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Abstract: This study conducts a systematic review of safety risk models and theories by summarizing
and comparing them to identify the best strategies that can be adopted in a digital ‘conceptual’ safety
risk model for highway workers’ safety. A mixed philosophical paradigm was adopted (that used
both interpretivism and post-positivism couched within inductive reasoning) for a systematic review
and comparative analysis of existing risk models and theories. The underlying research question
formulated was: can existing models and theories of safety risk be used to develop this proposed
digital risk model? In total, 607 papers (where each constituted a unit of analysis and secondary
data source) were retrieved from Scopus and analysed through colour coding, classification and
scientometric analysis using VOSViewer and Microsoft Excel software. The reviewed models were
built on earlier safety risk models with minor upgrades. However, human elements (human errors,
human risky behaviour and untrained staff) remained a constant characteristic, which contributed to
safety risk occurrences in current and future trends of safety risk. Therefore, more proactive indicators
such as risk perception, safety climate, and safety culture have been included in contemporary
safety risk models and theories to address the human contribution to safety risk events. Highway
construction safety risk literature is scant, and consequently, comprehensive risk prevention models
have not been well examined in this area. Premised upon a rich synthesis of secondary data, a
conceptual model was recommended, which proposes infusing machine learning predictive models
(augmented with inherent resilient capabilities) to enable models to adapt and recover in an event of
inevitable predicted risk incident (referred to as the resilient predictive model). This paper presents a
novel resilient predictive safety risk conceptual model that employs machine learning algorithms
to enhance the prevention of safety risk in the highway construction industry. Such a digital model
contains adaptability and recovery mechanisms to adjust and bounce back when predicted safety
risks are unavoidable. This will help prevent unfortunate events in time and control the impact of
predicted safety risks that cannot be prevented.

Keywords: safety risk; models/theories; machine learning; prediction; resilience

1. Introduction

UK construction workers are five times more likely to be killed at work than other
industries combined [1]. According to the Health and Safety Executive [2], construction
workers’ fatality rate is three times that of all other industries, even though the sector
accounts for only 7% of the national workforce. Indeed, globally, the construction industry
is noted for having one of the worst records in occupational health and safety [3,4]. This
indicates that despite notable improvements in safety since the introduction of legislative
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instruments (such as the UK’s Occupational Safety and Health Act of 2004), accidents and
injury continue unabated [5]. Perhaps one major reason is that construction personnel work
in a dynamic and continuously changing environment, where new hazards and risks are
sometimes not identified in the early planning stages.

Because of this perpetual state of flux, safety risk theories and models have been relied
upon to create a safe working environment [6]. Hillson [7] has defined risk holistically
as an uncertain event or condition that, if it occurs, has a positive or negative effect on a
project’s objectives. This definition, however, does not explicitly include workers or their
safety. Consequently, the HSE defines ‘safety risk’ as: “the likelihood that a person may
be harmed or suffers adverse health effects if exposed to a hazard” [2]. This definition
considers the existence of hazards and the probability that a person may inadvertently
interact with these hazards and become injured. Risk management, therefore, provides a
system to control these risks [8]. Risk mitigation is critical during the project’s design and
planning phases of development, as many risks can be ‘designed out’, albeit not totally
eliminated [9,10].

Techniques used to gain insights and minimize accidents and injuries in construc-
tion have relied on various models and theories for developing appropriate risk miti-
gation strategies. These have been applied in different contexts, ranging from occupa-
tional health [11] to the safety behaviours of workers [12] to constructing emergency safe
refuges [13]. A review of diverse health and safety risk models and theories reveals theory
and model application in several high-risk industries, such as mining, aviation, oil and gas,
and medicine [11,14]. However, considering the construction industry, scant research has
been undertaken on the effective application of these theories and models in a highway
setting, thus resulting in limited safety research in this field. The various types of safety risk
models and theories adopted in other fields could be applied to highway construction safety
strategies by leveraging their most useful characteristics [13,15]. Hence, this study reviews
these safety risk models and theories by summarising and comparing them to identify the
best strategies that can be adopted in a digital ‘conceptual’ safety risk model. Associated
objectives are to critically assess and understand the prevailing academic discourse on
constructing theories and models of safety risk; classify existing safety risk models and
theories and compare based on their characteristics; identify any knowledge gaps in the
safety risk theories and models previously presented; and develop a novel digital safety
risk conceptual model for highway construction safety. Such a model provides the basis for
engendering wider polemic debate and signpost future academic endeavours.

