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Abstract: This paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the
reaction’s pH level and temperature. The developed fuzzy inference system includes two input
variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy
inference system was developed in two stages: first, developing a single input-single output fuzzy
inference system for each input variable (pH, temperature) separately, using the robust adaptive
network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques
were used to tune the membership functions based on previously published experimental data for
β-glucosidase. Second, each input’s optimized membership functions from the ANFIS technique were
embedded in a new fuzzy inference system to simultaneously encompass the impact of temperature
and pH level on the activity of β-glucosidase. The required base rules for the developed fuzzy
inference system were created to describe the antecedent (pH and temperature) implication to the
consequent (enzyme activity), using the singleton Sugeno fuzzy inference technique. The simulation
results from the developed models achieved high accuracy. The neuro-fuzzy approach performed
very well in predicting β-glucosidase activity through comparative analysis. The proposed approach
may be used to predict enzyme kinetics for several nonlinear biosynthetic processes.

Keywords: Agaricus bisporus; β-glucosidase; fuzzy logic; neural network; enzyme; kinetic modeling

1. Introduction

The catalytic enzyme β-glucosidase ( β-D-glucoside glucohydrolase, EC 3.2.1.21) hy-
drolyzes the glycosidic bonds in carbohydrates to non-reducing terminal glycosyl residues,
oligosaccharides, and glycosides. The β-glucosidase enzyme exists in a multitude of or-
ganisms ranging from bacteria, archaea to eukaryotes [1]. These enzymes are responsible
for the conversion of biomass in microorganisms, the breakdown of glycolipids and lig-
nification processes, the activation of phytohormones, catabolism of cell walls in plants,
and the interactions between plants and microbes [2]. β-Glucosidase is a major therapeutic
target for Gaucher’s disease, resulting from β-glucosidase insufficiency [3]. This enzyme
type is a significant component in the multi-enzyme cellulose complex and catalyzes the
final step in cellulose hydrolysis. Cellulose is the most ample carbohydrate on Earth, and
there is an abundance of applicable research conducted on its potential usage in numerous
industries [4–7]. Cellulose enzymes catalyze cellulose to synthesize cellobiose and other
short-term cello-oligosaccharides, which are hydrolyzed by β-glucosidase to glucose [5].
The dual characteristic of β-glucosidase, which allows it to synthesize as well as degrade
glycosidic bonds, gives it a vast potential from an industrial point of view [2].

Current global energy demands and the increasing burden on fossil fuels have in-
creased the need for more efficient production of biofuels at a substantial scale to re-
place nonrenewable fuel sources. The cellulosic biofuel production method consists of
decomposing lignocellulosic biomass into sugar, followed by fermentation processes to
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generate biofuel [8,9]. The complete degradation of cellulose is ultimately performed by
β-glucosidase. β-Glucosidase, an enzyme that determines the rate of the total conver-
sion of cellulose into glucose, serves as the final enzyme in lignocelluloses degradation
reaction [8,10]. β-Glucosidase enzymes are also employed in the flavoring industry of
bitter substances during juice extraction and aroma release from Muscat wine and apricot
grape juice. Immobilized β-glucosidase particles were found to be highly stable in wine
and fruit juice conditions and can be effectively used multiple times for multiple rounds of
hydrolases of bound aroma [11]. Additionally, β-glucosidase has enormous potential for
food processing industry applications; it is utilized as a flavoring-enhancement enzyme,
can reduce the viscosity of juice, and change the color of juice products as well as other
physiochemical properties [12].

