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Abstract: Treatment duration is one of the most important factors that patients consider when
deciding whether to undergo orthodontic treatment or not. This study aimed to build and compare
machine learning (ML) models for the prediction of orthodontic treatment length and to identify
factors affecting the duration of orthodontic treatment using the ML approach. Records of 518 patients
who had successfully finished orthodontic treatment were used in this study. Seventy percent of
the patient data were used for training ML models, and thirty percent of the data were used for
testing these models. We applied and compared nine machine-learning algorithms: simple linear
regression, modified simple linear regression, polynomial linear regression, K nearest neighbor,
simple decision tree, bagging regressor, random forest, gradient boosting regression, and adaboost
regression. We then calculated the importance of patient data features for the ML models with the
highest performance. The best overall performance was obtained through the bagging regressor
and adaboost regression ML methods. The most important features in predicting treatment length
were age, crowding, artificial intelligence case difficulty score, overjet, and overbite. Without patient
information, several ML algorithms showed comparable performance for predicting treatment length.
Bagging and adaboost showed the best performance when patient information, including age,
malocclusion, and crowding, was provided.

Keywords: artificial intelligence; machine learning; orthodontic treatment length

1. Introduction

Treatment duration is one of the most important factors that patients consider when
deciding whether to undergo orthodontic treatment [1]. An exact and accurate prediction
of the duration of the total orthodontic treatment might motivate patients or prepare them
for what to expect (Mavreas and Athanasiou, 2008) [2]. Additionally, a reliable idea of
the treatment duration helps the orthodontist to better plan the overall treatment and the
sequence of appointments (Fink and Smith, 1992; Mavreas and Athanasiou, 2008) [1,2].
Earlier studies reported that orthodontic treatment employing fixed appliances typically
lasts 14 to 33 months (Kafle et al., 2019; Tsichlaki et al., 2016) [3,4] with a mean of around 22
to 24 months, depending on the discrepancy being treated (Aljehani and Baeshen, 2018;
Simister, 2007) [5].

Factors influencing the duration of orthodontic treatment are manifold. They range
from general malocclusion, anatomic and biologic factors (such as bone morphology, patient
age, and disease), the type of treatment (extraction versus nonextraction), to the planned
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treatment technique (Bhikoo et al., 2018) [6]. A further aspect might be patient cooperation,
which is closely related to socio-economic factors and education (Kafle et al., 2019; Mavreas
and Athanasiou, 2008; Tsichlaki et al., 2016) [2–4].

As teeth have to be moved through the bone, one decisive factor influencing the
speed of orthodontic tooth movement and thus treatment duration is bone metabolism,
i.e., the ability of bone to remodel as a result of the applied force systems (Abbing et al.,
2020) [7]. Bone metabolism depends, in part, on age, the bony structure itself, and/or
systemic disease (Abbing et al., 2020; Kaur and El-Bialy, 2020; Landin-Ramos, 2020) [7–9].
One could approach the prediction of treatment duration via bone morphology. Here,
the bone structure and density, the thickness of the cortical bone, and the structure of the
spongious bone would have to be analyzed in detail. An approach using fractal analysis of
panoramic X-ray images has recently been presented (Cesur et al., 2020) [10], while more
classical approaches use indices of severity, such as the American Board of Orthodontics
Discrepancy Index (ABO-DI), to give an answer to patients’ frequent question, “When do I
get my braces off?” (Aljehani and Baeshen, 2018) [5].

Artificial intelligence (AI) is bringing a paradigm shift to healthcare, powered by the
increasing availability of healthcare data and the rapid progress of analytics techniques [11].
Machine learning (ML) is a subset of AI techniques, used to determine complex models
and extract knowledge. In clinical practice, ML predictive models can assist the clinician in
decision-making regarding individual patient care [12,13].

To our knowledge, ML has not been used to predict orthodontic treatment length.
Therefore, our study aimed to build and compare ML models to predict orthodontic
treatment length and to identify factors affecting the duration of orthodontic treatment
using an ML approach.

2. Materials and Methods

We retrospectively evaluated the records of 631 patients who completed orthodontic
treatment at All Care Orthodontics, Chicago, IL. Ethical approval (IRP Number 20193360)
for this study was obtained from the research ethics committee of WIRB-Copernicus. All
experiments were completed in accordance with approved guidelines.

The inclusion criteria were as follows: patients who had (1) received comprehensive
orthodontic treatment; (2) successfully finished their orthodontic treatment without dis-
ruption during the treatment period; (3) a complete set of standard orthodontic records
pretreatment and at a debond appointment; and (4) had treatment by a board-certified
orthodontist. The exclusion criteria were patients who had: (1) received limited orthodon-
tic treatment; (2) received phase one orthodontic treatment; (3) had treatment disrupted
and, consequently, increased treatment length; (4) more than four failed appointments;
(5) treatment under Medicaid coverage; and (6) craniofacial syndromes. A total of
518 patients met the inclusion criteria, and their records were used in this study.