2. Research Methodology

A mixed philosophical paradigm was adopted using both interpretivism [5,16–18]
and post-positivism [19–21] for theory and model development, as this research considers
existing theories subjectively while utilising an objectivist epistemological perspective [22].
This mixed philosophical approach has been widely used in the literature [23–26], and
therefore, its use is justified in the present research setting. This is because this research
seeks to understand and interpret safety risk models and theories subjectively from different
viewpoints while also pursuing objectivity through post-positivism to minimise the possible
impact of the researchers’ bias’. Inductive reasoning, couched within a grounded theory
strategy, was employed to answer the research question: can a novel theory and model
for highway construction safety be developed and rationalised from existing models
and theories of safety risk? Interpretivism adheres to a post-foundational epistemology
with a purpose of interpreting and establishing facts within the context of the subject
and experience being researched [17]. Post-positivism assumes that an approximation of
phenomena under investigation could be objectively made, subject to individual researcher
bias [27].

This qualitative research is conducted in three phases; see Figure 1. In phase one,
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was
used in the search strategy to obtain bibliometric data on the diverse application of risk
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models and theories to systematically review the extant literature and combine all rele-
vant knowledge in this subject area [28]; each article constituted secondary data and a
unit of analysis [29]. The Scopus journal database was adopted using keywords such as
occupational and health or safety risk and accident theories or models. Only relevant
subject areas and papers written in English were considered for this study. In phase two,
VOSViewer was used to present data extracted from the literature search to facilitate a
bibliometric analysis. A network map of co-occurrence of keywords and categorisation
of significant keywords extracted was presented. Interpretivism was used to synthesise
literature and critically analyse existing risk theories and models while employing the
classification and tabularisation technique in phase three. An Excel spreadsheet was then
used for manual classification analysis using color-coding of publications into thematic
groups to assign publication into arbitrary thematic groups based on similar content within
each paper. Current and future trends were then identified and considered in building a
new conceptual model using the grounded theory approach.

Digital 2022, 2, FOR PEER REVIEW 3 
 

 

used in the search strategy to obtain bibliometric data on the diverse application of risk 
models and theories to systematically review the extant literature and combine all relevant 
knowledge in this subject area [28]; each article constituted secondary data and a unit of 
analysis [29]. The Scopus journal database was adopted using keywords such as occupa-
tional and health or safety risk and accident theories or models. Only relevant subject ar-
eas and papers written in English were considered for this study. In phase two, 
VOSViewer was used to present data extracted from the literature search to facilitate a 
bibliometric analysis. A network map of co-occurrence of keywords and categorisation of 
significant keywords extracted was presented. Interpretivism was used to synthesise lit-
erature and critically analyse existing risk theories and models while employing the clas-
sification and tabularisation technique in phase three. An Excel spreadsheet was then used 
for manual classification analysis using color-coding of publications into thematic groups 
to assign publication into arbitrary thematic groups based on similar content within each 
paper. Current and future trends were then identified and considered in building a new 
conceptual model using the grounded theory approach. 

 
Figure 1. Methodology process diagram. 

3. Bibliometric Search Technique 
The articles selected for this review were published between 1990 and 2022. The year 

1990 is selected as the starting point because the articles sourced from previous years were 
observed to have limited impact on the research. Literature review papers were retrieved 
from the Scopus database, as it covers almost all journals and publications when com-
pared to alternative digital repositories [30–32]. To search for journal articles, the title and 
keyword search rule used was ‘TITLE-ABS-KEY (occupational AND health OR safety OR 
risk AND accident AND theories OR models). This resulted in sampling 4918 documents 
in the preliminary search. This was refined to reduce the number of articles by selecting 
journals that are relevant to the study domain. This included engineering, safety, decision 

Figure 1. Methodology process diagram.

3. Bibliometric Search Technique

The articles selected for this review were published between 1990 and 2022. The year
1990 is selected as the starting point because the articles sourced from previous years were
observed to have limited impact on the research. Literature review papers were retrieved
from the Scopus database, as it covers almost all journals and publications when compared
to alternative digital repositories [30–32]. To search for journal articles, the title and keyword
search rule used was ‘TITLE-ABS-KEY (occupational AND health OR safety OR risk AND
accident AND theories OR models). This resulted in sampling 4918 documents in the
preliminary search. This was refined to reduce the number of articles by selecting journals
that are relevant to the study domain. This included engineering, safety, decision sciences,
business management, computer science, social science and environmental science domains.
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Some areas, such as finance, economics, chemistry, medicine and nursing, were excluded
from the search as these were irrelevant to the study. Consequently, 800 articles were
extracted from the database. The papers selected were then manually screened, and
superfluous papers removed, leaving a final data set of 607 papers that covered various
industrial sectors (e.g., oil and gas, aviation, mining, medicine and building construction).

