
Citation: Birkenkrahe, M. Teaching

Data Science with Literate

Programming Tools. Digital 2023, 3,

232–250. https://doi.org/10.3390/

digital3030015

Academic Editor: Manuel Reis

Received: 25 July 2023

Revised: 4 September 2023

Accepted: 6 September 2023

Published: 8 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Teaching Data Science with Literate Programming Tools
Marcus Birkenkrahe

Department of Math and Science, Lyon College, Batesville, AR 72501, USA; birkenkrahe@lyon.edu

Abstract: This paper presents a case study on using Emacs and Org-mode for literate programming in
undergraduate computer and data science courses. Over three academic terms, the author mandated
these tools across courses in R, Python, C++, SQL, and more. The onboarding relied on simplified
Emacs tutorials and starter configurations. Students gained proficiency after undertaking initial
practice. Live coding sessions demonstrated the flexible instruction enabled by literate notebooks.
Assignments and projects required documentation alongside functional code. Student feedback
showed enthusiasm for learning a versatile IDE, despite some frustration with the learning curve.
Skilled students highlighted efficiency gains in a unified environment. However, the uneven adoption
of documentation practices pointed to a need for better incorporation into grading. Additionally,
some students found Emacs unintuitive, desiring more accessible options. This highlights a need to
match tools to skill levels, potentially starting novices with graphical IDEs before introducing Emacs.
The key takeaways are as follows: literate programming aids comprehension but requires rigorous
onboarding and reinforcement, and Emacs excels for advanced workflows but has a steep initial
curve. With proper support, these tools show promise for data science education.

Keywords: data science; literate programming; teaching; Emacs; org-mode; IDE; case study

1. Introduction

The author began teaching data science at a small liberal arts college in 2021, after
a long career of teaching business informatics courses at a German business school. The
COVID-19 pandemic prompted him to look for different ways of working with students in
the classroom.

A couple of years previously, the author had returned to an old friend from his days
as a graduate student of physics, GNU Emacs, which is tersely described as an “extensible,
customizable text editor” [1]. For programmers, GNU Emacs is an early tool for “literate
programming”, which assembles documentation, code, and output in one text document
that can be converted to either source code for compilation or a document for printing [2].
For humans, literate programs are easier to understand, debug, and maintain.

In production data science, literate programming is the norm and not the exception,
thanks to interactive notebooks that were first popularized by IPython and the Jupyter
project [3]. Today, every development platform and IDE offers notebooks such as Google
Colaboratory, RStudio by Posit, Kaggle by Google, and dozens of others. This is partly due
to the interdisciplinary character of data science, which relies on programming, mathemat-
ics, and domain knowledge and skills, and which is used by practitioners with diverse
backgrounds who are often not trained in computer science, including biologists, psycholo-
gists, sociologists, and medical professionals.

The path to learning data science is highly fragmented. It involves a choice of pro-
gramming languages (e.g., Python vs. R), data visualization techniques, mathematical and
process modeling, and knowledge of computing infrastructure [4].

When teaching data science, a core problem concerns the need to provide enough of an
overview of all these aspects to enable students to solve real-world problems. In his classes,
the author employs a triadic progression of didactic concepts: instruction, interaction, and

Digital 2023, 3, 232–250. https://doi.org/10.3390/digital3030015 https://www.mdpi.com/journal/digital

https://doi.org/10.3390/digital3030015
https://doi.org/10.3390/digital3030015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/digital
https://www.mdpi.com
https://orcid.org/0000-0001-9461-8474
https://doi.org/10.3390/digital3030015
https://www.mdpi.com/journal/digital
https://www.mdpi.com/article/10.3390/digital3030015?type=check_update&version=1


Digital 2023, 3 233

immersion [5]. As a teacher, he had always used the ancient GNU Emacs editor (created in
1975, first launched in 1985, and first used by him in 1991) and the more modern Org-mode
package for Emacs, while the students used a variety of different platforms, such as GitHub
for lecture materials, Google Colaboratory for coding along, and DataCamp and Canvas
for assignments and tests.

Then, at EmacsConf in November 2021, the author watched the educator Daniel
German explain how he uses Org-mode to prepare and present teaching materials to his
students when teaching programming in a variety of languages [6]. This emboldened the
author to embark on an ambitious plan: to mandate Emacs and Org-mode as the central
platform for interaction, instruction, and immersion in all his courses.

This was ambitious because Emacs is said to have a steep learning curve and to be
useful mainly to a small group of devoted developers and professionals [7]. However,
the Internet has experienced something of an Emacs renaissance, with several popular
YouTube channels and blogs featuring Emacs and presenting it as a viable, open-source
alternative to commercial products like VS Code by Microsoft or RStudio by Posit [8–10].
These authors prefer Emacs because of its openness, its flexibility, and its stability. For
data scientists, Emacs’ ability, in concert with Org-mode, to effortlessly work with many
programming languages in the same notebook is especially attractive.

When the author started using Emacs in class in spring 2022, the students liked it, and
so he kept going until the end of the 2023 spring term.

In this paper, the author will present and reflect on the choice of Emacs and Org-
mode as a mandatory literate programming tool for teaching data science in a variety
of undergraduate courses for the programming languages R, SQL, SQLite, C/C++, bash,
databases, data visualization, machine learning, and operating systems over three academic
terms at a small college in rural Arkansas.

1.1. The Theory and Practice of Teaching Data Science

As a recently developed field of interdisciplinary study and practice, data science
is too young to have a well-established “best practice” for teaching [11]. However, there
is basic agreement about what students need to learn in each of its disciplines: at the
center of most courses and textbooks stands a workflow that begins with data acquisition
and ends with storytelling. Between these two stages, data need to be stored, managed,
transformed, modeled, analyzed, and visualized [12]. Figure 1 shows a shortened version
of this flow with the four essential phases of any data science project—from cleaning the
data for analysis, through modeling and visualization, and, finally, to presenting insights.
This data science workflow leads to different job titles, such as data engineer, data analyst,
or machine learning scientist, each of whom oversees different parts of the pipeline, while
data scientists take charge of the whole pipeline.

Digital 2023, 3, FOR PEER REVIEW 2 
 

 

interaction, and immersion [5]. As a teacher, he had always used the ancient GNU Emacs 
editor (created in 1975, first launched in 1985, and first used by him in 1991) and the more 
modern Org-mode package for Emacs, while the students used a variety of different plat-
forms, such as GitHub for lecture materials, Google Colaboratory for coding along, and 
DataCamp and Canvas for assignments and tests. 

Then, at EmacsConf in November 2021, the author watched the educator Daniel Ger-
man explain how he uses Org-mode to prepare and present teaching materials to his stu-
dents when teaching programming in a variety of languages [6]. This emboldened the 
author to embark on an ambitious plan: to mandate Emacs and Org-mode as the central 
platform for interaction, instruction, and immersion in all his courses. 

This was ambitious because Emacs is said to have a steep learning curve and to be 
useful mainly to a small group of devoted developers and professionals [7]. However, the 
Internet has experienced something of an Emacs renaissance, with several popular 
YouTube channels and blogs featuring Emacs and presenting it as a viable, open-source 
alternative to commercial products like VS Code by Microsoft or RStudio by Posit [8–10]. 
These authors prefer Emacs because of its openness, its flexibility, and its stability. For 
data scientists, Emacs’ ability, in concert with Org-mode, to effortlessly work with many 
programming languages in the same notebook is especially attractive. 