Cell metabolism is a complicated dynamic system that can exhibit a wide range of
dynamical events, including several steady states and temporal oscillations. Kinetic models
are essential to comprehend and predict the behavior of metabolic networks quantita-
tively. Despite their many apparent benefits, comprehensive and thermodynamically
viable metabolic models are inherently challenging to formulate and fit. They consist of
a multitude of heterogeneous parameters, involve nonlinear relations, and have many
convoluted interactions. Jurado et al. [13] present a mechanistic modeling approach for
two commercial β-galactosidases (Lactozym and Maxilact). Ref. [13] used two kinetic
models to investigate the effect of pH on enzyme activity and thermal deactivation at
various ionic concentrations. In addition, the proposed models were applied to the activity
versus pH experimental data collected from other researchers using free and immobilized
β-galactosidases. Both models fit the experimental results acquired in the original study
and the results obtained by other researchers satisfactorily. While progress has been made
in the development of mechanistic kinetic models that describe specific metabolic pathways,
such as the central carbon metabolism in red blood cells [14] and E. coli [15], glycolysis in
yeast [16], the activity of β-galactosidases as influenced by pH, ionic concentration, and
temperature [13], all this progress has been hampered by limitations and common prob-
lems. The complex identification of highly-parameterized models, the intrinsically abstruse
nonlinear nature of mechanistic rate laws, and the utilization of in vitro kinetic data to fit
and approximate enzyme kinetics in vivo are just a few of these obstacles [17]. Creating an
ideal model requires the direct global fitting of detailed mechanistic models of metabolic
pathways, using in vivo data. Unfortunately, strong parameter coupling and homeostatic
control render such tasks impossible for extensive pathways. Simplified kinetics have
been utilized broadly to bypass this limitation. Formalisms, such as log–ln kinetics [18]
and generalized mass action [19], have been used to investigate the dynamic behavior of
metabolic pathways, depending on the scope, application, and specific model features.
While integrating formalisms with kinetic modeling frameworks resulted in invaluable
insights into the metabolic network’s operation [20], they offer a limited prediction power,
due to their lack of kinetic details. Allosteric regulation and other complex kinetic features
are essential to explain the complex metabolic behaviors in vivo [17]. Hence, the con-
struction of detailed and accurate kinetic models from in vivo data remains a challenging
task [21].

Optimum pH and temperature determination and better control of kinetic function
parameters of β-glucosidase are essential for its maintained use and the commercial via-
bility of its biosynthetic processes. Enzymatic activity in vivo involves a multi-variable
process with time-varying, nonlinear, and stochastic characters [22]. Therefore, model-
ing metabolic pathway dynamics compels accurate and detailed kinetic formulas at the
enzyme level. Precisely, kinetic formulas must account for all metabolic effectors that
vastly impact in vivo pathway regulation. However, due to the issues and limitations
discussed earlier, there is currently a lack of precision in kinetic information on the action
of β-glucosidases. The absence of optimal kinetic models is due to a lack of mathemat-
ical tools and model discrimination approaches, such as the linearization of nonlinear
models [22]. Hong et al. (1981) [23] employed an initial rate approach and Lineweaver–
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Burk linear regression. However, the model could not fit the experimental data accurately,
especially after long experimental times [23]. Bravo et al. (2001) [24] utilized the former
model to fit the experimental data obtained in the enzymatic hydrolysis of cellobiase by
β-glucosidase [24]. Several initial pH values were tested, and very good fits were achieved.
However, the authors could not establish a relationship between pH and substrate and/or
product inhibition. In addition, they could not establish a complete model able to duplicate
the system kinetics for various pH values. Furthermore, as the majority of kinetic laws in
the literature do not account for all factors simultaneously, a considerable portion of kinetic
information exists in a qualitative or semi-quantitative form [25].

New theories and computing advancements have recently progressed rapidly, such as
artificial intelligence control, fuzzy logic, artificial neural networks, and many others. Non-
linear models, such as artificial neural networks (ANN) and fuzzy logic, provide significant
benefits over traditional mechanistic modeling, such as the ability to handle enormous
amounts of noisy data from nonlinear and dynamic system processes [26]. Without exact
prior information, ANN and fuzzy logic can relate input and output parameters [27]. Such
novel approaches possess some new features that traditional methods lack and have an
enhanced ability to solve complex problems, uncertainties, and higher standard specifi-
cations for modern industries [28]. For example, Furlong et al. proposed a fuzzy logic
approach that accurately predict the enzymatic saccharification of sugarcane bagasse pro-
cess behavior when the feeding policy changes. Simpler models, such as those based on
Michaelis–Menten kinetics (MMK), can correspond well to the data for a particular feeding
procedure. However, the same model could not accurately predict the process behavior
when the feeding procedure was changed [29].

