavities in a salt formation. There are various
methods of salt exploitation, but this study specifically focuses on salt caverns used for
storing gas and liquids that are constructed through the leaching method. The mining
method involves drilling a well into the rock salt with a diameter of d < 1 m. Several pipes
are installed in this well and bonded with cement to the surrounding rock. During the
solution mining process, water is injected to dissolve the salt. The produced brine is then
transported to the surface [1]. Salt caverns are not only a source of NaCl, but they are also
used as storage repositories for liquids and gas. In Germany, they are used for storing large
quantities of natural gas (24% of all gas reserves). The reason for the popularity of the type
of storage projects is the high flexibility of charging and discharging the gas [2]. A current
focus in research is the investigation of the suitability of salt caverns to store hydrogen [3].

The void constructed during the leaching process and later used for energy storage
leads to a destruction of the force balance in the surrounding rock mass and results in defor-
mation, manifested by the cavern convergence. The deformation is the reason for ground
subsidence. Surface deformations, such as tilt, tension, or compression, can negatively
affect objects on the surface, e.g., houses of media pipes, or they can lead to degradation of
land quality. To assess the impact on the environment, prevent the damage of objects, or
estimate fair compensation, precise ground movement prediction methods are needed.

There are several prediction methods established in practice. This contribution aims
to review the main features of the currently used methods in Europe and to estimate their
further potential.
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2. Ground Subsidence Prediction Models in the Context of Salt Caverns

Ground subsidence prediction is a field of subsidence engineering that uses and
develops methods to describe the state of surface deformation caused by mining activities
at a time. In the mid-20th century, the advent of solution mining posed a new challenge for
subsidence engineering. Although the scale of mining was comparable to coal mining, there
were significant differences in mining method, cavity geometry and depth, exploitation,
and other factors, such as the cycles and phases of gas storage caverns due to leaching and
filling processes, high geological uncertainty, and surrounding mass creep [4]. As a result,
empirical ground subsidence prediction methods are used in coal mining, which are not
directly applicable. Thus, predicting surface subsidence above caverns became a new topic
within the subsidence engineering field [5]. Despite these differences, the general approach
to solving the problem remained the same. In general, subsidence at a surface location can
be calculated as the influence of underground elements using Equation (1) [6]. The values
used in the equation are independent and can be synthesized in various ways.

S = ∆V·a·e (1)

where; a is a transmission coefficient; e is an influence factor; and ∆V is an underground
convergence volume.

Kratzsch [6], Peng [7], and other authors classify ground subsidence prediction meth-
ods based on their methodological approaches. The solution to the subsidence prediction
problem relies on estimating parameters, which can be performed by using (a) physical
methods, based on a physical interpretation of the subsidence process and physical param-
eters, (b) empirical methods, based on statistical interpretations of the ground subsidence
profile’s geometrical parameters, or (c) mixed methods, which combine empirical and
physical features. Despite these differences, all the methods can be described using the
factors in Equation (1), which are convergence ∆V, transmission coefficient a, and influence
factor e.

2.1. Convergence

The International Society for Rock Mechanics (ISRM) defines convergence in rock
mechanics as “the time dependent closure of a fractured rock mass under compressive
stress, often as a result of excavation, and usually measured perpendicular to the excavation
face” [8]. Despite the definition in the subsidence engineering field, particularly for cavern
fields, convergence refers to the volume change in the cavern, according to the boarders’
displacement. The meaning of transformation appeared as part of the development of
subsidence prediction methods [9]. The convergence process can be described by different
parameters, such as in the article regarding the convergence volume at the given time t s,
which is denoted as ∆V(t).

In contrast to classical mining, the processes inside a cavern used for gas storage
are not directly observable, therefore geomechanic models have been established. The
cavern’s pressure state is dynamic during long-term operation and depends on the mining
phase, the operational mode, and the physical processes occurring inside the cavern.
Gas cavern storage involves periodic variations in operation, including low-pressure
operation, gas injection and pressurization, high-pressure operation, and gas recovery
and depressurization stages. Another complexity of estimating convergence is related to
the lack of ability to continuously measure the cavern during exploitation, and, thus, this
results in difficulty in defining the strain of the salt under pressure. For example, one of
the complexities is related to the creep process, which is described by different models,
depending on various factors, including microstructure and NaCl content in the rock mass.
The general effect of these factors on the creeping process is described in Table 1.
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Table 1. General tendencies of salt characteristics in relation to the creeping model [10–12], where ε

defines the strain.