4. Classification Technique

Using the bibliometric data retrieved from Scopus, a thematic analysis was performed
to identify the various categories of models and theories presented by individual papers.
Models and theories presented by the papers were analysed to understand their opera-
tional patterns, which were classified into groups. Based on the purposes, applications,
features and domain of the theories and models sampled, they were classified into seven
different groups: (1) element models/theories; (2) incentive models/theories; (3) quan-
titative and statistical models/theories; (4) behavioural models/theories; (5) sequential
models/theories; (6) barricade models/theories; and (7) resilient models/theories. Sim-
ilarly, papers based on generic risk management and safety management systems were
considered for further understanding of how these theories and models have been applied
across the various fields. The classification strategy is a technique of analysing data by
discovering common ideas that run through different literature and grouping those with
similar ideas into a common group [33,34].

5. Research Results

Using VOSViewer, analysis of all keywords present in the selected literature was
conducted by selecting keywords that occurred at least five times. Of all keywords (i.e.,
2593), only 162 keywords met this threshold. ‘All keywords’ was used as a criterion in
keyword selection instead of ‘author keywords’ or ‘index keywords’ to present a more
detailed and comprehensive picture of the prevailing academic discourse on the phenomena
under investigation. Selecting ‘all keywords’ prevented bias when viewing topics within
the subject based on the authors’ perspective and knowledge. However, it was recognised
that this could result in superfluous information within the visualization, making it complex
and difficult to interpret or manipulate [35]. Therefore, keywords that had little impact in
terms of weighting, synonymous terms (such as ‘human’ or ‘humans’), and uninfluential
keywords such as male, female, article, priority journal, etc., were manually screened out,
resulting in sampling 141 keywords for analysis.

6. Co-Occurrence of Keywords

The network visualisation (Figure 2) uses an overlay illustrating eleven prominent
keywords that indicate topical areas where risk theories and models have been applied.
These include ‘occupational risk’ (frequency (f ) = 121); ‘accident prevention’(f = 108);
‘safety’ (f = 63); ‘human’ (f = 82); ‘risk assessment’ (f = 64); ‘accident’ (f = 63); ‘occupa-
tional accident’ (f = 56); ‘occupational safety’ (f = 55); ‘risk management’ (f = 31); ‘safety
management’ (f = 42); and, from a wider perspective, the ‘construction industry’ (f = 43).
The predominance of these keywords highlights the adoption of theories and models for
enhancing occupation health and safety to prevent accidents. Furthermore, the green and
yellow color-coded nodes illustrate that the keyword ‘human’ (f = 82) is predominantly
used between 2013 and 2014, and ‘construction worker’ (f = 13) and ‘worker’ (f = 7) are
more recently adopted, between 2018 and 2021, and have the same meaning. This could
imply that the focus on the human element in theory and model building remains promi-
nent in literature. The keywords in yellow show the most recent trends and directions of
models with a safety focus on ‘prediction’ (f = 7); ‘project management’ (f = 9); ‘human
resource management’ (f = 23), ‘construction worker’ (f = 13); ‘occupational injury’ (f = 7);
‘construction equipment’ (f = 5); ‘procedures’ (f = 5); and ‘risk perception’ (f = 9). This
trend suggests a shift from reactive systems such as ‘laws and legislation’ (f = 8) and ‘risk
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reduction’ (f = 9) between 2010 and 2012 to more proactive systems such as ‘prediction’
(f = 7) and human resource management during 2016–2018.
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7. Existing Safety Risk Theories and Models

The purple, blue and deep green nodes show a trend of keywords that dominated
between 2010 and 2015. This trend displayed keywords such as ‘risk analysis’ (f = 12),
‘occupational hazard’ (f = 20), ‘occupational risk’ (f = 121), ‘occupational accident’ (f = 56),
‘human’ (f = 82) and ‘safety management’ (f = 42). These keywords demonstrate the focus of
existing theories and models of safety risk. In comprehending and significantly influencing
safety risk challenges, theories and models have been developed to effectively explore
occupational safety risk problems in terms of occupational accidents and occupational
hazards. For example, Lees [36] justified the effectiveness of models and theories in the
investigation of safety risk incidents and accidents. Investigating an incident is essential
to understand why it occurred in order to forestall future occurrence. Early theories
and models have seen several researchers propose theories and techniques to aid this
process [11,37–40]. For example, Heinrich [14] proposed a domino theory, where the
central premise focused on human behaviour. A modification to Heinrich’s theory [14] was
proposed by Bird et al. [41] by including management and organisational aspects in the
causal factors in incidents. Whittington et al. [42] discovered the role of management errors
as major contributors to incidents in the construction industry. On the issue of worker
distractions, Hinze [43] proposed a distraction theory, where the risk of a construction
incident increased due to worker distractions.