Soft computing methods, such as fuzzy logic and neural networks, are tools used to
establish intelligent systems [30]. Fuzzy-neural networks combine fuzzy logic and neural
networks to compound the advantages of fuzzy logic and neural networks. This combi-
nation of fuzzy-neural networks can deal with fuzzy information while also conducting
fuzzy reasoning. Moreover, neural networks introduce a learning mechanism to improve
the adaptive competence of the network. Hence, all of this allows the neuro-fuzzy system
to simultaneously obtain reasoning capability and adaptive ability [31,32]. ANFIS is a
hybrid of artificial neural networks and fuzzy inference systems (FIS). Because it relies on
gradient descent and least square algorithms, ANFIS can improve any modeling system’s
fault tolerance, speed, and adaptability [33]. As a result, such modeling techniques are
useful and versatile in modeling and estimating nonlinear systems [34]. Sreekumar et al.
(2020) [35] provide a robust neuro-fuzzy inference system model derived from real plant
data for predicting the pH level of sodium chlorate cells. The developed model relies on
fewer measurable parameters for modeling, such as HCl, brine, and NaOH flow rates, the
cell electrolyte temperature, DC load current, and feed input pH level [35].

In the present work, we briefly explain a generalized model of neural-fuzzy networks
representing the effects of temperature and pH level (simultaneously) on β-glucosidase
activity, extracted from Agaricus Bisporus (white button mushroom).The developed ap-
proach will enhance kinetic modeling, improving the kinetic control and efficiency of this
industrially important enzyme.

2. Neuro-Fuzzy Inference System

Several artificial intelligence techniques were developed and investigated over the
past decades, such as neural networks, evolutionary algorithms, fuzzy logic, and expert
systems. Each intelligent technique has specific computational properties (such as the
ability to learn and ability to interpret decisions) that make the techniques more suitable
for a specific problem. Fuzzy logic systems provide an inference framework that can mimic
human logical reasoning capabilities based on knowledge-based systems. Fuzzy logic is a
theory that presents a mathematical approach to capturing uncertainties associated with
human analytical processes [32,36]. The mapping process from an input variable to output
using the fuzzy logic approach is called fuzzy inference. A basis is provided by mapping
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between input and output, allowing decisions and patterns to be made or recognized.
Fuzzy inference involves the following [37]:

• The process of determining the degree to which the input variable belongs to each of
the suitable fuzzy sets through membership functions, also known as the fuzzification
process. The membership function (MF) designates a mapped membership value
between 0 and 1 for each point (input value). This method creates fuzzy sets.

• Application of the fuzzy operator in the antecedent using logical operations (AND =
min, OR = max, and NOT = additive complement).

• The implication from the antecedent to the consequent using if–then rules, where
fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. Every rule
has conjugated a weight that is applied to the value given by the antecedent. The
weight value is within the range [0–1].

• The aggregation process of the consequent across the rules. The fuzzy sets representing
the strength of each rule’s output are amalgamated into a single fuzzy set in a process
called aggregation.

• The defuzzification process can be used to obtain a single output value from the
output set using one of the following methods: centroid method, bisector method,
middle of maxima method, largest of maximum, and smallest of maxima method.

Figure 1 shows the steps for fuzzy inference system for two inputs (X and Y) and one
output (Z). The degree to which the crisp input (x1 and y1) belongs to the appropriate
fuzzy sets (A1, A2, and A3; B1, B2 and B3) µ is determined in the first step. In the second
step, the fuzzified inputs are applied to the antecedents of the fuzzy rules (Rule 1, Rule 2,
and Rule 3) to generate the rules output. Then, the unification of the outputs of all rules is
implemented in the third step. Finally, the rules output is evaluated in output fuzzy sets to
produce a crisp output z1 [31].

Artificial neural systems are expressed as a basic mathematical model of brain-like sys-
tems that behave as parallel computational networks [32,36]. Most neural networks must
be trained. The neural networks can capture (learn) the relation between input and outputs
by updating network weights. The neural networks can adaptively learn new correla-
tions, new functional dependencies, and new sequences and patterns. Even though neural
networks are good at the recognition process, they lack result interpretation [31,32,36,38].

While fuzzy logic can directly utilize the insight of expert knowledge by using rules
with linguistic labels, it is extremely time-consuming to design and tune the membership
functions that delineate these linguistic labels quantitatively. Neural network learning
techniques can automate this procedure, making it considerably more efficient, while
improving its overall performance. The hybrid system that incorporates fuzzy logic into
neural networks is referred to as a neuro-fuzzy system. Neural networks are used to
adjust the membership functions of the fuzzy systems. Hybrid systems that combine
fuzzy logic and neural networks is validating their effectiveness in real-world problems.
The adoption of hybrid systems are expanding rapidly with much successful utilization
in various applications. The employment of fuzzy logic provides an inference process
under logical uncertainty and cognitive ambiguity, while computational neural networks
provide beneficial and exciting advantages, such as learning, fault tolerance, adaptation,
parallelism, and generalizations [32,36].
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Figure 1. The structure of Sugeno fuzzy inference.