Characteristic Influence

Confining pressure An increase in stress increases strain rate over time dε
dt . However, when confining pressure

exceeds 4 MPa, the creep behaviour of salt rock is independent of confining pressure.

Temperature

1. The higher the temperature (T), the faster the creep rate.
2. When the other conditions remain unchanged, the higher the temperature, the faster the

creep rate, and, the larger the creep strain, the shorter the creep life.

NaCl content The decay creep rate and steady creep rate of salt rock increase with the increase in NaCl content.

Water

Water can be formed nearby the grain structure, which can promote the release of elastic energy
stored in salt rock and accelerate the creep development process of salt rock. In geomechanics,
creep life refers to the amount of time it takes for a material to deform or fail under a constant
load or stress.

Since many factors are influenced by salt cavern convergence, the modelling or a
prediction of the convergence are complicated tasks. There are several models, which were
established, to estimate the convergence at a particular time, and the models presented
below are divided into groups based on solution approaches.

2.1.1. Convergence Models
Physical Models

Physical models, in this context, refer to using physical principles and parameters of
the system in mathematical models to estimate the convergence.

Solutions according to Norton’s power law: Norton’s power law describes the strain
rate of the rock masses due to the creep deformation. Van Sambeek [13] represents the
long-term creep response of a cylindrical cavern based on the material law of Norton-Hoff.
This is applied to calculate the convergence rate at a given time in cylindrical coordinates z,
as well as aM (Equation (2)).

dV
dt

= −
3Ae−

Q
R0T
(√

3
n ·

γsalt−γbrine
µ ·z

)n
a2

M

2r
(2)

where; aM is a radius of cavern (m); z is depth (m), γsalt and γbrine are the stress and
pressure gradients (MPa/m) for salt and brine, respectively; Q is the activation energy
for salt, 12.9 kcal/mol; R0 is a gas constant equal to 8.31441 kJ/(mol·K−1); A is a material
constant that for salt 1.313 × 109, s; T is a rock mass temperature; n is a another material
constant that define slope of linear approximation of log

(
dε
dt

)
o f log(σ); and σ is stress.

The solution of Norton’s power law for the creep shrinkage volume rate of the spher-
ical cavern can be deduced by Equation (3) [4]. The time is implicitly included in the
pressure measurements. The creep shrinkage volume rate of the spherical cavern can be
calculated based on these measurements. This allows for the determination of the annual
volume shrinkage.

dV
dt

= 2a3
M A(1− ν0)

(
3

2n
(P∞ − Pt)

)n
(3)

where; ν0 is Poisson coefficient of the surrounded rock masses; P∞ is initial in situ ground
stress (MPa); and Pt is a gas pressure in the cavern at the time t (MPa).

Dreyer: The cavern convergence defined by Dreyer refers to the convergence of a
cavern that is used for storage of natural gas, oil, or other materials. He defines the
convergence rate as a function influenced by the factors rock properties, temperature,
shape and size of the cavern, and the stress state of the surrounding rock mass. Dreyer
approximates the physical influence of the aforementioned factors and provides a solution
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(Equation (4)) [6], where, for each factor, the power of the influence is estimated from data.
The convergence is described by the calibration of different factors: the pressure imbalance,
the temperature, and the geometry of the cavern (Equation (4)).