When the author started using Emacs in class in spring 2022, the students liked it, 
and so he kept going until the end of the 2023 spring term. 

In this paper, the author will present and reflect on the choice of Emacs and Org-
mode as a mandatory literate programming tool for teaching data science in a variety of 
undergraduate courses for the programming languages R, SQL, SQLite, C/C++, bash, da-
tabases, data visualization, machine learning, and operating systems over three academic 
terms at a small college in rural Arkansas. 

1.1. The Theory and Practice of Teaching Data Science 
As a recently developed field of interdisciplinary study and practice, data science is 

too young to have a well-established “best practice” for teaching [11]. However, there is 
basic agreement about what students need to learn in each of its disciplines: at the center 
of most courses and textbooks stands a workflow that begins with data acquisition and 
ends with storytelling. Between these two stages, data need to be stored, managed, trans-
formed, modeled, analyzed, and visualized [12]. Figure 1 shows a shortened version of 
this flow with the four essential phases of any data science project—from cleaning the data 
for analysis, through modeling and visualization, and, finally, to presenting insights. This 
data science workflow leads to different job titles, such as data engineer, data analyst, or 
machine learning scientist, each of whom oversees different parts of the pipeline, while 
data scientists take charge of the whole pipeline. 

 
Figure 1. Simplified data science workflow. 

Until a couple of years ago, data science education focused on graduate-level pro-
grams for people with undergraduate degrees in computer science, software engineering, 

Figure 1. Simplified data science workflow.

Until a couple of years ago, data science education focused on graduate-level pro-
grams for people with undergraduate degrees in computer science, software engineering,
mathematics, and statistics, or on a specific data domains like biology, psychology, or



Digital 2023, 3 234

business [13]. As the demand for data science graduates increased, more and more under-
graduate programs sprang up.

Mastering the data science workflow requires many diverse skills. For example,
the data science major at Lyon College requires core competence in computer science,
mathematics, and statistics, two data science specialization courses (e.g., visualization and
machine learning), and two domain-specific specializations (social science/humanities,
business/economics, or science). It includes training in R, Python, SQL, C/C++, or Java,
plus the foundations of digital logic, database design, and operating systems, along with
bash shell scripting and exposure to Git version control software [14].

The teaching response to this ambitious set of skills has been to create infrastructures
that integrate different tools so that students can focus on the data science task at hand—e.g.,
importing and cleaning a dataset, obtaining an overview of the dataset structure, and
creating exploratory visualizations.

Training platforms such as DataCamp have perfected this approach, offering smooth
sailing through different topics in only a few hours while hiding many of the tricky
aspects—like finding and loading suitable software packages, managing files and processes,
mastering the interface between graphics and the operating system, and so on. Integrated
development environments (IDEs) like RStudio, VS Code, Google Colaboratory, Spyder,
and Anaconda have taken a similar path. The same methodological attitude lies behind
the recent trend toward “code intelligence”, i.e., automatic comment generation and code
completion, enabled by large language models [15].

The problem with these integrated infrastructures is that they do not represent the
systemic structural messiness of the real world, and they do not train students specifically
in meeting real world requirements, especially transparency and reproducibility [16]. This
would, for example, include having to struggle with setting up, managing, and debugging
a multi-part work environment on one’s own and making it work remotely with other
developers, who may or may not have the same setup.

Literate programming aligns well with the goals of reproducible, transparent, and
open data science education. The literate programming methodology promoted through
Emacs and Org-Mode allows students to unify theory, code, and output within a single
coherent text document, using only a single application while still being in full control of
the work environment and its customizations.

1.2. The Rationale for Using Emacs as an IDE and Its Learning Curve

As an IDE, Emacs provides a unique set of advantages, particularly within the realm
of data science education [17]. Its broad customizability, extensive programming language
support, and open-source nature underscore its utility. However, it is important to ac-
knowledge that Emacs also introduces certain complexities that can make it challenging for
newcomers to learn.

Emacs’ customizability is a double-edged sword. On the one hand, it empowers users
to tailor their programming environment to their specific needs—an ideal feature for a data
science course that requires different programming tools and workflows. Yet, the flip side
of this flexibility is that Emacs lacks a definitive ‘out-of-the-box’ setup. Beginners must
invest significant effort into learning how to configure Emacs effectively. It is not just about
learning a new tool; it is about shaping that tool to fit one’s needs.

Additionally, while Emacs’ support for a wide range of programming languages
adds to its versatility, it also requires the user to have a deeper understanding of these
languages and their integration into the Emacs ecosystem. Navigating these integrations
can prove challenging for novices, who may need to grapple not just with the intricacies of
the languages themselves, but also with how to effectively set up and use Emacs to code in
these languages.

Furthermore, while being open source offers advantages in terms of reliability and
flexibility, it also introduces another layer of complexity. Users often must sift through an



Digital 2023, 3 235

abundance of community-generated resources, deciphering what is relevant and reliable,
which can be daunting and time-consuming for beginners.

Lastly, Emacs’ extensibility, through packages such as “Emacs Speaks Statistics”
(ESS) [18] that are designed for statistical programming and data analysis, solidifies its
standing as a versatile tool for data science tasks. This extensibility, however, comes with
a learning curve. The sheer number of available packages can be overwhelming to new
users, requiring them to understand the utility and application of each one.

When using Emacs in class as a teacher, and especially when mandating its use by
students, it is important to rein in expectations and provide a pre-configured environment.
Figure 2 shows the minimal Emacs configuration file provided to the students. It enables
them to:

1. Run code in Emacs in C/C++, R, SQL, SQLite, R, Python, and bash.
2. Update Emacs packages from a central repository.
3. Create code blocks easily with skeleton commands.
4. Auto-load the ESS package for using R in Emacs.
5. Disable toolbar and graphical menu bars (not being able to use graphical menus

discourages use of the mouse and helps users to rely on the keyboard as the only and
faster way to get things done).

Digital 2023, 3, FOR PEER REVIEW 4 
 

 

abundance of community-generated resources, deciphering what is relevant and reliable, 
which can be daunting and time-consuming for beginners. 

Lastly, Emacs’ extensibility, through packages such as “Emacs Speaks Statistics” 
(ESS) [18] that are designed for statistical programming and data analysis, solidifies its 
standing as a versatile tool for data science tasks. This extensibility, however, comes with 
a learning curve. The sheer number of available packages can be overwhelming to new 
users, requiring them to understand the utility and application of each one. 

When using Emacs in class as a teacher, and especially when mandating its use by 
students, it is important to rein in expectations and provide a pre-configured environ-
ment. Figure 2 shows the minimal Emacs configuration file provided to the students. It 
enables them to: 
1. Run code in Emacs in C/C++, R, SQL, SQLite, R, Python, and bash. 
2. Update Emacs packages from a central repository. 
3. Create code blocks easily with skeleton commands. 
4. Auto-load the ESS package for using R in Emacs. 
5. Disable toolbar and graphical menu bars (not being able to use graphical menus dis-

courages use of the mouse and helps users to rely on the keyboard as the only and 
faster way to get things done). 