3. Enzyme Activity Modeling Using ANFIS
3.1. Sugeno Fuzzy Inference Systems

The Sugeno fuzzy inference technique, also known as Takagi–Sugeno–Kang fuzzy in-
ference, employs singleton output membership functions based on the weighted average or
weighted sum of several data points rather than computing a centroid of a two-dimensional
area in the Mamdani system. In addition, the Sugeno system’s membership output is either
a constant or linear function of the input values, making the defuzzification method more
computationally efficient [37].

For the suggested MISO FIS, each rule in the system operates as follows. Each rule
generates two values, as shown in Equations (1) and (2):

zi = ai ∗ Temp + bi ∗ pH + ci (1)
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where zi is the rule output level, which is either a constant value or a linearized function
of the input values. Temp and pH are the input values, and ai, bi, and ci are constant
coefficients. zi is a constant (a = b = 0) for a zero-order Sugeno system.

wi = And Method(F1(Temp), F2(pH)) (2)

The rule antecedent determines wi, which is the rule firing strength. Here, F1 (...) and
F2 (...) are the membership functions for Temp and pH, respectively.

The weighted output level (Enzyme Activity level), which is the product of wi and zi,
is the output of each rule.

Enzyme Activity =
∑N

i=1 wi ∗ zi

∑N
i=1 wi

(3)

where N is the number of rules.
The process of tuning a Sugeno-type fuzzy inference system using training data was

developed in the 1990s [39]. The system design and learning algorithm are called the
“adaptive-network-based fuzzy inference system (ANFIS)”, where a fuzzy inference system
is developed in the framework of adaptive networks. An input–output relation is con-
structed using a hybrid learning algorithm based on human insight (in fuzzy hypothetical
rules) and specified input–output data.

For the current β-glucosidase modeling problem, discerning membership function
parameters by inspecting data can be difficult. The input/output data will determine
the membership function parameters rather than selecting the parameters via try and
error or guessing. In this work, a neuro-fuzzy designer application in Matlab ® is used to
create a neuro-fuzzy inference system (ANFIS) based on input/output data. ANFIS can
model a system with N inputs and one output when sufficient training data are available.
Sufficient training data must describe the entire problem domain. In general, training
data should accurately reflect the characteristics of the data that the FIS is expected to
model [37]. For this study, however, the first set of training data was extracted from the
pH-enzyme activity at one temperature setting (37 ◦C), while the second set was obtained
from the temp–enzyme activity at only one setting pH value (5.5). Hence, the available
initial data points do not fully describe the entire features of the MISO output system
(pH–temperature–enzyme activity). Using an inadequate training data set can lead to
insufficient training for the FIS and the inability to capture and infer the relation between
system inputs and output. Therefore, a new procedure was implemented to satisfactorily
utilize the multi-input single-output (MISO) process for the current study. The first stage
uses ANFIS to generate a SISO model of the relation between pH and β-glucosidase activity
and temperature and β-glucosidase activity independently. Then, the developed SISO
models’ membership functions are used to generate the fuzzy inference system (FIS) for
the MISO process in the second stage.

3.2. Training Data

Input/output training data were generated from the experimental results given
in Ref [1]. Ašić et al. (2015) [1] conducted enzyme kinetic studies, using the sub-
strates 4-Nitrophenyl beta-D-glucopyranoside (p-NPGlu) and 2-Nitrophenyl beta-D-
glucopyranoside (p-NPGlu). Both substrates were incubated at 37 °C for 30 min in concen-
trations ranging from 0.36 mM to 2.5 mM in 50 mM sodium acetate buffer (pH 5.5). Ref [1]
showed that (p-NPGlu) was the best suitable substrate for mushroom β-glucosidase. Hence,
only (p-NPGlu) was considered for optimum pH and temperature determination in this
study. For optimum pH determination, (p-NPGlu) and enzyme were incubated for 30 min
at 37 °C in three different buffers: sodium acetate buffer (pH 3.0–6.0), phosphate buffer (pH
6.0–8.5), and glycine–NaOH buffer (pH 8.5–12.0). Then, enzyme activity was measured
spectrophotometrically at 405 nM. For optimal temperature determination, the enzyme
was incubated with 5 mM (o-NPGlu) solution under seven distinct temperatures, ranging
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from 25 °C to 85 °C. The training input/output data were distributed consistently along
with each graph to accurately represent the attributions and characteristics of the data
that the trained fuzzy inference system is intended to simulate. Sixty-six data points from
each graph were collected and used in this work. Both ANFIS and neuro-fuzzy designer
allowed the adjustment of the optimization method, modification of the number of training
epochs, and adjustment of the training error goals.