∆V(t) = V·aD

[
1− D

h

(
1− D

2h

)](
P∞ − Pt

Pre f

)lD
(

1 +
ϑ

ϑre f

)mD
(

top

tre f

)nD

(4)

where; D is a diameter of the cavern, m; h is a high of the cavern, m; aD is a rock mass
factor in the range from 0.1 to 8.12%, depending on the thickness of the overburden and the
rock mass quality; ϑre f —reference— is 273 degrees C; ϑ is the temperature in the cavern;
mD is the power of the temperature influence in the range from 1.70 to 6.4, depending
on the shape and size of the excavation and the geological structure of the rock mass;
P∞ is a lithospheric pressure; Pt is an actual pressure in the cavern at the given time t;
Pre f —reference— is the grade (250 bar); lD is the power of pressure difference influence in
the range from 1.2 to 2.95, depending on the depth of the excavation and the mechanical
properties of the rock mass, such as the uniaxial compressive strength and the modulus
of elasticity; top is operation time, tre f is the reference grade of one month; and nD is the
power of influence of operation time in the range from 0.32 to 0.94, depending on the level
of confinement and the stress state of the rock mass.

Statistical Models

Here, the convergence model is not based on a physical law, but rather empirically
inferred from observations. These can be direct or indirect. Direct observations refer to vol-
umetric measurements of the cavern itself at different time intervals. Indirect observations
relate to ground deformation monitoring, whose results are used to infer the convergence
as a parameter.

Schober and Sroka [9] implement the convergence rate as part of a ground subsidence
prediction method and introduce a particular parameter. Additionally, a time delay for the
transmission process through the overlaying rock mass is introduced, which is the ground
subsidence volume at time t (Vs(t)) (Equation (5)).

Vs(t) = aV
(

1 +
f

ξS − f
· exp(−ξS · t)−

ξS
ξS − f

exp(− f ·t)
)

(5)

where; a is a coefficient of volume losses (a = 1.0 is a passage through the rock mass without
a volume loss); V is an initial volume of the cavern; ξS is a relative rate of volumetric
convergence (e.g., ξS = 0.02 year−1 means that the volumetric convergence proceeds at
a rate of 2% of the current volume per year); and f is the relative rate of trough passage
through the rock mass, which is measured in year−1.

During the process of transmitting the convergence volume on the surface, some of
the volume may be lost. This loss of volume leads to a discussion of the transmission
coefficient, which is provided in the following chapter.

2.2. Transmission Coefficient a

The transmission coefficient is a factor that quantifies the proportion of the convergence
volume that ultimately leads to the volume of ground subsidence (Vs) over an infinite time
horizon. It can be mathematically defined by Equation (6).

a =
Vs

∆V
(6)

The influence of the transmission coefficient and the convergence rate on the timely
subsidence process can be strongly overlapping. The precise estimation of the transmission
coefficient strictly can only be made in the condition of completed subsidence. In practise,
the condition cannot be achieved during exploitation time and years after it. Thus, in
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the following contribution, the transmission coefficient is assumed to be one [14]. In the
following section, the discussion, the transmission coefficient is not further considered.

2.3. Influence Factor e

The influence factor ‘e’ represents the proportion of ground subsidence at a particular
location at the surface caused by a unit volume of ground subsidence or convergence
beneath that point. This is affected by the distance from the point and the distribution of
deformation, which is described by the influence function f (r). The principle behind the
influence function is the ‘volume balance’ concept, where the volume of convergence (∆V)
and volume of ground subsidence Vs should be equal (as shown in Equation (7)).

∆V = Vs (7)

The volume of the subsidence can be determined by solving the integral beneath the
surface of the influence function (Equation (8)). The solution of this equation provides a
means to weigh the influence function in a way that satisfies the volume balance condition
of the general prediction method (Equation (1), Figure 1).

2π∫
0

∞∫
0

f (r, ϕ)r dr dϕ = ∆V (8)

where; ϕ is a horizontal angle between vector r and geographical north direction.
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Figure 1. Ground subsidence above salt cavern, where zr and z f are depths of a roof and a floor of
the cavern; ∆ V is convergence volume; ∆ Vs is subsidence volume; r is a horizontal distance between
centre of a cavern and surface. Similar to convergence, there are physical and empirical methods to
define an influence factor.

2.3.1. Physical Methods

In subsidence engineering, a mechanical solution is used to determine the deformation
by solving static equilibrium equations either analytically or numerically. Although geome-
chanic tasks are often solved using FEM methods, this topic is not discussed in this article,
since the method is not preferred in ground subsidence prediction due to the complexity of
the geological conditions and the computational resources required.