 
Figure 2. Emacs configuration file .emacs. 

1.3. The Rationale for Using Org-Mode as a Literate Programming Tool 
Org-mode is a structured plain-text format with notebook-like live code execution; it 

offers an ideal platform for literate programming, a methodology that intermingles code, 
documentation, and output within a singular document [19]. Conceived by Donald Knuth 
in 1984 [2], this practice promotes the creation of programs that are not just functional but 

Figure 2. Emacs configuration file .emacs.

1.3. The Rationale for Using Org-Mode as a Literate Programming Tool

Org-mode is a structured plain-text format with notebook-like live code execution; it
offers an ideal platform for literate programming, a methodology that intermingles code,
documentation, and output within a singular document [19]. Conceived by Donald Knuth
in 1984 [2], this practice promotes the creation of programs that are not just functional but



Digital 2023, 3 236

are also easy to understand, debug, and maintain. In the context of data science education,
this form of programming plays a key role in unifying theory and practice, enabling
students to visualize the results of their code in parallel to the theoretical constructs being
explained.

For instance, suppose a data science student is working on a machine learning project
to predict housing prices. Using Org-mode, they can describe the theoretical concepts of
their chosen regression model, then input the corresponding code, and, finally, display the
generated outputs, all in one unified document. This seamless presentation not only makes
it easier for the student to comprehend the link between theory and implementation, but it
also enhances the readability for others who might review or collaborate on the project.

Org-mode also bolsters the creation of reproducible research documents, a cornerstone
of modern data science. Integrating code, results, and narrative text, Org-mode documents
are ideal for assignments, projects, and collaborative work. For example, a student could
use Org-mode to write a report on a data cleaning project. The report could contain blocks of
R code for handling missing data, interspersed with explanations of why certain strategies
were chosen. The output from the code (such as summary statistics or visualizations) can be
included directly below the code blocks, creating a comprehensive, easily understandable
narrative—all of this with maximum portability in the text format, not being limited to any
reader application or file format.

Furthermore, Org-mode’s ability to export these documents to various formats, in-
cluding HTML, PDF, and LaTeX, eases the process of sharing work. A research team could
collaborate on a data analysis project in Org-mode and then export the project as a PDF
to share with their client or as an HTML page to publish on the web. The LaTeX export
option allows for the creation of formal academic articles, replete with features such as
bibliographies and index creation. The opportunities to export into a variety of formats go
significantly beyond the abilities of most interactive notebook environments.

In summary, the purpose of literate programming is to allow humans to create a story
with rich metadata while coding. The resulting literate programming file can be ‘tangled’
into source code for compilation, and ‘woven’ into a document that includes text, code,
and output in a publication-ready format.

2. Methodology

This study is a design-based research (DBR) study, which seeks to improve educational
practices by iteratively designing, implementing, and evaluating interventions [20]. The
goal of this study is to develop evidence-based design principles for the use of literate
programming tools in a series of linked courses.

The study was conducted in a real higher education setting, and the author of the paper
was involved in all aspects of the study, from instigation and design to implementation
and evaluation. The author was a participant–observer in the study, which means that he
was both a participant in the courses and an observer of the students’ learning process.

The evidence for the study was gathered through insights rather than statistical
significance. This means that the author looked for patterns and trends in the students’
learning, rather than trying to prove a specific hypothesis. The insights were gathered
using systemic action research methods, a type of qualitative research that focuses on
understanding the complex interactions between people and their environment [21].

Here are some of the key features of the DBR methodology used in this study:

• The study is iterative, meaning that the design of the intervention was refined based
on the evaluation of the findings.

• The study is situated in a real-world setting, which allows the findings to be more
generalizable.

• The study is participatory, meaning that the author was involved in all aspects of the
study.

• The study is qualitative, meaning that the evidence was gathered through insights
rather than statistical significance.



Digital 2023, 3 237

For the limitations of the implementation of this methodological program, see below.

3. Case Study: Teaching Data Science with Emacs and Org-Mode

This case study details the use of Emacs and Org-mode as central teaching tools across
multiple undergraduate data science courses taught by the author. The following sections
describe the specific courses involved, the student participants, how instruction was tailored
to address knowledge gaps, the Emacs packages and configurations used, onboarding
students to these platforms, in-class teaching methods leveraging literate programming,
assignment and project implementation, participant feedback and evaluations, and key
challenges encountered along with lessons learned. In this multi-term case study spanning a
variety of classes and languages, the goal was to assess the potential benefits and limitations
of mandating literate programming with Emacs/Org-mode in data science education.

3.1. Courses and Participant Profiles

Over the course of three academic terms (spring 2022, fall 2022, and spring 2023), the
author used Emacs and Org-mode as the primary tools for teaching a variety of under-
graduate courses. The class sizes ranged between 6 and 28 participants. The participants
included undergraduate students from all levels, including freshman, sophomore, junior,
and senior. The students were from different majors, including computer science, math-
ematics, and engineering. None of the participants had had any previous contact with
Emacs or Org-mode.

Table 1 shows all the courses involved in this case study along with the program-
ming language mainly used in the course, the course level (1–4) and denomination
(CSC = computer science course, DSC = data science course, MTH = mathematics course),
and the number of participants in each course.

Table 1. Courses involved in the case study (CSC: computer science, DSC: data science).

Course Name (Main Language) Level When Participants

Intro to programming in C++ (C/C++) CSC 100
Spring
22/23
Summer 22

13/13
6

Intro to data science (R) DSC 105 Fall 22 13
Intro to advanced data science (R) DSC 205 Spring 23 13
Digital humanities—text mining (R) CSC 105 Spring 23 6
Database theory and applications (SQLite) CSC 330 Spring 22 28
Data visualization (R) DSC 302 Fall 22 15
Machine learning (R) DSC 305 Spring 23 20
Operating systems (bash) CSC 420 Spring 22 22
Applied math in data science (R) DSC 482/MTH 445 Fall 22 20

The material for all these courses is freely available in the author’s public GitHub
repositories (distributed under a GNU General Public License v3.0).

3.2. Addressing Specific Student Knowledge Gaps

In several courses, the students had to fill out an entry survey before the first session to
help the author establish a baseline of what they already knew. The survey results revealed
that most students did not know how to open a command line terminal, and that most
students knew at most one programming language. These findings helped the instructor
to tailor instructions to the specific needs of the students and help them develop a better
understanding of their operating system and the computing infrastructure.

Specifically, the author addressed the following student needs to improve and enable
basic computing infrastructure knowledge:

• Opening and using the command line interface (CLI). A tutorial was created that
showed students how to open the command line terminal and how to navigate the



Digital 2023, 3 238

file system from the command line. Participants were also provided with exercises to
practice these skills.

• Exploring the file system from the command line. The students were shown how to
use the command line to navigate the file system, including how to create, delete, and
rename files and directories. They were also shown how to use the command line to
search for files and directories.

• Explaining and practicing CLI compilation or, equivalently, running scripts using an
interpreter. The difference between compilation and interpretation was explained and
students were shown how to compile and run programs from the command line. They
were provided with exercises to practice these skills.

• Using the shell and creating shell scripts in Emacs. Students were shown how to use
the shell to interact with the operating system and how to create small shell scripts.
They were also shown how to use Emacs to edit shell scripts.