Abdelhamid and Everett [44] developed a model for identifying root causes of con-
struction incidents, such as worker attitudes, training and procedures. The limitation with
this model, however, is attributed to the fact that it ignores systemic root causes that might
explain why a procedure, for example, failed and caused an incident. Following this limita-
tion, Gibb et al. [45] proposed additional inquiries targeted at leadership, culture, project
management decisions and design inadequacies. Proximal and distal factors in construction
incidents were identified and proposed by Suraji et al. [46] as an incident causality method.
While factors directly related to the incident cause were termed as proximal factors, the
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research [46] defined distal factors as those that lead to the introduction of proximal factors,
such as design complexity and time constraint.

According to Reason [47], contradiction incident causation theories can be encapsu-
lated by the ‘systems approach’ and ‘person approach’. The person approach centres on the
errors of individuals, such as inattention, forgetfulness, or moral weakness, whereas the
system approach focuses on conditions under which the individual works and attempts
to build defences to avert errors or mitigate their effects. A comprehensive management
program aimed at several different targets, such as the person, task, team, workplace and
the institution as a whole, is needed to make the systems approach work effectively [48].
According to Burgoyne [49], maximum attention to detail must be placed on investigating
an incident, with the aim of extracting the highest amount of knowledge from the expe-
rience and disseminating the knowledge in a way that forestalls future occurrences and
ensures personnel safety. The term ‘root cause’ is widely used in practice and must be
explored to the point where there is nothing further to investigate. Investigators often find
difficulty in reporting deep-rooted findings of incidents that are as a result of organisational
policy or culture, and hence mostly settle on employee-based causes [50].

8. The Trend and Future Direction of Theory and Model Building

The keywords in yellow show the most recent trends and direction of models in
safety risk focus on ‘project management’ (f = 9); ‘human resource management’ (f = 23);
‘construction worker’ (f = 13); ‘occupational injury’ (f = 7); ‘construction equipment’ (f = 5);
‘procedures’ (f = 5); ‘risk perception’ (f = 9); and ‘prediction’ (f = 7). Recently, the fragmented
nature of construction work activities has made it imperative that safety risk is considered
on a project basis instead of the previously generalised sole safety considerations made for
the entire organisation [51,52]. Safety risk is now managed on a project basis as a divide
and conquer approach [53], highlighting the influence of project management on safety risk
management [8,54]. The models and theories reviewed predominantly focus on human
error as a major cause of accidents, and it is not coincidental that ‘construction worker’
and ‘human resource management’ feature as trends within model building. Human
resource management is a vital contribution to the developing domain of safety culture,
which requires a modification in staff safety perception and work behaviour to prevent
occupational injury [55]. The procedure involved in task performance and the equipment
used is another trend. Although human errors are considered a root cause of accidents, in
some instances, human errors are only a reflection of system lapses.

Any ambiguity in the description of work procedure [37], inadequate personal pro-
tective equipment or faulty machines could cause human errors that result in accidents or
injury, hence the requirement to investigate these factors and include them within theory
and model building. One major change of safety risk management in current trends is a
notable shift from reactive systems such as ‘laws and legislation’ (f = 8) and ‘risk reduc-
tion’ (f = 9) between 2010 and 2012 to more proactive systems such as ‘prediction’ (f = 7).
Thus, prediction of safety risks and accidents before they occur (via lead indicators) as
a preventive method has become more important than mitigation methods, which are
more reactive.

9. Categorisation of Significant Keywords

The clustering of the keywords displayed in the map projected certain keywords
that highlighted a number of perspectives on the trend of theory/model adoption and
application. These conspicuous keywords were grouped and interpreted in Table 1 as
the prominent theories most considered; the domains in which these theories/models
have been applied most; the key safety indicators presented within the map; the data
collection methods applied most frequently. Another noticeable element within the map
was the various keywords used to describe workers. This could stem from how significant
human elements are considered in safety model building. The highway construction
industry is also not featured in the domain area for model application. This could support
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the proposition that scant research has been done on highway worker safety, at least in
academia. Instead, the analysed papers showed that the health and safety of workers
has been generalised to encompass all construction activities, and consequently the term
‘construction worker’ is the generalised term used to describe the staff in the construction
industry, with no mention of highway workers specifically.

Table 1. Keyword categorization.