One of the earliest methods for predicting subsidence above caverns was developed
by Mogi [15], who focused on the influence of underground magmatic caves. Mogi esti-
mated the position of the magma accumulation to predict potential subsidence regions
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resulting from changes in magma occupancy, using the static equilibrium equation for
elastic deformation. The idea of rock deformation as an elastic deformation became a
basic physical model for predicting subsidence above caverns. In 2019, Ike provides the
solution of the axisymmetric elasticity problems of the homogeneous, isotropic, linear
elastic half-space [16].

Ike solution [16]. Later, the solution of Ike is implemented for a case of salt caverns in
the form of Equation (9) [4].

S(r) =
(1− vo)∆V(t)

π

∫ ∞

0

(
k

1 + k3l3 ·e
−kz J0(kr)

)
dk (9)

where; ∆V(t) is a convergence volume at the time t; z is depth of the cavern; l is a stiffness
radius of the plate (Equation (10)); r is a horizontal distance between centre of a cavern and
surface; vo is a Poisson ratio of the semi-infinite body; J0 is a zero-order Bessel function of
the first kind point; k is an integration parameter that takes a value from 0 to infinite; t is a
time in years. The variable k varies from zero to infinite and disappears after integration.

l =
( Eh3

12(1− v2)kl

)
(10)

where; E is the Young’s Modulus of the slab; h is the thickness of the beam; v is the Poisson’s
ratio of the slab; and kl is the modulus of subgrade reaction.

The model separates the depth (z) and the relative location (r) in the equation. It
belongs to the solution for deformation presented by Ike, where strain is divided into
horizontal and vertical vectors to obtain the solution. It defines the strength of the material
as the stiffness radius. The total convergence defined by material strength property. Figure 2
demonstrates the influence of the estimated strength on subsidence profile. According to
the formula (a), an increase in strength of the material in overlaying rocks results in a smaller
subsidence volume, and (b) a decrease in the Poisson ratio increases the subsidence volume.
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Figure 2. Calculated ground subsidence influence profile, with input data z = 1000 m and ∆V = 1,
which is calculated according different subsidence profiles and relative convergence.

2.3.2. Statistical Methods

The statistical interpretation relates to the approximation of a subsidence profile as a
spatial distribution of the mined volume on the surface. It is supposed to be distributed
around geometrical centre of the void. The distribution is described by an influence
function. In this context, there are several approaches documented.

Sroka and Schober. The method introduced by Sroka and Schober (Equation (11)) [9]
uses a Gaussian function to describe the spatial subsidence distribution. Ground observa-



Mining 2023, 3 340

tions, e.g., from geometric levelling, are used to estimate the parameters of this influence
function. It excludes any physical characteristic and can be used as good prototype for
further connection of physical processes.

S(r, t) ∼=
∆V(t)

R2 exp
(
−πr2

R2

)
(11)

where; R is a radius of maximum influence and is defined as R =
√

z f zrcot2 β; β is the so-
called angle of main influences. Later, ref. [14] suggested some adjustment of the influence
radius of roof by adding influence of the cavern roof characteristic c and surface factor n as

Rr(z) = R
(

z−zr+c
zr−z f +c

)n
.

Eickemeier’s approach is formulated in Equation (12), where the power (δ) of the
relative position ( r

R ) defines the shape and, thus, the inclination of the subsidence trough
wings [16]. The difficulty related to this solution is in finding the integral of the volume
under the rotated function because there are no analytical solutions available for arbitrary
parameters δ.

S(t, r) = − ξδ

2π1− 2
δ R2Γ

( 2
δ

)exp
(
−πξ

δ
2

rδ

Rδ

)
·Vconv(t) (12)

where; ξ is called by the author “a parameter to consider a time effect”. In praxis, it should
be used for a fine calibration of the maximum subsidence; δ is a form parameter that
describes a change in the curvature of the influence function (range from 1.5 to 3); Γ is a
gamma function that normalizes the function with respect to the convergence volume. The
effect of the variables on the subsidence can be seen in Figure 3.
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The difficult part of the solution is the consideration of the volume balance and variety
of the definition of the influence radius. This creates problems to use δ as a parameter that
is to be estimated from observations.