• Options for editing, executing, and debugging programs. For instance, when it came
to the statistical programming language R, the students were introduced to several
alternatives. These alternatives included: running R through a console in a terminal;
utilizing the GUI provided by base R; accessing R online through platforms like
Google Colaboratory and Replit; utilizing the DataCamp workspace with Jupyter Lab;
using the RStudio IDE: and integrating R within Emacs, including running it in the
background while executing an Org-mode code block.

3.3. Emacs Version and Packages Used

The author’s own Emacs configuration did not require a deep understanding of Emacs
or Emacs-Lisp (the language used to configure and program the Emacs editor).

He used the vanilla GNU Emacs editor (version 28.2 at the time of writing) for Win-
dows 10. Because it is easy to customize Emacs, in line with the general GNU philosophy,
it is possible to adapt the Emacs to pretty much any workflow, aesthetic preference, or
keyboard and language settings [1].

In those courses where R was the primary programming language, the author used
Org-mode in conjunction with the ESS package. For version control with Git, he used the
magit package, integrated with GitHub [22].

For courses teaching C/C++, SQLite, or bash, Org-mode with the built-in Babel
extension for multi-lingual code was sufficient to run code [23]. Unlike all other interactive
notebook environments, Emacs allows code blocks of different languages in one and the
same file.

For classroom presentations, the author used the Emacs org-present package to render
Org-mode files in the presentation format, and the modus-themes package as the general
Emacs theme. To make the code clearer, he used the rainbow-delimiters package, and
org-appear to hide the emphasis markers used, e.g., to highlight code.

Figure 3 shows an Emacs Org-mode buffer with a “Hello World” code block and
corresponding output in (from the top) five programming languages: Python, SQLite, C, R,
and bash. This works only, of course, if the respective languages are installed and if the
environment is initialized properly so that Emacs can find the interpreters or compilers
needed to execute the code.



Digital 2023, 3 239Digital 2023, 3, FOR PEER REVIEW 8 
 

 

 
Figure 3. Emacs Org-mode buffer with the “hello world” program in five languages. 

3.4. Tools Used across All Courses 
When the author taught data science at a German business school, he used twelve 

different tools in the classroom [24]. When he began to use Emacs for preparation, lectures, 
and practice, he could reduce the number of tools drastically to four tools plus Emacs: 

GitHub. GitHub was the central repository for all course materials except quizzes, 
tests, and grade data. Git was fully integrated with Emacs, allowing the author to work in 
different locations while maintaining a central, up-to-date material collection for the stu-
dents. Students received minimal instruction in using GitHub (registration was not man-
datory). 

DataCamp. The author used the DataCamp online classroom in all his courses for 
home assignments: students were required to complete lessons from the relevant Data-
Camp courses (e.g., “Introduction to R”, or “Understanding machine learning”) on a reg-
ular basis. 

Learning Management System. Participant activities in the LMS included weekly 
online quizzes and tests and home programming assignments, the solutions to which 
were submitted in the LMS. The students could follow their personal progress at any time 

Figure 3. Emacs Org-mode buffer with the “hello world” program in five languages.

3.4. Tools Used across All Courses

When the author taught data science at a German business school, he used twelve
different tools in the classroom [24]. When he began to use Emacs for preparation, lectures,
and practice, he could reduce the number of tools drastically to four tools plus Emacs:

GitHub. GitHub was the central repository for all course materials except quizzes,
tests, and grade data. Git was fully integrated with Emacs, allowing the author to work
in different locations while maintaining a central, up-to-date material collection for the
students. Students received minimal instruction in using GitHub (registration was not
mandatory).

DataCamp. The author used the DataCamp online classroom in all his courses for
home assignments: students were required to complete lessons from the relevant DataCamp
courses (e.g., “Introduction to R”, or “Understanding machine learning”) on a regular basis.

Learning Management System. Participant activities in the LMS included weekly
online quizzes and tests and home programming assignments, the solutions to which were
submitted in the LMS. The students could follow their personal progress at any time using



Digital 2023, 3 240

the built-in, up-to-date gradebook. Both Schoology (Spring 2022) and Canvas (Fall 2022,
Spring 2023) were used in this way.

Zoom. Zoom was used to share the author’s screen with the students so that they
could discern details, e.g., when coding along, and to record each session for later viewing.

DataCamp, the LMS, and Zoom remained decoupled from the Emacs-oriented
workflow.

3.5. Teaching Emacs and Org-Mode Onboarding

A key part of the study was teaching students how to use Emacs and Org-mode, since
most were unfamiliar with these tools. To facilitate onboarding, the author developed a
simplified Emacs tutorial focused on the basics alongside a brief cheat sheet of the most
common commands, including:

• Navigation and modes;
• Managing files and buffers;
• Customizing the interface;
• Keyboard shortcuts.

This hands-on tutorial was delivered interactively during class. Students followed
along on their computers as the author demonstrated Emacs features; this was followed by
practice in applying the skills through simple editing exercises.

Additionally, the author provided sample initialization and configuration files for
Emacs and Org-mode. Students could use these as a starting point to tailor the tools to
their needs. Throughout the term, troubleshooting help was available during classes and
office hours.

No separate Org-mode tutorial was used. Instead, Org-mode skills, such as adding
metadata and using code blocks, were taught through integrated examples during regular
in-class programming exercises.

Though the students were not necessarily conscious of markup methods, most had
encountered the effects of separating content and layout instructions, e.g., in an HTML file.
Hence, the way that Org-mode metadata were used to control output and appearance was
not entirely foreign to them.

This combination of hands-on practice, custom configurations, and integrated learning
was used to help participants quickly gain proficiency. By the second week of classes,
most students were able to use Emacs and Org-mode competently for their assignments.
Frequent reinforcement of skills also contributed to students’ learning.

Figure 4 shows the top of the tutorial (as a Markdown file on GitHub) with the table
of contents.

3.6. In-Class Instruction

The course participants were instructed directly in Emacs using Org-mode files only.
The author’s Emacs screen, showing an Org-mode file (aka, a notebook), was shared with
the students (and recorded) via Zoom.

The instructor would demonstrate practical skills and the students would use their
own Emacs Org-mode files to either repeat them or solve simple exercises in class. Depend-
ing on the complexity of the material, the author would prepare practice files or ask the
students to create their own Org-mode files from scratch.

Completed Org-mode files from class coding sessions could be uploaded to the LMS
for credit and would regularly be checked and commented upon in the students’ notebooks.

Delivering live code presentations with Org-mode provided flexibility: the author
could evaluate code blocks on the fly, modify examples, and expand explanations using the
literate programming approach. This interactivity would have been impossible to achieve
using static, slide-based programs, and is harder to accomplish in an IDE where code and
documentation (apart from program comments) are not in the same location.



Digital 2023, 3 241Digital 2023, 3, FOR PEER REVIEW 10 
 

 

 
Figure 4. Table of contents of the Emacs tutorial on GitHub. 

3.6. In-Class Instruction 
The course participants were instructed directly in Emacs using Org-mode files only. 

The author’s Emacs screen, showing an Org-mode file (aka, a notebook), was shared with 
the students (and recorded) via Zoom. 