Category Keywords Frequency (f) Percentages (%) Citations

Prominent
Theories/models

Information theory 13 8.8 [56,57]
System theory 25 17.0 [37,58]

Theory of planned behaviour 11 7.5 [14,59]
Reliability theory 14 9.5 [60,61]

Mathematical models 16 10.9 [62]
Statistical models 5 3.4 [63]

Bayes theory 5 3.4 [64,65]
Bayesian network model 9 6.1 [66,67]

Fuzzy set theory 9 6.1 [10,68]
Structural equation model 11 7.5 [69]

Regression analysis 8 5.4 [58]
Decision theory 13 8.8 [70]

Laws and legislations 8 5.4 [39,71]

Domain

Construction industry 43 36.4 [4,72]
Building information modelling 14 11.9 [20]

Tunnel construction 11 9.3 [73]
Coal mines 7 5.9 [13]

Traffic accidents 6 5.0 [38]
Transportation 5 4.2 [74]

Building industry 10 8.4 [18,20]
Mining 7 5.9 [75]

Agriculture 6 5.0

Definition words for
human factor

Operatives 8 24.2 [76]
Worker 7 21.2 [77]

Construction worker 13 39.4 [1]
Employee 5 15.2 [12]

Key Safety-Indicators
(factor)

Safety climate 12 12.6 [78]
Safety culture 11 11.5 [68,73]

High-risk behaviour 7 7.4 [76]
Risk perception 25 26.3 [79]

Safety behaviour 10 10.5 [12]
Task performance 5 5.3 [37,48]
Industrial hygiene 20 21.1

Construction equipment 5 5.3

10. Information Theory, Digital Technology and Safety Models

Information theory is an emerging area in the health and safety domain, with an
average publication year of 2016 and f = 13 occurrences in the keyword analysis; it repre-
sents the study of storing, measuring and transmitting digital information [80]. This is of
particular interest because it encapsulates all the prominent theories and models, including
the statistical models, Bayes theory, Bayesian models, etc., listed in Table 1. The type of
information that this theory handles is uncertainty-based; hence, it is considered a useful
component in influencing highway construction safety, which is characterised by fuzziness
and uncertainty. Information theory has recently become prominent in the occupational
health and safety domain. For example, Zhuang et al. [81] implemented information the-
ory in investigating safety passage planning for system shoring supports with building
information modelling (BIM). Bauk et al. [57] adopted it for communication to increase
occupational safety at a seaport, enabling a powerful marine and offshore decision-support
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solution through a Bayesian network technique [66]. The impact of information theory
has been crucial to its application in areas such as model selection [82], data analysis [56],
pattern recognition, and anomaly detection [83]. Digital information technology advance-
ments such as BIM have been influential in safety management [84] and have required
the digitisation and digitalisation of safety-related data. The close relationship between
ontology and information technologies can be explored to develop knowledge-based safety
models [85,86], which could analyse and predict safety risks and accidents [58]. Digital
data analytics could also be adopted in implementing leading safety indicators, useful in
safety risk prediction [87].

11. The Relationship between the Human Element, Key Safety Indicators and
Domain Application

Theories and models have focused on human-centred themes to continually investigate
and provide measures for errors [76,77]. This is evident in the various keywords used in
emphasizing human involvement in the safety risk literature, such as operatives, workers,
etc. However, humans remain versatile and constantly alter their actions based on situations
rather than procedures [88]. These actions could be influenced by key safety indicators,
such as worker perception of risk, behaviour, safety climate, and safety culture [68,79,89].
Therefore, a focus on human errors has been expanded to include more proactive indicators,
such as risk perception, safety climate, and safety culture, in contemporary safety risk
models and theories to address the human contribution to safety risk events. The different
ways workers perceive risk, their performance and their attitudes create behavioural
patterns, which can be associated with their demography [90] and safety climate factors
like co-worker attitude and safety awareness [76]. Other studies reveal the integral part
safety climate plays in safety culture [91,92]. Safety climate has a situational, behavioural
and psychological influence on safety culture [79]; hence, analysing safety climate could
enable the prediction of safety culture and further impact safety performance. Human
resource management is also an emerging trend between 2018 and 2021. This is particularly
important given that highway construction is characterised by different groups of contract
workers and contingent workers, such as highway engineers, road maintenance operatives,
traffic officers and inspectors.