Quasnitza proposed a mathematical solution to describe an asymmetrical shape of the
subsidence trough (Equation (13)) [17]. For this propose, R is presented as a function of
horizontal angle ϕ between profile line and the geodetic north direction. The volume of the
shape depends on the function R(ϕ). The distribution is provided in Figure 4.

S(r, ϕ) =
a∆V

zrz f ·ctgγmax·ctgγmin
e
− πr2

R2(ϕ) (13)

where; γmax and γmin are influence angels in the direction of asymmetry (in the context of
the influence radius shown in Figure 5); zr and z f denotate the depth of the roof and floor
of the cavern, respectively.
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As a demonstration, a synthetic example based on an asymmetric function
R(ϕ) = R + 1

3 R ∗ cos(ϕ(X, r)+ 1
3 π
)

is shown in Figures 4–6. The distribution of R is
provided in Figure 5 in profile Y = 0, as well as in Figure 6, in three dimensions. An-
other factor to consider is that the Quasnitza solution does not appropriately account for
convergence volume, which is addressed and corrected in the related chapter.
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2.4. Conclusions

There are two types of models used to describe the convergence behaviour of caverns:
physical models and statistical models. However, empirical models are more often used
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in practice due to the need for a sufficient amount of sample data to estimate physical
parameters. In the specific case of caverns used for storage, it is crucial to include pressure
data in the convergence part of the subsidence equation.

Regarding the influence function, the Gaussian distribution is considered the basic
subsidence shape. However, Eickemeier suggests that the shape of the distribution can vary
and introduces additional shape parameters. Quasnitza extends Sroka’s approach to cover
asymmetry, but the original approach requires an adjustment to consider volume balance.
As the need to cover asymmetrical subsidence shapes was identified [18], the correction of
the Quasnitza solution is discussed, including the generalization of bivariate limits.

3. Introducing Asymmetry in the Model

Around the world, numerous instances of asymmetrical subsidence are being observed,
often associated with stress-related factors [18]. For instance, asymmetric subsidence and
the formation of subsidence bowl shapes have been documented in various countries,
such as Sweden [19], the USA [20], Canada [21], Ghana [22], China [23,24], among others.
These examples emphasize the considerable potential for mathematically correcting the
asymmetrical extensions and developing a generalized approach for predicting ground
subsidence that can effectively account for asymmetry.

The influence function is a crucial component of subsidence prediction models, as it
describes the spatial distribution of subsidence and how it varies with distance from the cav-
ern. The function is regulated by the influence radius R, which is defined in Equation (14).

R = z cot (γ) (14)

where; z is a depth of the cavern; γ is an influence angle.
To simplify matters, this paper utilizes the term “influence radius”, as it is proportional

to the influence angle and depth. However, in practical applications, estimating the
influence angle is more significant, since the depth of caverns may differ. To introduce
asymmetry, the influence function should be direction-dependent. The direction is defined
as the angle ϕ in Equation (15), which is the horizontal angle between vector r and the
North direction on the X–Y axis.

ϕ = arcctg
(

∆y
∆x

)
(15)

To express the asymmetry of the subsidence bowl, a continuous function should be
implemented in R that depends on ϕ and is defined between 0 and 2π to describe a closed
contour. In the symmetric case, R(ϕ) is described as a constant with a constant value.
For each specific asymmetrical case, it is important to meet the requirement of volume
balance between the convergence volume and subsidence volume. Therefore, the solution
of Equation (9) takes the shape shown in Equation (16).

2π∫
0

∞∫
0

exp

(
−π r2

R(ϕ)2

)
r dr dϕ =

2π∫
0

R(ϕ)2

2π
dϕ =

1
2π

2π∫
0

R(ϕ)2dϕ (16)

The value of R(ϕ) can be defined by any equation meeting the above-mentioned
requirements. Examples of such functions are provided in Equations (17) and (18) and
illustrated in Figures 7 and 8. These examples use trigonometric and polynomic function.

