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Abstract: We describe a case of a female patient with acute lymphoblastic leukemia treated with
high-dose systemic methotrexate and intrathecal methotrexate for leukemic relapse of the central
nervous system. She developed complete bilateral lower-limb paralysis that was not attributable to
any other cause. She was treated with folic acid, vitamin B12, methionine, S-adenosylmethionine,
leucovorin, and dextromethorphan. After a 3-month period of paraplegia, she began to slowly
recover motor function. She can now ambulate with assistance and continues to improve. There is a
paucity of literature on methotrexate-induced subacute combined degeneration, which is typically
described as irreversible. In addition to reporting our unique case, we review the published literature
and call for more awareness and research in this area.

Keywords: ALL; leukemia; methotrexate; neurotoxicity; myelopathy; spinal cord; adverse effect;
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1. Introduction

Methotrexate (MTX) is a chemotherapy used to treat hematological malignancies as
well as chronic autoimmune diseases such as rheumatoid arthritis and psoriasis. MTX is a
folate analog that competitively inhibits dihydrofolate reductase (DHFR), the enzyme that
generates tetrahydrofolate (THF) from folic acid. THF is essential for both purine biosyn-
thesis, as the methyl donor in its 10 formyl tetrahydrofolate form for one-carbon groups, as
well as thymidine metabolism, through direct inhibition of thymidylate synthase [1–5]. Ad-
verse effects of MTX caused by the disruption of the folate cycle and nucleotide biosynthesis
include myelosuppression, pulmonary fibrosis, hepatoxicity, nephrotoxicity, gastrointesti-
nal (GI) abnormalities, and neurotoxicity [6]. There are several possible mechanisms
behind MTX-induced neurotoxicity. Primarily, MTX treatment reduces levels of essen-
tial metabolites in the cerebrospinal fluid (CSF), such as 5-methyl-tetrahydrofolate (THF),
5,10-methyl-THF, tetrahydrobiopterin (THB), and S-adenosylmethionine (SAM), which are
required for neural function [7–10].

5,10-methyl-THF is vital for the conversion of uridine monophosphate (dUMP) to
thymidine monophosphate (dTMP) and in the formation of 5-methyl-tetrahydrofolate
(THF). 5-methyl-THF is essential in the homocysteine-methionine cycle, remethylating
homocysteine to form methionine via methionine synthase and the cofactor methylcobal-
amin [11–13]. Homocysteine levels in the cerebrospinal fluid (CSF) are at baseline ≤
0.5 nmol/mL in healthy individuals but can increase up to 1.0 nmol/mL with systemic
MTX administration [14,15]. Methionine combines with adenosine triphosphate (ATP) to
form SAM, the universal methyl donor vital for many biochemical pathways in humans,
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including, myelin sheath formation and maintenance. The biochemical pathways of fo-
late and methionine cycles are summarized in Figure 1 [16]. Conversely, homocysteine,
adenosine, and S-adenosylhomocysteine (SAH) are sulfur-containing excitatory amino
acids that have been implicated in neurological toxicity, and these metabolites are increased
in the CSF post-MTX administration [4,15,17,18]. Secondarily, MTX directly interferes with
astrocyte function, damaging the cells and resulting in axonal loss [4,19,20]. MTX-induced
neurotoxicity due to MTX hypersensitivity or neuropraxia secondary to fluctuations in
CSF osmolality have also been described [14,21,22]. Myelopathy secondary to MTX is
likely multifactorial.
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There are three main types of toxicity described after MTX administration: Acute,
subacute, and chronic toxicity. Patients with subacute toxicity may present with ataxia,
speech difficulty, hemiparesis, seizures, and encephalopathy [4,23–25]. Researchers have
proposed that adenosine partially mediates acute toxicity, whereas excitatory amino acids,
homocysteine, S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratios, and
biopterin are greater contributors to subacute and chronic toxicity [4]. In this case report,
we describe a 36-year-old female with Philadelphia chromosome-positive (Ph+) B-cell acute
lymphoblastic leukemia (Ph+ B-ALL) treated with pediatric-inspired multiagent systemic
and intrathecal chemotherapy plus the tyrosine kinase inhibitor (TKI), who ultimately
underwent matched unrelated donor allogeneic hematopoietic stem cell transplantation
(MUD allo-HSCT) in first remission. After a prolonged first remission duration, the patient
unfortunately relapsed with central nervous system (CNS) involvement of B-ALL. She sub-
sequently received intrathecal chemotherapy, TKI, and high dose (HD) systemic infusional
MTX, after which she became paraplegic due to subacute combined degeneration (SCD) of
the spinal cord.