12. Predictive Safety Models and Big Data

Predictive models provide insight into future events [93]. From the scientometric
analysis and categorisation of the keywords, it is inferred that safety risk management
is moving from a reactive approach to a more proactive approach through prediction
for prevention. The trend in using prediction in safety management provides a proactive
approach to handling risks and accidents. Predictive models and frameworks are associated
with planning and strategy, with specific emphasis on foreseeing future disruptions in a
system [58,87]. Safety risk data in construction is characterised by its large volume, velocity,
value and variety, which are all features of big data [94]. Therefore, big data analytics can
be used in building machine learning predictive models based on existing and historical
data available with a more robust storage facility. Gerassis et al. [67] used data mining
and attribute selection techniques to identify the main predictors of accidents related to
embankment construction, then built Bayesian networks to predict the individual causes
of various accident types. Amiri et al. [65] employed decision trees, association rule and
multiple-correspondence analysis, which resulted in identifying a significant relationship
between time of accident, accident location and the part of the body impacted by the
accident. Workers who are mostly prone to fatal accidents have also been identified and
classified using Bayesian theory; by ranking the risks involved, the result was applied to
training workers to reduce accidents and safety risk issues on site [64]. Knowledge from
these previous works could be employed in building an accident prediction model for
highway workers.
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13. Classification of Models

From the classification analysis technique and grounded theory analysis, the reviewed
models and theories were categorised into seven thematic classifications based on their
features, processes, domain, idea and application; each category’s benefits and limitations
were also compared to reveal the strengths and weaknesses of these classified theories
and models (see Table 2). The dearth of studies reviewed demonstrates the benefits and
limitations of each of the seven model categories presented.

Table 2. Model classification.

Model/Theories Features Benefits Limitations Authors

Element
Theories/Models

Characterizes the
unique participating

elements and
components that make

the model

1. Its holistic nature allows
individual weakness and
solutions to be identified

2. Reveals individual parts’
contribution to model

3. Enables proper
distribution of human
resources and structures

1. Does not identify the
interconnection between
components

2. May not reveal political
or representational
elements

3. Analysing actions and
processes are challenging

4. Results are difficult to
describe

[11,37–40,95–97]

Incentive
Theories/Models

Characterizes the
actions and initiatives

that enhance safety with
feedback elements

1. Identifies the role
management can play to
enhance safety

2. Highlights contributions
and responsibilities of
workers and
management

3. Enables proper
distribution of human
resources and structures

Robust insight into results

1. Does not identify the
interconnection between
components

2. May not reveal political
or representational
elements

3. Its focus on specificity
may make it unable to be
applied holistically

[39,77,98]

Quantitative or
Statistical

Identifies the connection
between events and

incidents by quantifying
data and finding

patterns

1. It has evidence-based
outcomes

2. Decisions taken are
backed by evidence

Gives insight into results and
relationships

1. Its focus on specificity
may make it unable to be
applied holistically

2. Does not recognize all
components

Contextual considerations need
to be made when in use

[62,63,99]

Sequential
Identifies a chain of

events that leads to an
accident

1. Gives insight into causes
of failure

2. At the micro level,
provides good
examination

3. Relationships between
causal components are
described explicitly

Focuses on human error and
how it could be prevented

1. Does not reveal
contributions to success

2. At a strategic level, it is
challenging to apply to
more complex systems

3. Effects are not identified

May not reveal political or
representational elements

[14]

Behavioural

Identifies the unsafe
behaviour and attitude
of workers as leading

causes of accidents

1. Normally based on safety
climate

2. Could be generally
applied to several
situations

3. General focus on parts
and purpose

Reveals human resource
management qualities

1. Its generalization feature
may prevent it from
being used in specific
instances

2. May not reflect on all
connections

3. Challenging to recognize
all chances for solutions

Guidance on specific activities
and situations is scarce

[69]
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Table 2. Cont.

Model/Theories Features Benefits Limitations Authors

Barricade

Safety is measured
based on the

effectiveness of barriers
erected

1. Provides defence against
failure

2. Gives insight to causes of
failure

3. At the micro level,
provides good
examination

4. Relationships between
causal components are
described explicitly

1. Does not reveal
contributions to success

2. At a strategic level, it is
challenging to apply to
more complex systems

3. Effects are not identified

[100,101]

Resilience Models

Focuses on the ability of
a system to handle

varying conditions and
how long it takes to

restore to normal
conditions after a

disturbance occurs

1. Gives insight into
contributing successes

2. Provides shocks for the
system

3. Allows system to return
to normal function
after failure

1. Cannot predict future
situations

2. Only focuses on present

The magnitude of relationships
and components could make it
too complex for application

[102–105]

All models and theories identified in this review could potentially be applied to
highway worker safety risk mitigation; however, many components characterise highway
construction, and although these components work comparatively independently, they
interact closely with each other over a period. Therefore, individual purposes and context
determine which model or theory will be applicable. A comparison of model features
based on resilience theory [102,105] with the models classified in Table 2 showed that
the classified models are not entirely independent of each other and demonstrate some
common features. While these different models propose different means for safety risk
mitigation, only models based on resilience theory provide alternatives for adaptability
and recovery, even if incidents or accidents occur. The resilience theory approach has the
ability to inculcate all significant factors, elements and results of the other models classified
when thoroughly applied to highway construction.