R(ϕ) = (1 + Bsin (ϕ) + ∆ϕ)·R (17)

R(ϕ) = −0.005R·ϕ4 + 0.022R·ϕ3 + 0.199R·ϕ2 + 0.814R·ϕ + R (18)

where; R is some average meaning of the influence radius estimated by influence angle
for several directions. ∆ϕ is an angle from the North direction to state the direction of
asymmetry. In the example, ∆ϕ is assumed to be 0.



Mining 2023, 3 343Mining 2023, 3, FOR PEER REVIEW 11 
 

 

 
Figure 7. Definition of 𝑅(𝜑) as a function and discrete relative to the mean value 

To calibrate the new function according to Equation (8), Equation (16) must be solved. 
In the case of R(φ) being defined as a function by Equation (17) or Equation (18), an ana-
lytical solution is provided in Equations (19) and (20), respectively. Both models are pre-
sented in Figure 7. 𝑆(𝑟, 𝜑) = 𝛥𝑉12𝜋 𝑅 +  𝑅𝐵𝑠𝑖𝑛(𝜑) 𝑑𝜑  ∙ exp − 𝜋𝑟𝑅(𝜑)  = 

𝛥𝑉12 𝑅 (2 + 𝐵 )  ∙ exp − 𝜋𝑟𝑅(𝜑)   (19)

𝑆(𝑟, 𝜑) = ⋯ = Δ𝑉12𝜋 R(𝜑) 𝑑𝜑  ∙ exp − 𝜋𝑟𝑅(𝜑)  = 

=  2𝜋 Δ𝑉96.5229 𝑅  ∙ exp − 𝜋𝑟𝑅(𝜑)   (20)

The demonstration of the aforementioned definition for 𝑅(𝜑) in Equation (19) (Fig-
ure 7) is provided in Figure 8a. The demonstration of the aforementioned definition for 𝑅(𝜑) in Equation (20) (Figure 7) is provided in Figure 8b. 

The presented example demonstrates that the asymmetry of the subsidence trough 
can be described if the distribution of R or 𝛾 is known. However, in practice, the value of 

Figure 7. Definition of R(ϕ) as a function and discrete relative to the mean value.

Mining 2023, 3, FOR PEER REVIEW 12 
 

 

R is estimated from subsidence measurements. Thus, the complexity of the subsidence 
trough in terms of the parameters number is limited by the availability of reliable meas-
urement points and computational power (due to operation of the matrix transforming), 
as solving an equation with n unknown parameters requires n + 1 statistically independent 
data points. Pre-estimation of the shape of the trough as a simple figure with one asym-
metrical direction, such as a sine function, an ellipsoid, etc., can be applied in cases of 
anisotropic uniformly distributed horizontal stress, simple anisotropies, geological struc-
tures, significant changes in the landscape, etc. Some of the aspects of this topic have been 
investigated in the research of tectonic stress influence on the subsidence profile parame-
ters [17], they are beyond the scope of this study. 

 
Figure 8. Subsidence trough with asymmetry on example of the radius distribution demonstrated 
in Figure 7. (a) demonstrates the sinus-based distribution. (b) polynomial-based distribution. 

4. Conclusions 
Since salt caverns are used for storing natural gas and liquids, subsidence prediction 

methods must be adapted to the unique conditions of salt cavern exploitation. In general, 
this research provides a deep understanding of the factors involved in subsidence predic-
tion and estimates standards and directions for quality development. It emphasizes that 
the solution should be chosen for each particular case, depending on the availability of 
data and the potential for parameter estimation. The potential of subsidence prediction 
lies in the unifying solution that encompasses deviations from normal distribution and 
defines convergence, especially in relation to the time function. The study primarily fo-
cuses on two aspects: convergence and asymmetry of the influence function, with a par-
ticular emphasis on correcting the asymmetrical extension proposed by Quasnitza. 

The suggested method extends the coverage to include any type of asymmetry, in 
contrast to the originally proposed unilateral asymmetry and corrects the mathematical 
aspects of the original solution to ensure volume equilibrium. Therefore, the article ex-
tends theoretical bases on the ground that subsidence prediction methods for asymmet-
rical cases are presented. 

As an outlook of the study, the implementation of head pressure in the convergence 
estimation models and the estimation of the necessity of shape deviation from Gaussian 
can be considered. 