2. Detailed Case Description

A 36-year-old previously healthy woman presented five years ago with leukocyto-
sis (white blood cell count 221.7 × 103/µL), hemoglobin (Hgb) 6.8 g/dL, platelets (PLT)
89 × 103/uL, and 77% circulating blasts. Bone marrow biopsy showed B-cell acute lym-
phoblastic leukemia (ALL) with 90% blasts by morphologic examination. Flow cytometry
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showed 70% blasts that were positive for CD34, HLA-DR, TdT, CD19, CD22, CD79a, and
CD10, with aberrant expression of CD33 and CD13. MPO was negative. Chromosomal
analysis revealed the Philadelphia chromosome t(9;22) in all metaphases and BCR-ABL was
detected in 97% of cells by FISH. On her initial lumbar puncture (LP), she had evidence of
CNS involvement with blasts representing 10% of events captured by flow cytometry. The
patient underwent induction chemotherapy with a pediatric-inspired protocol (AALL1131)
including daunorubicin, vincristine, PEG-asparaginase, prednisone, intrathecal (IT) MTX
and cytarabine, and dasatinib 100 mg daily. She had received twice weekly alternating
doses of IT MTX and IT cytarabine, with rapid clearance of the CSF by the third dose. A
post-induction bone marrow biopsy showed complete remission and PCR for BCR-ABL
was 0.0136%. She underwent consolidation therapy on AALL1131, with reduced-dose
vincristine due to peripheral neuropathy (which eventually resolved). This was followed by
interim maintenance with infusional HD MTX and leucovorin rescue. Pre-transplant bone
marrow biopsy showed BCR-ABL at 0.009%. She subsequently underwent a successful
MUD allo-HSCT with total body irritation (TBI), etoposide, and anti-thymocyte globulin
(ATG) conditioning. She did not have significant graft-versus-host disease. She achieved
complete molecular remission (CMR) post-transplant. She had received a total of 12 rounds
of intrathecal chemotherapy (8 IT MTX, 4 IT cytarabine) prior to allo-HSCT. She received
dasatinib 50–70 mg daily as maintenance after allo-HSCT, but it was stopped after ~1 year
due to poor tolerance. She was monitored by peripheral blood BCR-ABL PCR testing and,
after 2 years, had a molecular relapse at 0.3949%. She resumed dasatinib, and within two
months had achieved a major molecular remission (MMR), which was maintained.

Approximately 4 years after allo-HSCT, she presented with severe headaches, photo-
phobia, leukocytosis, and a diffuse rash. She was treated for presumed infectious meningitis.
Diagnostic LP showed an abnormal immature B-cell population representing 8% of viable
events by flow cytometry that were positive for CD45 (dim), CD19, CD38 (variable de-
creased), CD10, CD34, CD13/33, and CD58, consistent with CNS relapse of B-ALL. No
infectious cause of meningitis was identified. Brain magnetic resonance imaging (MRI)
showed no abnormalities. Bone marrow BCR-ABL PCR was 0.1676%. ABL kinase domain
mutation was negative according to next-generation sequencing (NGS). Meningitis symp-
toms resolved with antibiotics before any IT chemotherapy was administered. After a
discussion with the patient and considering her desire to receive outpatient therapy, she
was then initiated on twice-weekly IT chemotherapy. She received a total of eight LPs
performed twice weekly for four weeks with IT “triple-mix” chemotherapy consisting of
MTX 12 mg, hydrocortisone 25 mg, and cytarabine 50 mg. During this time, dasatinib was
changed to ponatinib 30 mg daily. She had delayed CSF clearance with persistent evidence
of CNS leukemia up to the seventh LP, which showed residual abnormal immature B cells
at 0.92% by flow cytometry. Due to delayed CSF clearance, she underwent an MRI of the
thoracic, cervical, and lumbar spine with contrast to rule out masses, which revealed no
abnormalities. Although she did not have an initial high burden of CNS involvement, given
the resistance to IT chemotherapy, she was started on systemic HD MTX 3500 mg/m2 given
intravenously over 2 h with leucovorin rescue of 10 mg/m2 given orally every six hours.
After plasma MTX levels had cleared, she received a final IT (#8), which demonstrated that
her CSF had cleared (no detectable leukemia). The next day, the patient reported bilateral
lower extremity (BLE) paresthesias causing mild gait impairment, but she was ambulatory
with full strength. No further IT administration of MTX or cytarabine was performed.
Neurology evaluated the patient, noting probable nerve root irritation secondary to LP or
neuropathic pain due to MTX. Two weeks later, she received, as planned, a second cycle
of HD MTX 3500 mg/m2 intravenously over 2 h with leucovorin rescue, and she was
discharged with gabapentin for neuropathic pain. There was no delayed plasma clearance
of HD MTX after either cycle. Systemically, she had achieved CMR with undetectable
BCR-ABL by PCR.

