Visual Analytics for Sustainable Mobility: Usability Evaluation and Knowledge Acquisition for Mobility-as-a-Service (MaaS) Data Exploration
Abstract
:1. Introduction
- RQ1. Is UrbanFlow Milano easy to be used (i.e., is easy to filter, and understand the graphical elements)?
- RQ2: Is UrbanFlow Milano as intuitive for every user, regardless of their experience in visual analytics?
- RQ3: Is an introductory guide necessary for users to fully utilize the UrbanFlow interface?
2. Visualizing Mobility Data: Related Work and Visual Diagrams
2.1. Related Work: User Evaluation of Map-Based Dashboard
2.2. Related Work: Visual Diagrams
2.2.1. Density
2.2.2. Flow
2.2.3. Relations
3. Design of the Dashboard
3.1. OD Flow Map
- Incoming/Outgoing link filter: Allows users to choose whether to filter incoming or outgoing connections.
- Maximum number of incoming/outgoing links: Limits the number of links (connections) leaving or arriving at each node. To avoid visual clutter, the value is set to three by default.
- Minimum opacity of links: Allow users to customize the minimum opacity of links; its default value is 0.05. Increasing this value enables the display of links that would otherwise be hidden.
3.2. Trajectory Flow Map
- Select a NIL: This feature allows users to choose a specific NIL to view its associated trips.
- Flow Direction: This option enables users to select to view trips entering or exiting the selected NIL.
- Time Range: Users can customize the time range of the displayed data by specifying the start and end dates and times.
- Map Style: Users can personalize the map’s appearance according to their preferences. Available options include dark, light, satellite, and OpenStreetMap styles.
3.3. Mobility Chord Diagram
- Vehicles to display: This option allows user to select the type of vehicles to be displayed in the graph, choosing from car sharing, bicycles, scooters and motorcycles.
- Minimum number of trips between two NIL: This option allows the user to display only those links that have a number of trips equal to or greater than the selected number.
4. Design of the Evaluation Experiment
4.1. Context Definition
4.2. Task Definition
4.3. User Profiling and Recruitment
4.4. User Study Composition
4.5. Evaluation Metrics
5. Evaluation Results
5.1. OD Flow Map
5.2. Trajectory Map
5.3. Chord Diagram
6. Qualitative Analysis
6.1. OD Flow Map
6.2. Trajectory Flow Map
7. Evaluation of Usability and Intuitiveness of UrbanFlow Milano
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrienko, G.; Andrienko, N.; Wrobel, S. Visual analytics tools for analysis of movement data. ACM SIGKDD Explor. Newsl. 2007, 9, 38–46. [Google Scholar] [CrossRef]
- Cui, W. Visual Analytics: A Comprehensive Overview. IEEE Access 2019, 7, 81555–81573. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, A.; Chan, E.H.; Shi, W.; Zhou, X.; Liu, Z. A review of human mobility research based on big data and its implication for smart city development. ISPRS Int. J. Geo-Inf. 2020, 10, 13. [Google Scholar] [CrossRef]
- Çöltekin, A.; Griffin, A.L.; Slingsby, A.; Robinson, A.C.; Christophe, S.; Rautenbach, V.; Chen, M.; Pettit, C.; Klippel, A. Geospatial information visualization and extended reality displays. In Manual of Digital Earth; Springer: Berlin/Heidelberg, Germany, 2020; pp. 229–277. [Google Scholar]