14. Resilient Predictive Models

Resilience involves the inherent capabilities of a system to adapt its operation before or
after any modifications and disruptions to carry on with performing its functions when hit
by a major catastrophe [102]. This is based on resilience theory [105]. Resilience promotes a
holistic view of how a system adjusts dynamically and changes to promote the continuity
of safer operations [103]. It focuses on effectively using resources to proactively anticipate
and manage risks [79]. This, however, is not the same as predictive modelling, although
there are similar characteristics [106]. While predictive models handle future disruptions
and focus on planning for these, resilience engineering (resilient models) focuses on the
current system and its response to disturbances, its adaptability and the pace for recovery
back to normal activities. The resilience measures (data) generally recognised include
awareness, safety culture, anticipation, management commitment, flexibility, reporting
culture and safety climate [105,107,108]. Adaptability, response to incidents and system
recovery are gaps in predictive models that could be addressed by introducing resilient
features into the predictive models. This study therefore proposes a digital predictive
model that has resilience capabilities. This digital model will predict the probability of
safety risk events occurring, and if they are unavoidable, resilience features will provide
shocks to enable recovery.
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15. Discussion

Early safety risk theories and models [14,42] focused on human errors and behaviour
as the major risk contributors in an organization. Others, e.g., [41], later included lack of or
inadequate management responsibilities in their models. Several other safety risk models
were developed based on earlier proposed models, and irrespective of improvements made,
the human factor in safety risk management was not made redundant. This demonstrates
how indispensable humans are in safety risk model/theory building; any model developed
to address safety risk challenges should consider human factor elements and include key
leading indicators that proactively measure human involvement in safety risk events.

The keyword co-occurrence analysis showed that the focus of safety risk research
is moving towards ‘project management’, ‘human resource management’, ‘construction
worker’, ‘risk perception’ and ‘prediction’. The literature reveals that safety risk challenges
are being handled on a project basis to personalise safety risk measures and put solutions
in place. The keywords ‘human resource management’ and ‘construction worker’ highlight
the concentration on the human factors in safety risk, and this is emphasised by the different
terms used to describe humans in the categorised keywords section. Theories and models
have focused on human-centred themes to continually investigate and provide measures
for errors. However, the versatility of humans remains constant; they respond to situations
rather than procedures, and this has led to varying human safety indicators to look beyond
error to including leading indicators such as risk perception, safety climate, safety culture
and worker behaviour (high-risk behaviour). The keyword ‘prediction’ was also presented
as a recent trend and future direction for safety risk models and theory. Existing models
and theories focus more on a reactive mitigation of risk after it has occurred rather than
proactive prevention of risk before it occurs [109]. Predicting safety risk could help avert
misfortune and accidents.

Inculcating information technology into safety risk model research and digitalization
is apparent in current trends [110]. Keywords such as ‘information theory’, ‘Bayes theory’,
‘Bayesian network model’, ‘fuzzy set theory’ and ‘regression analysis’ indicate the presence
of technology in the field of machine learning and data analytics in safety risk model
research. Information theory and fuzzy sets have been widely used to identify patterns in
data for analytical insight [111], while Bayesian network models and regression analysis
models have predictive abilities that can be applied to predict safety risk levels before
they occur.

Based on similar features, processes, domains, ideas and applications, the various
models identified were classified. Comparing the strengths and limitations of the models
and theories revealed that the variety of models classified are not entirely exclusive and
demonstrate features that are inherent in other models. However, individual purposes and
context determine which model or theory will be applicable. From the literature, it was
discovered that only models based on resilience theory (resilient models) had the ability
to adapt and recover after an incident occurs. Predicting safety risk incidents or safety
risk levels is a huge step toward the prevention of an accident or loss occurrence in an
organisation. Nevertheless, predicting future occurrences only helps in anticipating and
planning for these risks, without any provision for adaptability and recovery in the event
that the risks predicted are unavoidable. This leaves a gap for digital predictive models that
have inherent resilient features capable of recovery in the event of an inevitable predicted
safety risk.

Premised upon the analysis of literature, this paper proposes a concept of a digital
predictive model enhanced with inherent resilient features (data) to develop a conceptual
framework known as a resilient predictive model (Pr) (see Figure 3).

The resilience measures (data) generally recognised from the literature include aware-
ness, safety culture, anticipation, management commitment, flexibility, reporting culture
and safety climate. These data are collected through secondary data such as worker satisfac-
tion surveys and accident data as well as primary data collection through interviews with
highway workers. These data are added to variables that will be incorporated in building
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a digital predictive machine learning model. The types of models studied have provided
diverse knowledge in the field of safety risk mitigation. While some have taken a holistic
approach towards mitigation and control of construction risk, others have dealt specifically
with other domains, such as mining, coal mining, tunnel construction, etc. However, no
presently available model has adopted a predictive model fused with resilience capabilities
in the highway construction domain.