The instructor would demonstrate practical skills and the students would use their 
own Emacs Org-mode files to either repeat them or solve simple exercises in class. De-
pending on the complexity of the material, the author would prepare practice files or ask 
the students to create their own Org-mode files from scratch. 

Completed Org-mode files from class coding sessions could be uploaded to the LMS 
for credit and would regularly be checked and commented upon in the students’ note-
books. 

Delivering live code presentations with Org-mode provided flexibility: the author 
could evaluate code blocks on the fly, modify examples, and expand explanations using 
the literate programming approach. This interactivity would have been impossible to 
achieve using static, slide-based programs, and is harder to accomplish in an IDE where 
code and documentation (apart from program comments) are not in the same location. 

Figure 5 shows the top of an Emacs Org-mode practice file for DSC 205 (“Introduc-
tion to advanced data science”) used by the students in class in parallel with a lecture on 
user-defined functions in R. An R source code block was prepared where the students 
could put their solution. The file header includes file metadata (#+title, #+author, 
#+subtitle), layout metadata (#+startup, #+options), and code block metadata—
header arguments for an R code block with output to the screen, the code of which runs 

Figure 4. Table of contents of the Emacs tutorial on GitHub.

Figure 5 shows the top of an Emacs Org-mode practice file for DSC 205 (“Introduction
to advanced data science”) used by the students in class in parallel with a lecture on user-
defined functions in R. An R source code block was prepared where the students could put
their solution. The file header includes file metadata (#+title, #+author, #+subtitle),
layout metadata (#+startup, #+options), and code block metadata—header arguments for
an R code block with output to the screen, the code of which runs in an R session buffer
named *R*. The “:noweb yes” argument means that noweb-style chunk substitution is
enabled [25].

3.7. Assessment

All courses were graded based on different, equally weighted categories, shown in
Table 2 as published in the syllabus:

• Multiple-choice tests (of no fewer than 10 questions per week) were administered
weekly, covering the week’s topics and DataCamp assignments. The test results were
reviewed at the start of every week following the test.

• The final exam was a representative selection of those questions from the tests in which
the participants had performed worst.

• For home assignments, in-class assignments, and projects, see below.



Digital 2023, 3 242

Digital 2023, 3, FOR PEER REVIEW 11 
 

 

in an R session buffer named *R*. The “:noweb yes” argument means that noweb-style 
chunk substitution is enabled [25]. 

 
Figure 5. Student practice Org-mode file for classroom use (from course DSC 205). 

3.7. Assessment 
All courses were graded based on different, equally weighted categories, shown in 

Table 2 as published in the syllabus: 
• Multiple-choice tests (of no fewer than 10 questions per week) were administered 

weekly, covering the week’s topics and DataCamp assignments. The test results were 
reviewed at the start of every week following the test. 

• The final exam was a representative selection of those questions from the tests in 
which the participants had performed worst. 

• For home assignments, in-class assignments, and projects, see below. 

Table 2. Grading system published in the syllabus document. 

Requirement Units Points per unit Total % of Total
Final exam 1 100 100 20
Home assignments 10 10 100 20
Class assignments 10 10 100 20
Project sprint reviews 5 20 100 20

Figure 5. Student practice Org-mode file for classroom use (from course DSC 205).

Table 2. Grading system published in the syllabus document.

Requirement Units Points per Unit Total % of Total

Final exam 1 100 100 20
Home assignments 10 10 100 20
Class assignments 10 10 100 20
Project sprint reviews 5 20 100 20
Multiple-choice tests 10 10 100 20
Total 500 100

3.7.1. Assignments

There were three types of coding assignments:

1. Assignments consisting of completing a DataCamp lesson.
2. Home coding assignments (Org-mode notebooks).
3. In-class assignments (Org-mode notebooks).

The DataCamp lessons (for R and SQL) used a modified, customized platform consist-
ing of a series of problems often preceded by an instructional video. The platform consisted
of text, a code editor, and a console.



Digital 2023, 3 243

For home and in-class assignments, the students used Emacs as their text editor for
writing and debugging code in Org-files. The answers to the programming exercises had to
be submitted as Org-mode files complete with documentation, code, sample input, sample
output, and references.

Figure 6 shows a programming assignment for the course “Introduction to program-
ming in C++”, including the creation of a literate program both in Org-mode and in
“tangled” form (i.e., as C source code).

Digital 2023, 3, FOR PEER REVIEW 12 
 

 

Multiple-choice tests 10 10 100 20
Total 500 100

3.7.1. Assignments 
There were three types of coding assignments: 

1. Assignments consisting of completing a DataCamp lesson. 
2. Home coding assignments (Org-mode notebooks). 
3. In-class assignments (Org-mode notebooks). 

The DataCamp lessons (for R and SQL) used a modified, customized platform con-
sisting of a series of problems often preceded by an instructional video. The platform con-
sisted of text, a code editor, and a console. 

For home and in-class assignments, the students used Emacs as their text editor for 
writing and debugging code in Org-files. The answers to the programming exercises had 
to be submitted as Org-mode files complete with documentation, code, sample input, sam-
ple output, and references. 

Figure 6 shows a programming assignment for the course “Introduction to program-
ming in C++”, including the creation of a literate program both in Org-mode and in “tan-
gled” form (i.e., as C source code). 

 
Figure 6. Assignment for an introductory course in C (CSC 100). Figure 6. Assignment for an introductory course in C (CSC 100).

3.7.2. Projects

In addition to regular assignments, students in almost all courses had to complete a
team-based term project using an adapted agile methodology called Scrum, with the author
as the product owner [26]. Teams of two to three students could pick a project topic from a
provided list or choose an idea of their own idea that was relevant to the course material.

Throughout the term, teams presented their progress during four sprint review meet-
ings, held approximately every three to four weeks. This allowed them to receive ongoing
feedback and guidance.

The final project deliverable was a fully documented interactive report in the form of
an Emacs Org-mode notebook. At the end of the term, each team also gave a presentation
demonstrating their work to the entire class.



Digital 2023, 3 244

The author was able to provide input and assessments during the sprint reviews in
addition to evaluating the final report. This helped to simulate a real-world collaborative
environment.

In spring 2022, no projects took place, and multiple students provided feedback
requesting that they be brought back in future classes. The agile, team-based projects with
regular feedback proved engaging and beneficial, based on student responses.

The success of this adapted Scrum approach to team projects in computer science
education was described in more detail in a prior publication [27]. The projects help rein-
force the practical application of concepts learned in class through hands-on collaborative
problem solving.

The use of literate programming and interactive notebooks for the project reports
provided unique benefits compared to traditional code-only deliverables. By having to
interweave documentation, references, and outputs alongside functional code, students
improved their ability to communicate their technical work to an audience in a reproducible
format. The requirement to attend to code quality, explanations, and results throughout
the project lifecycle, not just at the end, improved the depth of analysis and understanding.
Teams had to consciously connect their design decisions and discoveries to academic
sources.

Overall, the literate programming approach enhanced student learning and resulted
in higher-quality project work, as validated by both the author’s assessments and stu-
dent feedback. The interactive element added unique value, which static reports lack, in
demonstrating capabilities and engaging viewers.