Author Contributions: Conceptualization, A.B. and J.B.; methodology, A.B.; formal analysis, A.B.; 
investigation, A.B.; data curation, A.B.; writing—original draft preparation, A.B.; writing—review 
and editing, J.B.; visualization, A.B.; supervision, J.B.; project administration, J.B.; funding acquisi-
tion, J.B. All authors have read and agreed to the published version of the manuscript. 

Figure 8. Subsidence trough with asymmetry on example of the radius distribution demonstrated in
Figure 7. (a) demonstrates the sinus-based distribution. (b) polynomial-based distribution.

In both cases (using either a trigonometric function or a polynomial function), it is
important to estimate the influence angle in order to obtain the property of influence radius:

• For the trigonometric function, the influence angle should be estimated either in the
two directions of asymmetry: ∆ϕ and ∆ϕ + 1/2 π, or if they are unknown (usually)
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in three directions. Alternatively, the difference in direction should be concluded
beforehand. In the case, R represents an average of z·ctg(γ) in these two directions.

• For the polynomial function, the influence angle should be estimated in five different
directions in order to estimate the polynomial function. The value of R in this case is
the same, as in the sin function case, i.e., an average of z·ctg(γ).

To calibrate the new function according to Equation (8), Equation (16) must be solved.
In the case of R(ϕ) being defined as a function by Equation (17) or Equation (18), an
analytical solution is provided in Equations (19) and (20), respectively. Both models are
presented in Figure 7.

S(r, ϕ) = ∆V
1

2π

∫ 2π
0 (R+RBsin(ϕ))2dϕ

·exp
(
− πr2

R(ϕ)2

)
=

∆V
1
2 R2(2+B2)

·exp
(
− πr2

R(ϕ)2

) (19)

S(r, ϕ) = . . . = ∆V
1

2π

∫ 2π
0 R(ϕ)2dϕ

·exp
(
− πr2

(R(ϕ))2

)
=

2π∆V
96.5229R2 ·exp

(
− πr2

(R(ϕ))2

) (20)

The demonstration of the aforementioned definition for R(ϕ) in Equation (19) (Figure 7)
is provided in Figure 8a. The demonstration of the aforementioned definition for R(ϕ) in
Equation (20) (Figure 7) is provided in Figure 8b.

The presented example demonstrates that the asymmetry of the subsidence trough can
be described if the distribution of R or γ is known. However, in practice, the value of R is
estimated from subsidence measurements. Thus, the complexity of the subsidence trough
in terms of the parameters number is limited by the availability of reliable measurement
points and computational power (due to operation of the matrix transforming), as solving
an equation with n unknown parameters requires n + 1 statistically independent data points.
Pre-estimation of the shape of the trough as a simple figure with one asymmetrical direction,
such as a sine function, an ellipsoid, etc., can be applied in cases of anisotropic uniformly
distributed horizontal stress, simple anisotropies, geological structures, significant changes
in the landscape, etc. Some of the aspects of this topic have been investigated in the research
of tectonic stress influence on the subsidence profile parameters [17], they are beyond the
scope of this study.

4. Conclusions

Since salt caverns are used for storing natural gas and liquids, subsidence prediction
methods must be adapted to the unique conditions of salt cavern exploitation. In general,
this research provides a deep understanding of the factors involved in subsidence prediction
and estimates standards and directions for quality development. It emphasizes that the
solution should be chosen for each particular case, depending on the availability of data
and the potential for parameter estimation. The potential of subsidence prediction lies in
the unifying solution that encompasses deviations from normal distribution and defines
convergence, especially in relation to the time function. The study primarily focuses on two
aspects: convergence and asymmetry of the influence function, with a particular emphasis
on correcting the asymmetrical extension proposed by Quasnitza.

The suggested method extends the coverage to include any type of asymmetry, in
contrast to the originally proposed unilateral asymmetry and corrects the mathematical
aspects of the original solution to ensure volume equilibrium. Therefore, the article ex-tends
theoretical bases on the ground that subsidence prediction methods for asymmetrical cases
are presented.
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As an outlook of the study, the implementation of head pressure in the convergence
estimation models and the estimation of the necessity of shape deviation from Gaussian
can be considered.
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