- Apostolopoulos, V.; Kasselouris, G. Seizing the potential of transport pooling in urban logistics-the case of thriasio logistics centre in Greece. J. Appl. Res. Ind. Eng. 2022, 9, 230–248. [Google Scholar]
- Droj, G.; Droj, L.; Badea, A.C.; Dragomir, P.I. GIS-based urban traffic assessment in a historical European city under the influence of infrastructure works and COVID-19. Appl. Sci. 2023, 13, 1355. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, W.; Chen, Y.; Qu, H.; Ni, L.M. Visual analytics in urban computing: An overview. IEEE Trans. Big Data 2016, 2, 276–296. [Google Scholar] [CrossRef]
- Deng, Z.; Weng, D.; Liu, S.; Tian, Y.; Xu, M.; Wu, Y. A survey of urban visual analytics: Advances and future directions. Comput. Vis. Media 2023, 9, 3–39. [Google Scholar] [CrossRef]
- Moreira, G.; Hosseini, M.; Nipu, M.N.A.; Lage, M.; Ferreira, N.; Miranda, F. The Urban Toolkit: A grammar-based framework for urban visual analytics. IEEE Trans. Vis. Comput. Graph. 2023, 30, 1402–1412. [Google Scholar] [CrossRef]
- Sacha, D.; Stoffel, A.; Stoffel, F.; Kwon, B.C.; Ellis, G.; Keim, D.A. Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1604–1613. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L.; Meng, L. A feasibility study of map-based dashboard for spatiotemporal knowledge acquisition and analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 636. [Google Scholar] [CrossRef]
- Sibolla, B.H.; Coetzee, S.; Van Zyl, T.L. A framework for visual analytics of spatio-temporal sensor observations from data streams. ISPRS Int. J. Geo-Inf. 2018, 7, 475. [Google Scholar] [CrossRef]
- Ge, Y. A Spatial-Temporal-Map-Based Traffic Video Analytic Model for Large-Scale Cloud-Based Deployment. Master’s Thesis, Rutgers The State University of New Jersey, School of Graduate Studies, Newark, NJ, USA, 2020. [Google Scholar]
- Han, D.; Parsad, G.; Kim, H.; Shim, J.; Kwon, O.S.; Son, K.A.; Lee, J.; Cho, I.; Ko, S. Hisva: A visual analytics system for studying history. IEEE Trans. Vis. Comput. Graph. 2021, 28, 4344–4359. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Bai, Q.; Zhou, T.; Ye, Z.; Dong, X. EmoGeoCity: Interactive Visual Exploration of City’s Historical and Cultural Evolution Based on Emotional Geography. In Proceedings of the 2024 IEEE 17th Pacific Visualization Conference (PacificVis), Tokyo, Japan, 23–26 April 2024; pp. 102–111. [Google Scholar]
- Afzal, S.; Ghani, S.; Jenkins-Smith, H.C.; Ebert, D.S.; Hadwiger, M.; Hoteit, I. A visual analytics based decision making environment for COVID-19 modeling and visualization. In Proceedings of the 2020 IEEE Visualization Conference (VIS), Salt Lake City, UT, USA, 25–30 October 2020; pp. 86–90. [Google Scholar]
- Pettit, C.; Shi, Y.; Han, H.; Rittenbruch, M.; Foth, M.; Lieske, S.; van den Nouwelant, R.; Mitchell, P.; Leao, S.; Christensen, B.; et al. A new toolkit for land value analysis and scenario planning. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 1490–1507. [Google Scholar] [CrossRef]
- Xu, H.; Berres, A.; Liu, Y.; Allen-Dumas, M.R.; Sanyal, J. An overview of visualization and visual analytics applications in water resources management. Environ. Model. Softw. 2022, 153, 105396. [Google Scholar] [CrossRef]
- Ferreira, A.; Afonso, A.P.; Ferreira, L.; Vaz, R. Visual Analytics of Trajectories with RoseTrajVis. Big Data Res. 2022, 27, 100294. [Google Scholar] [CrossRef]
- Roth, R.E. Cartographic design as visual storytelling: Synthesis and review of map-based narratives, genres, and tropes. Cartogr. J. 2021, 58, 83–114. [Google Scholar] [CrossRef]