The patient presented 4 days later with acute onset ascending bilateral lower extrem-
ity weakness. She denied bilateral upper extremity (BUE) symptoms, urinary or bowel
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incontinence, or cognitive impairment. Upon neurological exam, the patient was noted to
have normal mental status, cranial nerves intact, BUE strength 5/5, bilateral hip adduction
2/5, right-hip abduction 4/5, left-hip abduction 3/5, bilateral quadriceps 4/5, R-hamstring
3/5, L-hamstring 2/5, bilateral foot drop 2/5, bilateral inversion 3/5, R-eversion 3/5,
L-eversion 0/5, and no thoracic sensory levels. Deep tendon reflexes were 2+ in the upper
extremities, 3+ in the bilateral patellar, and 2+ in the bilateral ankle. There was no evidence
of clonus. She had a positive R-Babinski, mute on the left. Sensation was decreased to
pinprick but patchy in bilateral lower extremities up to her hips. Joint position sense
was impaired in bilateral toes but normal at ankles. Vibration was 11–13 s distally in
bilateral toes. She required moderate assistance to stand and could not ambulate without
maximum assistance.

The patient underwent a repeat cervical, thoracic, and lumbar spine MRI, which
revealed an increased T2 patchy signal in the posterior column of the thoracic spine,
from T3 to the conus, shown in Figure 2. She was diagnosed with SCD of the spinal
cord most likely due to MTX therapy. Laboratory testing was within normal limits, in-
cluding folate level > 20 ng/mL, Vitamin B12 836 pg/mL, homocysteine 5.9 umol/L,
and methylmalonic acid 106 nmol/L. Methylenetetrahydrofolate reductase (MTHFR) was
the wild-type (normal) variant. Serologies for human immunodeficiency virus (HIV)
1/2, syphilis, cytomegalovirus (CMV), human T-lymphotropic virus (HTLV), West Nile
Virus, and tuberculosis, as well as CSF analysis for bacterial/fungal cultures, Epstein–Barr
virus (EBV), human herpesvirus 6 (HHV-6), varicella zoster virus (VZV), adenosine, JC,
measles, West Nile Virus, herpes simplex virus 1 & 2 (HSV1/2), cryptococcus, enterovirus,
E. coli, Hemophilus influenzae, parechovirus A, listeria monocytogenes, Neisseria, and
streptococcus agalactiae, were all negative. She was initiated promptly on high-dose corti-
costeroids with methylprednisolone 1000 mg IV daily for 3 days, with supplementation
of S-adenoslymethionine (SAM) 200 mg by mouth three times daily, leucovorin 20 mg
IV every 6 h (eventually increased to 100 mg IV every 6 h), cyanocobalamin 500 mcg by
mouth daily, cyanocobalamin 1000 mcg intramuscular injection weekly, and dextromethor-
phan 60 mg by mouth twice daily. Dextromethorphan is a non-competitive antagonist of
the N-methyl-D-aspartate receptor (NMDA). TKI therapy with ponatinib was continued
throughout the event. After transient improvement during the first 24–48 h of hospital-
ization, she progressively worsened and became paraplegic by the following week. She
also developed a neurogenic bladder requiring catheterization, but bowel function was
preserved. She was discharged on oral dextromethorphan, leucovorin, SAM, methionine
500 mg by mouth three times a day, and cyanocobalamin. She remained paraplegic for
approximately 3 months. With intensive physical and occupational therapy, she began to
recover motor function in her legs and improved bladder control ~3 months after the initial
development of LE weakness. She continues to note steady improvement, and 6 months
after the initial event, she is able to stand on her own and walk with assistance, and contin-
ues to have steady improvement in motor function, with the hope of a full recovery. Her
B-ALL remains in CMR on ponatinib 30 mg daily. No further LPs have been performed
(and none are planned), but there is no clinical or radiographic evidence of CNS relapse.
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3. Discussion