Table 3 lists a selection of topics from projects in different courses that were completed
and presented by participant teams (for COURSE, see Table 1).

Table 3. Selected term project presentation titles.

PROJECT TOPIC COURSE TERM

Regression models on Twitter impressions DSC302 Spring 2023
Reactivity in R Shiny Dashboards DSC302 Spring 2023
Exploring data science salaries with ggvis DSC302 Spring 2023
Legality of AI art DSC305 Spring 2023
ChatGPT in higher education DSC305 Spring 2023
Langrangian Polynomial for regression CSC105 Fall 2022
An introduction to RcppArmadillo MTH445 Fall 2022
Spin rate in Baseball MTH445 Fall 2022
Introduction to Power BI DSC482 Fall 2022

3.8. Participant Evaluations

All courses were subject to standardized, online, anonymous participant evaluations.
The survey report consisted of general five-point Likert scale questions on course quality
and instructor quality, followed by three open questions:

1. What are the best features of this course?
2. Do you have any suggestions for the improvement of this course?
3. Do you have any additional comments on this course and/or the instructor?

The response rate was high, with an average participation of 82.86% and detailed
feedback provided on the use of Emacs in class. Tables 4 and 5 contain the answers that
relate to the use of Emacs and/or the use of interactive Org-mode notebooks in the first
two open questions. The negative answers show that the anonymous evaluation worked in
the sense that students were not reluctant to share criticism. The answers also show that
the overwhelming number of students who answered were happy with using Emacs and
Org-mode as literate programming tools.



Digital 2023, 3 245

Table 4. Student answers to “What were the best features of this course?”.

What Are the Best Features of This Course?

1 “The use of Emacs. Learning such a powerful tool will, I feel, truly help me excel after college.”
2 “The new possibilities and features that Emacs brings to not only my programming classes but all of them.”
3 “The notebook[s] through emacs were very helpful.”
4 “Emacs and working with .org files”
5 “Emacs was my favorite part about this course it was a challenging program to use but worth learning.”

6 “The interactive notebooks. While the lecture is going on, being able to use what you are learning at the same time
helps to remember the information later on.”

7 “I like how we use Emacs to take notes and code along with the professor, so that we can practice the skills we learn in
class.”

8
“The use of emacs and the terminal over a GUI, while difficult at first, is more representative of tools we may use in the
future and are very important skills to learn for competent use of computers. The introduction to emacs specifically is
quite daunting, but it’s useful for those that accept it.”

9 “Being able to be hands on with the programs in class.”
10 “The interactive notebooks that allow students to use what they are learning to use immediately.”
11 “I enjoy the use of emacs as a literate programming environment.”
12 “The constant practices we do during the semester.”
13 “Getting to learn first-hand with pre-planned activities”
14 “Learning to use Emacs and GitHub.”
15 “The emacs notebooks that allow you to use what you are learning in real time.”
17 “I like the use of emacs because it is a versatile tool that might help us later in our careers.”
18 “I like how interactive the course is.”
19 “Being able to code alongside [the teacher].”
20 “Learning how to create data and move through my computer without touching my mouse.”
21 “The instructor walks through the coding programs and makes sure you understand. Also stops if you are stuck.”

22
“Using emacs as the text editor also helped me develop coding skills and get more familiar with managing files,
switching between buffers, and other skills that will be fundamental in any career in the Computer Science area that I
follow after college.”

Table 5. Student answers to “Do you have any suggestions for improvement of the course?

Do You Have Any Suggestions for Improvement of the Course?

1 “I really did not like using Emacs. I felt like it complicated things more than it helped, and it took a couple weeks at the
beginning of the semester to learn that we could have been learning C or C++.”

2 “It would have been helpful to spend more time on explaining how EMACS works. Even now, I am not confident about
my EMACS skills.

3 “Having a cheat sheet for emacs that focuses on the most common commands used for assignments.”

4
“Emacs is a hassle to work in; since we have so many home assignments in R it would have been very useful to have
spent class time downloading it, I missed several home assignments early in the year because I could not figure out how
to download it.”

5 “Emacs is a pain to use.”
6 “Try and give the students more challeng[ing] notebooks to complete on their own.”
7 “The installation of Emacs on our PCs was a little stressful on my end.”

8

“eMacs is extremely clunky for me personally, and it crashed at least once every time I tried to work on things outside
of class. I’d rather just use a normal compiler at that point. In addition to having to submit the sprint reviews as
org-mode files, didn’t feel great. I’d rather just submit them as a word document or even a text document. I know
several others have also complained about eMacs to me personally.”

9 “Emacs is a convoluted text editor. It would be nice if we used something else that was more streamlined.”

3.9. Participant Experiences

In addition to the anonymous evaluations, in Spring 2022, the author asked students
to comment on their experience with Emacs in class. The answers were positive throughout.
Here, are four exemplary statements (all seniors at the time; student names used with
permission):

“It was the first time I had ever used an editing software, and it will definitely
have an impact on how I take notes/write code in the future.”



Digital 2023, 3 246

(Hunter Perkins)

“I find [Emacs] very helpful. The ability to use it for multiple programming
languages alone makes it powerful and worth learning.”

(Victor Noppe)

“The ability to have just one app to code in all of these different languages with
minimal setup is a breath of fresh air [. . .] a very useful tool despite its learning
curve.”

(Jacob Wolfrom)

“I learn best with examples and by doing, so when we started doing the Org
mode notebooks in class, I really started to learn to program.”

(Spencer Rhoden)

4. Discussion and Limitations

This section provides a critical examination of the study results, including challenges
faced and lessons derived, along with an analysis of the study’s limitations. The first
subsection details key difficulties encountered in the implementation of Emacs and Org-
mode for teaching data science, as well as best practices identified that may inform future
pedagogical approaches. The next subsection discusses the role of traditional literate
programming in the era of low-code platforms and AI coding assistants, arguing for its
continued relevance despite technological shifts. Finally, the limitations of the present case
study are discussed, including potential biases, the inherent complexity of the tools assessed,
and the restrictions of the evaluation methods employed. While valuable insights emerge,
further research is needed to address these limitations and gain a more comprehensive
understanding of utilizing literate programming tools in data science education.

4.1. Challenges and Lessons Learned

Some key challenges from mandating Emacs as the primary literate programming
data science platform, presented in no particular order, are as follows:

• The steep learning curve of Emacs was an initial hurdle for many students. Some
skipped the intro tutorial, which slowed their coding progress.

• There was uneven student adoption of documentation practices in Org-mode. Some
focused solely on code rather than full literate programming.

• Most students did not utilize references in Org-mode assignments, despite their
academic importance.

• A portion of students found Emacs clunky or frustrating to use.
• Technical issues, like Emacs crashing outside of class, caused problems for some

students.
• The lessons learned included:
• It is necessary to mandate and follow-up on Emacs tutorial completion early on.
• Documentation skills must be incorporated into grading rubrics.
• The instructor should model best practices in class materials and demos.
• Exemplary student work should be highlighted to showcase the capabilities of the

tools.
• Tools should be matched to student coding skill levels. Emacs may ultimately be

better-suited to advanced courses.
• Ongoing reinforcement is needed to overcome reluctance and ensure adoption.
• Overall, while powerful, Emacs and Org-mode had a steep initial learning curve.