- Lei, F.; Ma, Y.; Fotheringham, A.S.; Mack, E.A.; Li, Z.; Sachdeva, M.; Bardin, S.; Maciejewski, R. GeoExplainer: A Visual Analytics Framework for Spatial Modeling Contextualization and Report Generation. IEEE Trans. Vis. Comput. Graph. 2023, 30, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Jamonnak, S.; Zhao, Y.; Curtis, A.; Al-Dohuki, S.; Ye, X.; Kamw, F.; Yang, J. GeoVisuals: A visual analytics approach to leverage the potential of spatial videos and associated geonarratives. Int. J. Geogr. Inf. Sci. 2020, 34, 2115–2135. [Google Scholar] [CrossRef]
- Roth, R.E. Interactive maps: What we know and what we need to know. J. Spat. Inf. Sci. 2013, 59–115. [Google Scholar] [CrossRef]
- Robinson, A.C.; Peuquet, D.J.; Pezanowski, S.; Hardisty, F.A.; Swedberg, B. Design and evaluation of a geovisual analytics system for uncovering patterns in spatio-temporal event data. Cartogr. Geogr. Inf. Sci. 2017, 44, 216–228. [Google Scholar] [CrossRef]
- Pezanowski, S.; MacEachren, A.M.; Savelyev, A.; Robinson, A.C. SensePlace3: A geovisual framework to analyze place–time–attribute information in social media. Cartogr. Geogr. Inf. Sci. 2018, 45, 420–437. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Zhang, K.; Andrienko, G.; Andrienko, N. COPE: Interactive exploration of co-occurrence patterns in spatial time series. IEEE Trans. Vis. Comput. Graph. 2018, 25, 2554–2567. [Google Scholar] [CrossRef] [PubMed]
- Seebacher, D.; Häußler, J.; Hundt, M.; Stein, M.; Müller, H.; Engelke, U.; Keim, D.A. Visual analysis of spatio-temporal event predictions: Investigating the spread dynamics of invasive species. IEEE Trans. Big Data 2018, 7, 497–509. [Google Scholar] [CrossRef]
- Liu, D.; Xu, P.; Ren, L. TPFlow: Progressive partition and multidimensional pattern extraction for large-scale spatio-temporal data analysis. IEEE Trans. Vis. Comput. Graph. 2018, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McKenna, S.; Staheli, D.; Fulcher, C.; Meyer, M. Bubblenet: A cyber security dashboard for visualizing patterns. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2016; Volume 35, pp. 281–290. [Google Scholar]
- Popelka, S.; Herman, L.; Řezník, T.; Pařilová, M.; Jedlička, K.; Bouchal, J.; Kepka, M.; Charvát, K. User evaluation of map-based visual analytic tools. ISPRS Int. J. Geo-Inf. 2019, 8, 363. [Google Scholar] [CrossRef]
- Roth, R.E.; Çöltekin, A.; Delazari, L.; Filho, H.F.; Griffin, A.; Hall, A.; Korpi, J.; Lokka, I.; Mendonça, A.; Ooms, K.; et al. User studies in cartography: Opportunities for empirical research on interactive maps and visualizations. Int. J. Cartogr. 2017, 3, 61–89. [Google Scholar] [CrossRef]
- Golebiowska, I.; Opach, T.; Rød, J.K. For your eyes only? Evaluating a coordinated and multiple views tool with a map, a parallel coordinated plot and a table using an eye-tracking approach. Int. J. Geogr. Inf. Sci. 2017, 31, 237–252. [Google Scholar] [CrossRef]
- Brady, D.; Ferguson, N.; Adams, M. Usability of MyFireWatch for non-expert users measured by eyetracking. Aust. J. Emerg. Manag. 2018, 33, 28–34. [Google Scholar]
- Brooke, J. SUS-A quick and dirty usability scale. Usability Eval. Ind. 1996, 189, 4–7. [Google Scholar]
- Eitzinger, A.; Cock, J.; Atzmanstorfer, K.; Binder, C.R.; Läderach, P.; Bonilla-Findji, O.; Bartling, M.; Mwongera, C.; Zurita, L.; Jarvis, A. GeoFarmer: A monitoring and feedback system for agricultural development projects. Comput. Electron. Agric. 2019, 158, 109–121. [Google Scholar] [CrossRef]