While MTX-induced leukoencephalopathy is well-reported, especially with HD MTX
administration, subacute myelopathy is rare [4,26,27]. Methylenetetrahydrofolate reductase
(MTHFR) is an important enzyme in folate metabolism, which catalyzes the conversion
of 5-methyl-THF from THF for the re-methylation of homocysteine into methionine. The
MTHFR allele variant 1298A>C (p.E429A) is associated with an increased risk of MTX-
induced leukoencephalopathy [28–31]. Our patient was MTHFR wild-type, and the associ-
ation between MTHFR polymorphisms and MTX-induced myelopathy is unclear [32–34].
Allele variants of dihydrofolate reductase (DHFR) may also be potential risk factors for
MTX neurotoxicity [35–37].

The genetic profiles of children with ALL experiencing MTX toxicity were analyzed for
trends in significant single nucleotide polymorphisms (SNPs). The majority of these SNPs
were in genes involved in neural development and cell growth such as TRIO, PRKG1, ANK1,
COL4A2, NTN1, ASTN2, MBOAT-1, GIPC1, ZDHHC19, NXN, and PKN1 [14,31,38,39]. How-
ever, due to the limited sample size, these associations remain speculative. On targeted next-
generation sequencing (128-gene panel), our patient did not have pathogenic mutations
(other than BCR-ABL) or known SNPs that may be possibly associated with neurotoxicity.
However, our patient did have what appeared to be germline polymorphisms in PPM1D
and ATM genes based on variant allele frequencies (VAF) of ~50%.

Our patient’s spinal MRI showed a diffuse abnormal T2 hyperintense signal within
the dorsal columns from the level of T3 to the conus, indicative of white matter changes
due to demyelination. There was no evidence of transverse myelitis. This finding is similar
to other cases of MTX-myelopathy, which have also reported this T2 dorsal hyperinten-
sity in a caudal to rostral pattern, usually along the posterior funiculi [14,27,40,41]. It is
important to note that normal MRI imaging does not rule out MTX-induced myelopathy,
and studies have shown that patients with overt clinical manifestations of myelopathy
may have normal MRI scans [14,40,41]. This was evident in our case, as our patient had
an initial negative MRI of the spinal cord after the development of lower extremity pares-
thesias. In our case, the patient was administered SAM, leucovorin, cyanocobalamin,
methionine, and dextromethorphan, which is an NDMA antagonist. Though the exact
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mechanism is still being investigated, dextromethorphan has been shown to block NDMA
over-activation due to the elevated levels of homocysteine and other excitotoxic amino
acids like glutamate that are present in the CSF of patients with MTX-myelopathy, reducing
the duration and severity of neurological symptoms [42,43]. Leucovorin, a folate analog,
has historically been the standard first-line treatment for MTX neurotoxicity. Recently,
several cases have demonstrated the possible effectiveness of folate metabolites, such as
SAM and methionine, in MTX-myelopathy, but the dosing and timing of administration
are not standardized [29,44].