Adoption was mixed, though skilled students demonstrated the tools’ potential.

Despite the challenges, using Emacs and Org-mode also had notable benefits for both
teaching and learning. The students who took the time to master the tools were able to work
efficiently across multiple programming languages within a single environment. Emacs
provided a unified framework for coding in languages like Python, R, C++, and more.



Digital 2023, 3 247

Additionally, the literate programming approach enabled by Org-mode increased
student comprehension. Integrating code, results, and documentation into one document
provided an interactive learning experience that reinforced key concepts.

From the instructor’s perspective, Emacs and Org-mode facilitated the flexible delivery
of materials. Live coding demonstrations could be performed seamlessly, with the ability
to evaluate and modify code blocks spontaneously during lectures.

Overall, students who embraced Emacs and Org-mode highlighted the tools’ versatil-
ity. They appreciated learning how to navigate an environment common in industry. The
instructor also benefited from streamlined lesson planning and presentation. With proper
support, these tools demonstrate strong potential for enhancing data science education.

4.2. Literate Programming in the Age of Low Code and AI Assistants

The advent of low-code platforms and AI-powered coding assistants has transformed
the programming landscape [28,29]. Tools like GitHub Copilot and services such as Bub-
ble.io remove much complexity, allowing those with little traditional coding knowledge to
build applications through simple drag-and-drop interfaces and plain-language commands.

Considering this shift towards the simplification and automation of coding, what role
remains for traditional literate programming using tools like Emacs and Org-mode? At first
glance, these may appear antiquated compared to cutting-edge AI technologies. However,
literate programming still provides unique benefits that warrant its continued teaching:
most low-code platforms and AI assistants take a functional approach, focused narrowly
on generating executable code. Documentation is secondary. This limits developers’ ability
to understand and explain the inner workings of their programs.

In contrast, literate programming interweaves human-readable documentation with
code in one cohesive document. This comprehensive encapsulation of the process makes
programs easier to comprehend, debug, maintain, and share.

The hands-on nature of literate programming also builds deeper developer skills.
Working directly in environments like Emacs reinforces the user’s firm grasp of coding
techniques and problem solving. AI assistants can expedite work, but relying solely on
their suggestions deprives developers of learning opportunities.

Lastly, literate programming remains essential for many scientific and academic con-
texts where reproducibility and transparency are paramount. Computational essays and
other reproducible documents require human-authored narrative combined with code.

Rather than displacing traditional coding knowledge, low-code environments and
AI can complement the skills gained through literate programming. Just as calculator use
strengthens rather than atrophies math skills, leveraging automation can free developers to
focus on higher-value tasks informed by a deeper understanding of code.

In data science education, foundations in literate programming continue to provide
lasting benefits. Emacs and Org-Mode teach vital concepts that are applicable across
multiple programming languages and paradigms. This establishes a basis for effectively
utilizing AI coding tools.

The landscape has changed, but literate programming’s unique merits persist. It
remains an essential component of a well-rounded data science education, laying the
groundwork for both automation-assisted workflows and reproducible research. The
approaches synergize: literate programming supplies understanding, while AI accelerates
its application.

4.3. Limitations of the Case Study

While this study provides valuable insights into the use of literate programming tools
in teaching data science, it is not without its limitations. One of the primary limitations is
the potential bias in the sample selection. The study was conducted in a specific educational
setting, and the participants were students who had chosen to study data science. Their
motivation and interest in the subject might be higher than average, which could have



Digital 2023, 3 248

influenced the results. Therefore, the findings might not be generalizable to all students or
educational settings.

Another limitation concerns the inherent complexity and steep learning curve as-
sociated with literate programming tools like Emacs and Org-mode. While these tools
offer numerous benefits, mastering them requires a significant investment of time and
effort. This could potentially deter students who are new to programming or those who
are looking for quicker, more straightforward solutions. The study did not fully explore the
potential impact of this learning curve on student motivation and engagement.

Furthermore, the study focused primarily on the benefits of using literate program-
ming tools in teaching data science, without fully exploring the potential drawbacks or
challenges. For instance, issues related to software compatibility, technical glitches, or
difficulties in understanding the syntax of these tools were not thoroughly examined. These
factors could potentially diminish the effectiveness of using literate programming tools in
a teaching environment.

Lastly, the study did not consider the impact of other pedagogical strategies or teaching
aids that could be used in conjunction with literate programming tools. The use of these
tools does not exist in a vacuum, and their effectiveness could be influenced by a variety of
other factors, such as the quality of instruction, the use of supplementary materials, or the
level of student–teacher interaction.

In conclusion, while this study provides a starting point for understanding the po-
tential of using literate programming tools in teaching data science, further research is
needed to address these limitations and provide a more comprehensive picture of this
complex issue.

5. Conclusions and Outlook

The attempt to use Emacs and Org-mode to teach various data science courses yielded
mixed results. There were certainly benefits in terms of the versatility and power of these
tools for skilled students. However, the initial learning curve proved prohibitive for some
students.

The key advantage of this approach was the immersive coding environment enabled
by Emacs and Org-mode. Students who embraced the tools were able to work efficiently
across multiple languages like Python, R, and C++ within a single IDE. The literate pro-
gramming methodology also enhanced their understanding by integrating code, results,
and documentation.

However, this experience highlighted the fact that Emacs and Org-mode may not
be the optimal choice for all data science students, especially those new to programming.
Despite the instructor’s best efforts at onboarding through tutorials and examples, some
students struggled to become proficient. This hampered their learning during practical
exercises.

Additionally, not all students adopted the discipline of documentation through Org-
mode despite its importance for reproducible analysis. The motivation to fully utilize these
tools was uneven.

Moving forward, the author plans to transition his teaching to tools that offer greater
accessibility. For R and Python in particular, Jupyter Notebooks and its freely available
online implementations, such as Google Colaboratory, seem better suited for getting novice
students started with coding. These platforms remove friction while still supporting literacy
programming.

For lower-level languages like C++, beginner-friendly, cross-platform IDEs may pro-
vide a gentler onramp. The graphical user interface is less intimidating (but also delivers
fewer insights).

While Emacs and Org-mode remain excellent options for advanced data science work,
they may be better suited as secondary tools introduced after students have built up their
core coding skills. The author still plans to cover these tools to some extent, given their
prevalence in the field. However, they will no longer be mandatory for all coursework.



Digital 2023, 3 249

This evolution in his teaching reflects lessons learned about matching tools to students’
skill levels.

Finding the optimal set of platforms is an ongoing process as new technologies emerge.
However, the lessons from this experiment will guide future decisions, with the goal of
choosing the tools best suited to each course and level. These priorities are supporting
student learning and building practical data science skills.

Funding: This research received no external funding.

Data Availability Statement: Data available in a publicly accessible repositoryThe data presented in
this case study are openly available in GitHub at https://github.com/birkenkrahe (accessed on 31
August 2023).