The following parameters were collected for each patient: (1) gender, race, and age
when treatment started; (2) commute distance to the orthodontic office in miles; (3) overjet,
overbite, maxillary, and mandibular arch crowding calculated in mm; (4) malocclusion
classification (I, II, and III); (5) actual treatment length, in months, starting from the bonding
to the debonding appointment; (6) estimated treatment length determined by an orthodon-
tist; (7) treatment difficulty estimated by artificial intelligence (AI score: 1, easy to 5, very
difficult) using a deep learning model, previously published by Talaat et al., 2021 [13].

Implementation of Machine Learning Models

A total of nine machine learning algorithms were tested. These included: (1) simple
linear regression (baseline model); (2) modified simple linear regression; (3) polynomial lin-
ear regression; (4) K nearest neighbor (KNN); (5) simple decision tree; (6) bagging regressor;
(7) random forest; (8) gradient boosting regression; and (9) adaboost regression [14].

The cases corresponding to each of the possible outcomes were divided into two
groups: 70% of cases were used for ML training and the remaining 30% for ML testing. The
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same training and testing sets were used with every model to ensure a fair comparison.
After each model was trained and optimized using 70% of the patient sample, the remaining
30% of cases served as the testing dataset to evaluate the model’s predictive ability. We
compared all models using three indicators: mean squared error (MSE) of the training data,
MSE of the testing data, and coefficient of determination (R2) of the model on the entire
dataset. Ideally, the testing MSE should be as low as possible. A training MSE that is much
lower than the testing MSE usually indicates the model overfitting on the training dataset.
In addition, a higher R2 score is desirable, representing the proportion of the variance for
the dependent variable (actual treatment time) that is explained by independent variables in a
regression model. Furthermore, we analyzed residual values according to the statistical best
practices and generated feature importance and permutation importance for each model.

3. Results

This study used data from 518 patients, 281 females and 237 males. The mean patient age
was 17.49 +/− 8.15 years, and the mean patient treatment time was 26.10 +/− 8.15 months;
the mean crowding was 3.18 +/− 3.64 mm for the maxillary arch and 2.79 +/− 3.56 mm
for the mandibular arch (negative crowding represents spacing); class I malocclusion was
present in 299 cases, class II in 145, and class III in 74. The mean treatment difficulty
estimated by AI score was 2.53 +/− 0.81. The mean patient commute distance to the
orthodontic office was 3.44 +/− 4.979 miles (Table 1) (Figures 1 and 2).

Table 1. Description of Patient Demographic Data.

N = 518
Actual

Treatment
Time (Months)

Overjet
(mm)

Overbite
(mm)

Maxillary
Crowding

(mm)

Mandibular
Crowding

(mm)
AI Score Patient

Age (Years)

Distance to
Treatment

Office (Miles)

Mean 26.101 2.49 2.844 3.178 2.792 2.527 17.49 3.445

STD 8.146 2.699 1.752 3.644 3.56 0.808 8.15 4.979

Min 2.6 −12 −6 −10 −16 2 8.48 1.06

25% 20 1 2 1 1 2 12.59 1.06

50% 25.6 2 3 3 3 2 14.23 1.41

75% 31.575 4 4 5 5 3 19.977 3.77

Max 47.8 14 8 18 15 5 62.12 34.11
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The correlation between the variables shown in Figure 3 revealed that the over-
bite and overjet values were highly correlated (0.43). In addition, both maxillary and
mandibular crowding values were highly correlated (0.51). All other pairs did not show
significant correlations.
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Figure 3. Heat map showing the correlation between variables.

Different ML models behave differently when processing the inputs. Accordingly, the
performance of these models also varies. For the ML algorithms evaluated, the following
was observed: bagging and adaboost were the best models, with much lower MSE values
for both training and testing datasets and a higher R2 score to explain the variances (Table 2)
(Figures 4 and 5).
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Table 2. Performance Comparison of the ML Models.

ML Model Training MSE Testing MSE R2 Score

Simple Linear Regression 59.65 66.76 0.067

Modified Simple Linear Model 58.85 65.21 0.082

Polynomial Linear Regression 48.85 79.25 0.124

KNN (best k = 9) 79.40 81.25 −0.266

Decision Tree (w/AI score) 51.99 71.97 0.124

Decision Tree (w/o AI score) 55.65 58.20 0.148

Bagging (w/AI score) 40.86 60.95 0.308

Bagging (w/o AI score) 43.08 55.31 0.276

Random Forest (w/AI score) 47.02 58.65 0.237

Random Forest (w/o AI score) 50.29 54.32 0.222

Gradient Boosting (w/AI score) 59.85 54.08 0.122

Gradient Boosting (w/o AI score) 61.76 54.80 0.100

AdaBoost (w/AI score) 38.55 58.10 0.329

AdaBoost (w/o AI score) 42.38 55.08 0.302
MSE, mean squared error; R2, coefficient of determination.
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Figure 4. Scatterplots comparing actual treatment time vs predicted treatment time for the bag-
ging model.