The data collected are pre-processed and cleaned through data transformation and
reduction techniques such as normalization and attribute selection through goodness of fit
chi-square test to identify whether there is an association between predictive and resilient
variables in the dataset and whether the sample represents the whole population. This
process decreases the size of the data, limiting it to only the most important information
and increasing the accuracy and efficiency of machine learning models. Machine learning
models such as Bayesian models, support vector machines and random forest, as well as
deep learning models such as artificial neural networks and recurrent neural networks are
applied to the data to build different predictive classification models. The model building
process involves a random selection of 80% of the data for training and 20% for testing
and verification.

The different models built are compared, evaluated and validated. Metric that are
used to evaluate the machine learning and deep learning algorithms include Classification
Accuracy, Logarithmic Loss, Confusion Matrix, F1 Score, Mean Absolute Error and Mean
Squared Error. K-fold cross validation and bootstrapping are then employed in validating
the results of the model to properly understand the model and estimate an unbiased
generalization performance.

By presenting this idea for a digital model now, it is anticipated that the work will
engender wider polemic debate in this area of investigation that will not only refine the pro-
posed model, but will also contribute towards a safer highway construction environment.
Future work will test the model in practice to ensure that predictions are accurate.
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16. Conclusions

Safety and risk are omnipresent challenges confronting the construction industry,
despite the health and safety improvements that have been made. Previous research has
provided numerous insights into fostering construction safety performance, including the



Digital 2022, 2 219

construction of models and theories that guide safety activities. This paper adopted a bib-
liometric mapping approach by conducting a comprehensive keyword analysis to identify
new trends in model building using VOSViewer software and based on 607 papers extracted
from Scopus [112,113]. The methods employed included keyword co-occurrence analysis
and classification techniques, where models and theories were categorised based on similar
themes and ideas. Based on the screening of topics and abstracts, areas of active research
were identified, namely ‘prediction’, ‘project management’, ‘human resource management’,
‘construction worker’, ‘occupational injury’, ‘construction equipment’, ‘procedures’ and
‘risk perception’, with prediction and human resource management being prominently
investigated during 2018 and 2021. Further analysis of keywords through categorisation
revealed five prominent clusters, which included ‘prominent theories/models’, ‘domains’
(where models/theories have been applied), ‘definition of worker’ (terms used to describe
worker), ‘key safety indicators’ and ‘data collection methods’ employed. This study identi-
fied research gaps, which included (1) the information theory and technology gap has not
been well exploited in building theories and models for safety; (2) the under-exploration of
theories and models for highway construction, as these have been largely generalised to
encompass all construction industry activities, hence leaving highway workers vulnerable;
and (3) the need for a resilient prediction model that inculcates leading safety indicators and
technology such as machine learning (pattern recognition and prediction), data analytics
and the storage method for digitised data. The scientometric keyword analysis provided
insight for future research directions, such as applying big data technologies (data analytics,
machine learning, data storage) in safety management.

‘Key safety indicator’ was another influential category and included keywords such as
‘safety climate’, ‘safety culture’ and ‘risk perception’, which suggests emphasis on moving
towards leading safety indicators as proactive measurements. The emerging trend of
leading indicator data such as ‘safety climate’, ‘safety culture’ and ‘risk perception’ and
reactive safety indicator data such as ‘high-risk behaviour’, ‘safety behaviour’ and ‘task
performance’ were inculcated into building a resilient model on the basis of resilience
theory, while big data technologies such as data analytics and pattern recognition were
inculcated into building a predictive model based on information theory principles. These
two concepts were combined to create a resilient predictive safety model, which is proposed
in this paper as an alternative method for addressing highway construction risks. This will
help management in making safer decisions based on empirical knowledge.

This work is in its early conceptual stages. This concept does not evaluate the most
significant factors of resilience and prediction that have a major impact on highway con-
struction safety. This is a conceptual model under development. Future works will build
a prototype model by exploring in-depth the proposed model by investigating various
machine learning architectures that could be employed in building predictive models with
resilient model data, using deductive and deterministic modelling to test the new model.
In addition, user adaptability and acceptance as well as industry readiness to employ
various big data technologies in construction safety management will be assessed. These
proposed future directions could help both industry practitioners and academics in safety
performance enhancement to improve worker health, safety and wellbeing. It is worthy
to note that all of the selected literature was sourced from Scopus and in English only,
which could potentially exclude some relevant studies published in other languages or on
different platforms.
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