- Cao, N.; Lin, C.; Zhu, Q.; Lin, Y.R.; Teng, X.; Wen, X. Voila: Visual anomaly detection and monitoring with streaming spatiotemporal data. IEEE Trans. Vis. Comput. Graph. 2017, 24, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Huang, C.; Liu, M.; Yan, J.; Jiang, T.; Tan, Z.; Hu, Y.; Chen, W.; Zhang, X. UrbanMotion: Visual analysis of metropolitan-scale sparse trajectories. IEEE Trans. Vis. Comput. Graph. 2020, 27, 3881–3899. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, M.A.; Elmqvist, N.; Bederson, B.B. Keshif: Rapid and expressive tabular data exploration for novices. IEEE Trans. Vis. Comput. Graph. 2017, 24, 2339–2352. [Google Scholar] [CrossRef]
- Hegarty, M.; Smallman, H.S.; Stull, A.T. Choosing and using geospatial displays: Effects of design on performance and metacognition. J. Exp. Psychol. Appl. 2012, 18, 1. [Google Scholar] [CrossRef]
- Opach, T.; Gołębiowska, I.; Fabrikant, S.I. How do people view multi-component animated maps? Cartogr. J. 2014, 51, 330–342. [Google Scholar] [CrossRef]
- Roth, R.E.; Ross, K.S.; MacEachren, A.M. User-centered design for interactive maps: A case study in crime analysis. ISPRS Int. J. Geo-Inf. 2015, 4, 262–301. [Google Scholar] [CrossRef]
- Nusrat, S.; Kobourov, S. The state of the art in cartograms. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2016; Volume 35, pp. 619–642. [Google Scholar]
- Wilke, C.O. Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Sobral, T.; Galvão, T.; Borges, J. Visualization of urban mobility data from intelligent transportation systems. Sensors 2019, 19, 332. [Google Scholar] [CrossRef] [PubMed]
- Gutwin, C.; Mairena, A.; Bandi, V. Showing flow: Comparing usability of Chord and Sankey diagrams. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–10. [Google Scholar]
- Bai, J.; Zhang, H.; Qu, D.; Lv, C.; Shao, W. FGVis: Visual analytics of human mobility patterns and urban areas based on F-GloVe. J. Vis. 2021, 24, 1319–1335. [Google Scholar] [CrossRef]
- Andrienko, G.; Andrienko, N.; Chen, W.; Maciejewski, R.; Zhao, Y. Visual analytics of mobility and transportation: State of the art and further research directions. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2232–2249. [Google Scholar] [CrossRef]
- Opach, T.; Rød, J.K. Augmenting the usability of parallel coordinate plot: The polyline glyphs. Inf. Vis. 2018, 17, 108–127. [Google Scholar] [CrossRef]
- Slingsby, A.; Dykes, J.; Wood, J. Using treemaps for variable selection in spatio-temporal visualisation. Inf. Vis. 2008, 7, 210–224. [Google Scholar] [CrossRef]
- Havre, S.; Hetzler, B.; Nowell, L. ThemeRiver: Visualizing theme changes over time. In Proceedings of the IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings, Salt Lake City, UT, USA, 9–10 October 2000; pp. 115–123. [Google Scholar]
- Lewis, J.R. Testing small system customer set-up. In Proceedings of the Human Factors Society Annual Meeting; SAGE Publications; Sage: Los Angeles, CA, USA, 1982; Volume 26, pp. 718–720. [Google Scholar]
Task | |
---|---|
OD Flow Map | Identify a connection with many trips and one with few trips |
Get more detailed information about the Brera hub. | |
Which NIL ranks second in the origins list? | |
Which NIL ranks third in the destinations list? | |
Set the maximum number of incoming connections to 10. | |