Acknowledgments: The author would like to thank the students at Lyon College who participated in
his courses and provided valuable feedback on the use of Emacs and Org-mode. Their willingness to
learn these new tools was essential to this study. He also wishes to express his gratitude to the faculty
and staff at Lyon College for their support during his visiting professorship from 2021–2023. The
opportunity to teach a variety of data science courses and experiment with innovative approaches
was invaluable. Finally, the author is grateful to the Berlin School of Economics and Law for granting
him academic leave from 2021 to 2023 to pursue this visiting position. The time spent teaching and
researching in the United States has expanded his perspectives and capabilities as an educator.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Stallman, R.; Steele, G. GNU Emacs Manual; Version 28.2; Free Software Foundation, Inc.: Boston, MA, USA, 2022.
2. Knuth, D. Literate programming. Comput. J. 1984, 27, 97–111. [CrossRef]
3. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.

et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas; Loizides, F., Scmidt, B., Eds.; IOS Press: Amsterdam, The Netherlands, 2016; pp. 87–90.

4. Dumontier, M.; Kuhn, T. Data Science–Methods, infrastructure, and applications. Data Sci. 2017, 1, 1–5. [CrossRef]
5. Birkenkrahe, M. Building graduate-level, gamified xMOOCs in Moodle. In Proceedings of the EADTU—The Online, Open and

Flexible Higher Education Conference, Hagen, Germany, 29–30 October 2015; pp. 57–73.
6. EmacsConf and Emacs Hangouts. EmacsConf 2021: Using Org-Mode to Teach Programming—Daniel German. Available online:

https://youtu.be/Bmi9AAaqegY?si=_MgaCN_R7syPbhQe (accessed on 31 August 2023).
7. Johnson, T. Emacs as a tool for modern science: The use of open-source tools to improve scientific workflows. J. Johns. Matthey

Technol. Rev. 2022, 66, 122–129. [CrossRef]
8. Opensource.com. Available online: https://tinyurl.com/mt47uzk5 (accessed on 31 August 2023).
9. DistroTube. Available online: https://tinyurl.com/59tmbab6 (accessed on 31 August 2023).
10. System Crafters. Available online: https://tinyurl.com/48p733yf (accessed on 31 August 2023).
11. Davenport, T.H.; Patil, D.J. Data scientist: The sexiest job of the 21st century. Harv. Bus. Rev. 2012, 90, 70–76. [PubMed]
12. Wing, J.M. Computational thinking’s influence on research and education for all. Ital. J. Educ. Technol. 2017, 25, 7–14.
13. ACM Data Science Task Force. Computing Competencies for Undergraduate Data Science Curricula; ACM: New York, NY, USA, 2021.
14. Lyon College. Data Science Major. Available online: https://www.lyon.edu/data-science (accessed on 24 July 2023).
15. Ciniselli, M.; Cooper, N.; Pascarella, L.; Mastropaolo, A.; Aghajani, E.; Poshyvanyk, D.; Di Penta, M.; Bavota, G. An Empirical

Study on the Usage of Transformer Models for Code Completion. IEEE Trans. Soft. Eng. 2022, 48, 4818–4837. [CrossRef]
16. Davenport, T.H.; Patil, D.J. Is data scientist still the sexiest job of the 21st century? Harv. Bus. Rev. 2022, 90, 101–109.
17. Giorgi, F.M.; Ceraolo, C.; Mercatelli, D. The R language: An engine for bioinformatics and data science. Life 2022, 12, 648.

[CrossRef] [PubMed]
18. Rossini, A.J.; Heiberger, R.M.; Sparapani, R.A.; Maechler, M.; Hornik, K. Emacs speaks statistics: A multiplatform, multipackage

development environment for statistical analysis. J. Comp. Graph. Stat. 2004, 13, 247–261. [CrossRef]
19. Schulte, E.; Davison, D. Active documents with org-mode. Comp. Sci. Eng. 2011, 13, 66–73. [CrossRef]
20. Wang, F.; Hannafin, M.J. Design-based research and technology-enhancing learning environments. Educ. Technol. Res. Dev. 2005,

53, 5–23. [CrossRef]
21. Hevner, A.R.; Park, S.T.; Ram, S. Design science in IS research. MIS Q. 2004, 28, 77–105. [CrossRef]
22. Lemmer-Weber, M. Using programming environments for academic research and writing. Archeomatica 2021, 13, 30–31.
23. Schulte, E.; Davison, D.; Dominik, C. A multi-language computing environment for literate programming and reproducible

research. J. Stat. Softw. 2012, 46, 1–24. [CrossRef]

https://github.com/birkenkrahe
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.3233/DS-170013
https://youtu.be/Bmi9AAaqegY?si=_MgaCN_R7syPbhQe
https://doi.org/10.1595/205651322X16316969040478
https://tinyurl.com/mt47uzk5
https://tinyurl.com/59tmbab6
https://tinyurl.com/48p733yf
https://www.ncbi.nlm.nih.gov/pubmed/23074866
https://www.lyon.edu/data-science
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.3390/life12050648
https://www.ncbi.nlm.nih.gov/pubmed/35629316
https://doi.org/10.1198/1061860042985
https://doi.org/10.1109/MCSE.2011.41
https://doi.org/10.1007/BF02504682
https://doi.org/10.2307/25148625
https://doi.org/10.18637/jss.v046.i03


Digital 2023, 3 250

24. Birkenkrahe, B. Teaching data science in a synchronous online introductory course at a business school—A case study. In
Proceedings of the Innovations in Learning and Technology for the Workplace and Higher Education, New York, NY, USA, 16–18
June 2021; pp. 17–29.

25. Ramsey, N. Literate programming simplified. IEEE Softw. 1994, 11, 97–105. [CrossRef]
26. Hidalgo, E.S. Adapting the Scrum Framework for Agile Project Management in Science: Case study of a distributed research

initiative. Heliyon 2019, 5, e01447. [CrossRef] [PubMed]
27. Gunnoltz, J.; Birkenkrahe, M. Students model start-up processes—An embedded approach to entrepreneurship education. In

Digitalität@HWR. Erfahrungen mit Digitalisierung in Forschung und Lehre; Egger de Campo, M., Resch, O., Eds.; Nomos-Verlag:
Berlin, Germany, 2020; pp. 95–125.

28. Porter, L.; Zingaro, D. Learn AI-Assisted Python Programming with GitHub Copilot and ChatGPT; Manning: Shelter Island, NY,
USA, 2023.

29. Greengard, S. AI rewrites coding. Commun. ACM 2023, 66, 12–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/52.311070
https://doi.org/10.1016/j.heliyon.2019.e01447
https://www.ncbi.nlm.nih.gov/pubmed/30976706
https://doi.org/10.1145/3583083

	Introduction 
	The Theory and Practice of Teaching Data Science 
	The Rationale for Using Emacs as an IDE and Its Learning Curve 
	The Rationale for Using Org-Mode as a Literate Programming Tool 

	Methodology 
	Case Study: Teaching Data Science with Emacs and Org-Mode 
	Courses and Participant Profiles 
	Addressing Specific Student Knowledge Gaps 
	Emacs Version and Packages Used 
	Tools Used across All Courses 
	Teaching Emacs and Org-Mode Onboarding 
	In-Class Instruction 
	Assessment 
	Assignments 
	Projects 

	Participant Evaluations 
	Participant Experiences 

	Discussion and Limitations 
	Challenges and Lessons Learned 
	Literate Programming in the Age of Low Code and AI Assistants 
	Limitations of the Case Study 

	Conclusions and Outlook 
	References