3.3. ANFIS Models for pH–Enzyme Activity and Temp–Enzyme Activity

A SISO ANFIS model is developed based on the published Mathlab® code in Ref [40]
to model pH–enzyme activity and temperature–enzyme activity individually, as shown in
Figure 2a,b. Developing an effective and efficient ANFIS system requires adjusting and
tuning the system parameters to obtain the best performance possible. The benchmark
study Figure 3 served to provide an initial estimation for the necessary membership
functions (MFs) required for each SISO FIS (5 MFs for pH and 6 MFs for temperature).
Furthermore, the performance of the MISO system must be tuned carefully, and several
trials might be needed to achieve the best results. After several iterations, the best results
were achieved using 5 MFs for both pH and temperature in the MISO model.

(a)- Temp- Enzyme activity FIS structure

(b)- pH- Enzyme activity FIS structure

Figure 2. SISO FIS models: (a) Temp- Enzyme activity FIS structure. (b) pH- Enzyme activity FIS
structure.
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The optimization method used to classify the memberships for both models is hybrid.
The number of training epochs is 200, with a training error goal of 1.0 × 10−5. After
completing the training and optimization sessions for each ANFIS model, the type and
parameters for input and output memberships were created, as shown in Figure 4.
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Figure 4. Memberships for pH and temperature.

4. FIS Model for pH–Temp–Enzyme Activity

A new fuzzy inference system model needs to be developed to include more than
one input variable simultaneously, as shown in Figure 5. The input memberships type
and parameters were transferred from previously developed ANFIS models for each input
variable (pH and temp).

Figure 5. Multi-input single-output (pH–temp–enzyme activity) FIS structure.

A new rules base is developed to describe the expected relation between the two input
variables (pH and temperature) and the output (enzyme activity) as shown in Table 1; the
output surface of the developed fuzzy inference system is shown in Figure 6. The output is
selected to be a singleton-constant output membership function with the following values
[0.12 0.5 1.25 2.25 2.75].

Table 1. Base rule output (enzyme activity: 1 = Very Low, 2 = Low, 3 = Medium, 4 = High,
5 = Very High).

Temp pH −→ Very Low Low Medium High Very High

Very Low 2 3 1 1 1
Low 3 4 2 2 1

Medium 4 5 2 2 2
High 3 4 2 1 1

Very High 2 3 1 1 1
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Figure 6. FIS output surface.

5. Results and Discussions

The ANFIS SISO model for the temp–enzyme activity is trained to capture the nonlin-
ear relation between the reaction temperature and enzyme activity, as shown in Figure 7.
The training goal was reached with a mean error of 6.13 × 10−9. The validity of the SISO
temp–enzyme activity model and pH–enzyme activity model is tested, using a randomly
selected new data sample (15% of the original data set). Figure 8 presents the regression
model between the predicted and target values for the training and testing data sets. Both
training and testing sessions display good performance with an R-value of more than 0.997
for training and testing data.
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(a)

(b)

Figure 8. Validity test of SISO FIS models, using five MFs for inputs and output. (a) Temp–enzyme
activity model performance using training data (blue) and test data (green). (b) pH–enzyme activity
model performance using training data (blue) and test data (green).

The developed fuzzy inference systems’ performance was evaluated against exper-
imental (target) data, using different accuracy indicators. For the temp–enzyme activity
model, the mean error for all data is 0.0044233, error STD is 0.038, and the RMSE is
0.0383, which means the developed FIS model successfully captured the relation between
temperature and enzyme activity, as shown in Figure 9.
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Figure 9. Performance of SISO temp–enzyme activity FIS model. (U = µmol/min), temp = ◦C).

Figure 8. Validity test of SISO FIS models, using five MFs for inputs and output. (a) Temp–enzyme
activity model performance using training data (blue) and test data (green). (b) pH–enzyme activity
model performance using training data (blue) and test data (green).

The developed fuzzy inference systems’ performance was evaluated against exper-
imental (target) data, using different accuracy indicators. For the temp–enzyme activity
model, the mean error for all data is 0.0044233, error STD is 0.038, and the RMSE is
0.0383, which means the developed FIS model successfully captured the relation between
temperature and enzyme activity, as shown in Figure 9.