Is there an imbalance in the concentration of trips across different city zones? | |
Set the number of outgoing connections to 1 and adjust the opacity according to your preferences. | |
Trajectory Map | Display the outgoing trips from Bovisa from July 1 to 15. |
Display only the Scooter trips. | |
Expand the view to full screen. | |
Download the view as a PNG. | |
Identify the roads with high and low traffic levels. | |
Display the incoming trips to Central Station on July 4 from 10 a.m. to 12 p.m., using the satellite map. | |
Chord Diagram | What do the arcs represent? |
What do the points on the edge of the circle represent? | |
Set the minimum number of trips to 20 and filter to display only Bike and Scooter trips. | |
Identify the NIL with the highest and lowest number of trips. | |
How many trips were recorded between Loreto and Buenos Aires? | |
Return to the graph and display only the connections related to Sarpi. | |
Set the minimum number of trips to 30 and identify the NILs with the most and fewest trips. |
Gender Distribution | Male | 9 |
Female | 5 | |
Level of Education | High school | 3 |
Bachelor degree | 6 | |
Master degree | 2 | |
PhD or higher | 3 | |
Expertise | Experts | 7 |
Non-experts | 7 |
Task | Problems | S. Rate with Guide | S. Rate without Guide |
---|---|---|---|
Display only the Scooter trips | Participant did not find the legend (2). | 100% | 71% |
Download the visualization as PNG. | Participant did not find the icon to click on (2). | 86% | 86% |
View incoming trips to Central Station on July 4 from 10 a.m. to noon by choosing the “satellite map”. | Participant did not find the map selector (1). | 100% | 86% |
Task | Problem | S. Rate with Guide | S. Rate without Guide |
---|---|---|---|
What do the arcs identify? | Participant gave an incorrect answer (6). | 57% | 57% |
What do the dots on the edge of the circle identify? | Participant gave an incorrect answer (1). | 86% | 100% |
How many trips were recorded between Loreto and Buenos Aires? | Participant did not see the tab to open the Table view (8). | 43% | 43% |
Travel Mode | June 29 | June 30 | July 6 | July 7 | July 20 | July 21 |
---|---|---|---|---|---|---|
Car | 16 | 19 | 22 | 21 | 23 | 18 |
Moped | 74 | 36 | 65 | 64 | 69 | 49 |
Scooter | 27 | 9 | 18 | 19 | 19 | 11 |
Bike | 4 | 0 | 2 | 6 | 7 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delfini, L.; Spahiu, B.; Vizzari, G. Visual Analytics for Sustainable Mobility: Usability Evaluation and Knowledge Acquisition for Mobility-as-a-Service (MaaS) Data Exploration. Digital 2024, 4, 821-845. https://doi.org/10.3390/digital4040041
Delfini L, Spahiu B, Vizzari G. Visual Analytics for Sustainable Mobility: Usability Evaluation and Knowledge Acquisition for Mobility-as-a-Service (MaaS) Data Exploration. Digital. 2024; 4(4):821-845. https://doi.org/10.3390/digital4040041
Chicago/Turabian StyleDelfini, Lorenzo, Blerina Spahiu, and Giuseppe Vizzari. 2024. "Visual Analytics for Sustainable Mobility: Usability Evaluation and Knowledge Acquisition for Mobility-as-a-Service (MaaS) Data Exploration" Digital 4, no. 4: 821-845. https://doi.org/10.3390/digital4040041
APA StyleDelfini, L., Spahiu, B., & Vizzari, G. (2024). Visual Analytics for Sustainable Mobility: Usability Evaluation and Knowledge Acquisition for Mobility-as-a-Service (MaaS) Data Exploration. Digital, 4(4), 821-845. https://doi.org/10.3390/digital4040041