The charts shown in the following figures identify the importance of each indicator in
the ML models through feature importance and permutation importance. The R2 scores of
between 0.27 and 0.33 were significantly larger than the chance level, making it possible
to subtract individual feature importance and permutation importance to probe which
features are most predictive.
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Figure 5. Scatterplots comparing actual treatment time vs predicted treatment time for the Ad-
aBoost model.

Feature importance, as the name suggests, shows the importance of each feature
variable in the model. For a complex such as bagging, random forest, or adaboost, feature
importance is the average of all submodels. Permutational importance measures the
decrease in a model score when a single feature value is randomly shuffled. This procedure
breaks the relationship between the feature and the target. Therefore, this decrease in the
model score indicates how much the model depends on the feature.

With or without AI scores, the feature importance shows that patient age, maxillary
crowding, and mandibular crowding are the three most predictive components in the
Bagging model (Figure 6). Overjet, overbite, and race identification also have quite a
significant feature importance.
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We can see that patient age, maxillary crowding, and mandibular crowding are also
the top predictive variables measured by permutation importance in the bagging model
(Figure 7). In addition, Figure 5 shows that the AI score played an important role in the
model including the AI score as a predictive variable.
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With results very similar to the bagging model, the feature importance of the adaboost
model (with or without an AI score; Figure 8) shows that patient age, maxillary crowding,
and mandibular crowding are the three most predictive components. Overjet, overbite,
and race identification also have significant feature importance.
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Figure 8. Feature importance in the adaboost model.

The permutation importance results of adaboost (Figure 9) show results similar to
those of the bagging models, with patient age, maxillary, and mandibular crowding being
more significant than other variables. In the adaboost model without an AI score, overjet
stood out as the second most important variable.
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4. Discussion

The ML models built in this study were used to predict the orthodontic treatment
length based on multiple factors, including patient demographics, types of malocclusion,
and measures of malocclusion severity such as crowding, overjet, and AI score for treatment
difficulty. When we evaluated the performance of different ML models, we found that the
bagging and adaboost models had better performance than the other ML models tested.
Bagging, or bootstrap aggregating, is based on the decision tree model. It generates multiple
samples of training data via bootstrapping, training a deeper decision tree on each sample of
training data, then outputs the averaged results of all models, i.e., aggregating. Compared
to regular decision tree models, bagging enjoys the benefits of high expressiveness and low
variances. Adaboost is a complex boosting decision tree regression model that uses multiple
subsequent trees of residuals to build a combined, e.g., boosting. Adaboost assigns larger
weights to outliers in each iteration of the boosting model building. This makes Adaboost
especially efficient compared to other boosting methods [15]. We tested the performance
of the ML models with and without the AI score [13]. Adding the AI score improved the
ML models’ performances and this was especially evident with the bagging and adaboost
models. The AI score is based on malocclusion detection and assessment by AI from clinical
images, including crowding, spacing, deep bite, open bite, and crossbite [13]. AI score is a
novel method for assessing the case difficulty, confirming that the more difficult the case,
the longer the treatment duration.

We assessed the feature importance for the ML predictive models; patient age, max-
illary crowding, and mandibular crowding were the top features. Patient age could be
a contributing factor due to the biological differences between adolescents and adults.
Vayda et al., in 1995, reported significant differences in treatment length between adults
and adolescents [16]. Other studies reported no significant differences in treatment length
between adults and adolescents [17]. Additional parameters contribute to treatment length
prediction by ML. For example, crowding, overjet, overbite, and AI score are all measures
for the severity of the malocclusion; previous studies found that quantitative malocclusion
indices, such as peer assessment rating (PAR) and the objective grading system (OGS),
correlated with treatment length [3]. Other factors were found to have less contribution,
such as gender, race, and malocclusion classification into Class I, II, and III; this aligns
with previous findings [1,3,7]. Unexplored factors may also contribute to treatment length,
including the orthodontic technique employed, operator skill and experience, and patient
compliance. The impact of these factors is unknown and needs to be examined.



Oral 2022, 2 272

The scope of this study was to build a predictive model that can be used at initial
patient screening or consultation. Other parameters can be used to fine-tune the ML models
in the future. Furthermore, individual and subjective issues create more variations than the
quantifiable factors presented in the study. However, we can perform additional studies to
correlate those numeric variables to better understand the impact on treatment length. A
clinical application of the ML predictive models presented in this study could be a software
or a mobile application with a graphical user interface (GUI) that could be used during the
orthodontic screening or consultation to provide helpful information for both the patient
and the orthodontist (Figure 10). Furthermore, these ML models could be integrated with
orthodontic software currently available.
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