BioChem 2021, 1 169

20 30 40 50 60 70 80 90

 Temp

0

0.5

1

1.5

2

2.5

 E
n

z
y
m

e
 A

c
ti
v
it
y
 (

U
)

Deduced Enzyme Activity

Enzyme Activity [1]

Figure 9. Performance of SISO temp–enzyme activity FIS model. (U = µmol/min), temp = ◦C).

The ANFIS SISO model for the pH–enzyme activity is trained to capture the nonlinear
relationship between reaction pH and enzyme activity, as shown in Figure 10. The training
goal was reached with a mean error of 2.577 × 10−7.
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Figure 10. SISO pH–enzyme activity FIS model training.

The mean error of the pH–enzyme activity model for all data is 0.000998, Error STD is
0.0208, and the RMSE is 0.0206, indicating the developed FIS model successfully captured
the relation between pH and enzyme activity, as shown in Figure 11.
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Figure 11. Performance of SISO pH–enzyme activity FIS model. (U = µmol/min).

The validity of the proposed MISO model response was investigated for two simul-
taneous inputs (pH and temperature), using two sets of testing points: The first group
of points is set at 37 °C at varying pH values, while the second group of data points is
set at a constant pH value (pH 5.5) at varying temperatures. The results are compared
with equivalent points interpolated from the experimental results in Ref [1] for identical
experimental conditions. The results for the selected input values are listed in Table 2.

Table 2. Performance of pH–temp–enzyme activity model performance at testing points.
(U = µmol/min).

Test# pH Temp Deduced Enzyme Activity (U) Enzyme Activity (U) Error%
◦C MISO Model Ref [1]

1 3.5 37 0.89 0.829 6.853933
2 4.5 37 1.48 1.51 2.027027
3 5.5 37 0.822 0.8 2.676399
4 6.5 37 0.603 0.6 0.497512
5 7.5 37 0.448 0.42 6.25
6 5.5 30 0.898 0.83 7.572383
7 5.5 40 1.0019 0.99 1.187743
8 5.5 50 2.1 2.15 2.380952
9 5.5 60 2.05 2.1 2.439024

10 5.5 70 1.4 1.29 7.857143

The simulation results show that the predicted enzyme activity using the MISO FIS
model has very good matching with experimental results in Ref [1], with a mean error of
3.97% and a maximum error of 7.85%. It is also worth noting that the proposed model
performed better at intermediate input values. The maximum error is recorded at the start
and end limits of the provided pH and the temperature ranges, as shown in Table 2. This
model response behavior can be linked to the enzyme activity’s relatively low values at the
selected testing points. The selected input/output membership functions and rule base for
the designed MISO FIS model are more sensitive to one of the inputs (pH or temperature),
which causes a slight shift to the model output from the experimental values at these points.
Although the benchmark study shows that the best number of input membership functions
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is five for both SISO models (pH–enzyme activity and temp–enzyme activity), as shown in
Figure 6, the response accuracy based on the selected membership functions is not equal
for both inputs, which affects the MISO compound model (pH–temp–enzyme activity).

6. Conclusions

A fuzzy inference system is developed to simultaneously model the effect of pH and
temperature on β-glucosidase enzyme activity from Agaricus Bisporus.

A SISO fuzzy inference system was devised based on ANFIS techniques that combine
the neural networks’ learning ability to capture the nonlinear features between enzyme
activity and input variables (pH or temperature) separately to tune the memberships
based on the experimental results from Ref [1]. The membership parameters of the SISO
systems were used to build a multi-input fuzzy inference system to include the effect of
pH and temperature on the enzyme activity simultaneously. The required base rules for
the developed fuzzy inference system were formulated to describe the antecedent (pH and
temperature) implication to the consequent (enzyme activity) for each testing scenario. The
results revealed high accuracy for the developed multi-input nonlinear model predicting
the mushroom β-glucosidase activity based on specific input values (pH and temperature).

Optimum pH and temperature determination and improved control of kinetic pa-
rameters of β-glucosidase is essential for the sustained use and economic viability of its
biosynthetic processes. While we used pH and temperature as our parameters for modeling
kinetic activity, it is certainly feasible to use other parameters, such as salt and substrate
concentration in our modeling system. Therefore, future work will address other variables
involved in β-glucosidase kinetics, using the proposed modeling approach. The developed
approach can be used to predict the reaction behaviors of several biosynthetic processes.
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