MTX-induced myelopathy has a reported incidence rate of 0.8% to 3% [27,45]. Our
patient had several potential risk factors for developing MTX-myelopathy, including prior
HSCT, relapsed disease, CNS relapse, suspected infectious or inflammatory meningitis,
delayed CSF clearance with IT chemotherapy, and cumulative IT and intravenous MTX
exposure within a short time period. After an initial prodrome of paresthesias, she de-
veloped acute onset ascending LE weakness shortly after a second cycle of high-dose
infusional HD MTX, which worsened quickly to complete LE paralysis and loss of bladder
control. Untreated SCD from nutritional deficiencies and drug-induced subacute combined
degermation have been reported as irreversible. However, our patient recovered motor
function after a 3-month period of paraplegia after receiving a combination of intensive
drug therapy, supportive care, and physical therapy. Patients with myelopathy who re-
cover some motor function within the first 3 months of developing paralysis have a more
favorable prognosis and may achieve full recovery. In a literature review of patients with
MTX-induced myelopathy, none had complete recovery of muscle strength to the level
prior to MTX-induction [29], and three out of seven total reported patients (42%) partially
recovered muscle strength, as in our case [29,46,47]. Previously described risk factors for
symptomatic MTX neurotoxicity include IT MTX, systemic MTX, repeated IT chemother-
apy injections within an interval of <1 week, history of exposure to other chemotherapy
associated with neurotoxicity (cytarabine, cyclophosphamide, and nelarabine), radiation,
elderly age, active CNS disease, and factors that affect the excretion of MTX such as acute
kidney injury or dehydration [28,48,49]. A recent study reported that electromyography
(EMG) testing of proximal and distal motor conduction showing F wave absence may
be an early predictor of MTX-induced neurotoxicity including myelopathy [50]. There
is currently no established therapy for MTX-induced myelopathy. Multiple studies have
administered rescue leucovorin, with doses ranging from 10–50 mg/m2 every 6 h, with
the leucovorin dosage being administered 28–44 h after the first MTX dose [49,51–54].
In addition, prompt recognition of MTX-myelopathy is challenging as more than half
of MRIs are normal at symptom onset, with the classical T2 dorsal cord hyperintensity
only becoming evident on subsequent scans. Axial T2 MRI imaging is more sensitive for
the detection of SCD [28]. Thus, careful evaluation of MRI scans and the recognition of
symptoms is important to avoid further therapy, which may exacerbate the myelopathy,
and to distinguish an evolving SCD from leukemic CNS involvement. Our patient with
Ph+ B-ALL presented with symptomatic CNS relapse 4 years post-allo-HSCT and was
initially treated with twice-weekly IT chemotherapy and ponatinib. Due to delayed CNS
clearance, she received HD MTX for 2 cycles, both with leucovorin rescue. After the second
HD MTX cycle, she developed SCD of the spinal cord resulting in complete lower-extremity
paralysis. After receiving supportive medications and intensive physical therapy, she has
regained motor function and can walk with assistance six months after the initial event,
and her B-ALL remains in complete remission. A similar case of SCD-like imaging findings
was reported in a 59-year-old male with diffuse large B-cell lymphoma who received five
total doses of 14 mg IT MTX and no systemic HD MTX [14], and the authors summarized
two other cases of lymphoma and three cases of ALL with similar findings reported in
the literature [41]. Unfortunately, all of these patients died from either progression of
their cancer or infectious complications. Our case is the first we are aware of to survive
disease-free and with motor recovery.
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4. Conclusions

MTX-induced SCD of the spinal cord is a rare but serious adverse effect of MTX
treatment. Although the literature implicates multiple biochemical pathways behind the
pathogenesis of MTX neurotoxicity, further studies are needed to examine the specific
pathophysiology of MTX-induced SCD, such as genetic risk factors, including DHFR
allele variant E429A c.1298 A>C and SNPs of genes important in the regulation of CNS
myelination. Further guidance on standardizing treatment regimens for MTX myelopathy,
including the use of folate metabolites, SAM, dextromethorphan, and corticosteroids,
should be addressed by consensus. For ALL with CNS relapse, early administration of
systemic HD MTX should be considered early after the initial failure of IT chemotherapy to
avoid higher cumulative MTX doses and overlapping IT and systemic exposure. In Ph+
disease, TKIs with CNS penetration are needed, and ponatinib was initiated in this case
because of reported blood–brain barrier penetration, though clear evidence is lacking [55].
Although clearance of the CNS is paramount for survival, we recommend considering a cap
of four twice-weekly LPs with IT chemotherapy before systemic HD MTX is administered
for persistent CNS disease; however, this is only based on our expert opinion, and empirical
data are lacking. Alternating IT cytarabine and IT MTX and other treatment modalities such
as Ommaya reservoir placement and changing TKI in Ph+ B-ALL should be considered.
MTX should be held at the first sign of myelopathy, and MRI scans carefully read for T2
dorsal cord hyperintensity. Studies correlating MTX pharmacokinetics and the development
of MTX-related toxicities, especially acute renal injury, have been described. However,
the correlation between serum MTX levels and myelopathy is less well-established. As
a result, frequent follow-ups and neurological exams are necessary to intervene earlier.
In addition, prodromal symptoms, such as the new onset of mild peripheral neuropathy,
should be considered as a potential harbinger for subsequent development of more serious
myelopathy. CNS relapse of B-ALL is associated with a poor prognosis and the median
OS is <1 year [56]. Our patient remains in CMR with no signs of CNS relapse >9 months
after initial relapse in the CSF. Our case provides hope that recovery is possible for patients
with severe MTX-induced myelopathy causing SCD. Prompt recognition of signs and
symptoms, initiation of agents that may reverse MTX-induced neuronal damage, and
intensive physical therapy are critical for successful recovery.
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