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Abstract: High frequencies of MYD88L265P mutation are observed in IgM monoclonal gammopathies,
and specifically in Waldenström macroglobulinemia (WM), indicating this mutation as a potential
disease biomarker. Given the fact that MYD88L265P mutation has been described as a key driver
mutation, has increased our understanding of the biology behind MYD88 signaling and helped us to
identify the functional components which could be targeted. On the other hand, the absence of the
MYD88L265P mutation in patients with IgM monoclonal gammopathies has been associated with a
higher risk of transformation to aggressive lymphomas, resistance to several therapies, and shorter
overall survival. The present review focuses on the molecular mechanisms that shape the signaling
pattern in MYD88WT cells, as well as on the clinical implications and therapeutic challenges of WM
patients that harbor the MYD88WT genotype.
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1. Introduction

Mature B-cell neoplasms are clonal tumors of B-cells characterized as a group of
diseases with a highly heterogeneous profile, both biologically and clinically. Depending on
the entity, the clinical course may range from an indolent to an aggressive disease. Mature
B-cell neoplasms constitute more than 90% of lymphoid neoplasms and, based on histology
and immunophenotype, they account for 34 different entities, including diffuse large B-
cell lymphoma (DLBCL), chronic lymphocytic lymphoma (CLL), Burkitt lymphoma (BL),
lymphoplasmacytic lymphoma (LPL)/Waldenström macroglobulinemia (WM), splenic
marginal zone lymphoma (SMZL), nodal marginal zone lymphoma (NMZL), mantle cell
lymphoma (MCL), follicular lymphoma (FL), and hairy cell leukemia (HCL) [1]. They
exhibit a broad spectrum of characteristic cytogenetic abnormalities and genetic aberrations,
which are partly characteristic among different B-cell neoplasms but are (most of the time)
not specific enough for a definitive diagnosis. Some of the cytogenetic abnormalities
include recurrent translocations such as t(11;14) (q13;q32) seen in >95% cases of MCL,
t(14;18) (q32;q21) seen in 90% cases of FL, t(8;14) (q24;q32) seen in 80% cases of BL, and
6q deletion (del6q) seen in 27% cases of WM [2–5] while genetic aberrations include gene
mutations, such as BRAF V600E in HCL, immunoglobulin heavy chain gene (IGHV) in
CLL, and MYD88 L265P in WM [6,7].

IgM monoclonal gammopathy is a heterogeneous group of B-cell/plasma cell clonal
diseases that includes a range of conditions from monoclonal gammopathy of undetermined
significance to Waldenström macroglobulinemia, IgM multiple myeloma, and less common,
other B-cell neoplasms secreting IgM.

Studies by Treon et al. and other researchers suggested the MYD88L265P mutation
is present in >90% of WM, and that it could be important for the differential diagnosis
of WM [8] vs. plasma cell malignancies. This mutation is also present in various other
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B-cell neoplasms such as SMZL, CLL, and DLBCL, but at a lower frequency [9–13]. Studies
have shown that WM patients lacking the MYD88L265P may be less responsive to Bruton’s
tyrosine kinase (BTK) inhibitors [14], which may also be associated with a lower number of
tumor cells and lower International Prognostic Scoring System score at presentation [11]. In
the most recent WHO nomenclature and classification, MYD88 wild-type (MYD88WT) does
not exclude the diagnosis of WM; however, it may be associated with a genetic profile other
than MYD88L265P WM. Hence, the prognostic impact of MYD88WT genotype [11] requires
further study. In this review, we aim to explore the latest findings on the MYD88WT geno-
type in various B-cell neoplasms, focusing on its role in tumor biology and its association
with therapeutic challenges.

2. MYD88: Role, Pathway, Origin of Mutation

MYD88 plays an important role in the functional integrity of the innate immune
response. The MYD88 gene was first described in the 1990s as a primary differentiation re-
sponse gene which is upregulated during IL6-induced terminal differentiation and growth
arrest. It encodes for a protein called myeloid differentiation primary response 88 (MYD88),
located in the cytosol, which is involved in the signaling pathways within immune cells
triggered by Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). The MYD88
gene is located on human chromosome 3p22.2. It spans approximately 11.7 kilobases and
consists of five exons [15]. In normal physiology, MYD88 acts as an adaptor of inflammatory
signaling via the canonical NF-κB pathway. The MYD88 protein contains a death domain
(DD), an intermediate linker domain (ID), and a Toll/IL-1 receptor (TIR) domain at the
C-terminus. The DD enables protein–protein interactions; the absence of ID has been associ-
ated with the inability of MYD88 to support signaling [16] while the TIR domain mediates
the downstream signaling cascade by interacting with TLRs and IL-1Rs. These domains
are essential for MYD88’s function in innate immune signaling [17,18]. Upon activation of
TLRs or IL-1Rs, MYD88 is recruited to the receptor complex, leading to the formation of
a signaling complex known as the Myddosome. This complex acts as a platform for the
recruitment of downstream signaling molecules; activated MYD88 recruits IL-1 receptor-
associated kinases (IRAKs), a serine-threonine kinase, and together they phosphorylate
IRAK1 and IRAK2 which, in turn, interact with TNF receptor-associated factor 6 (TRAF6),
initiating the activation of various signaling pathways, including transforming growth
factor beta-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK), and
TAK1-binding protein (TAB) [18,19]. Activation of MYD88-dependent signaling pathways
leads to the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha
(TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), as well as the expression of
co-stimulatory molecules necessary for an effective immune response [19]. Ngo et al. were
the first to identify that inhibition of MYD88 signaling via a non-synonymous, gain-of-
function mutation in MYD88 gene, leading to an amino acid change of leucine to proline
at position 265 (NM_002468.5) (in the TIR domain), resulted in decreased NFκB activity
and enhanced survival of activated B-cell-type diffuse large-cell lymphoma cell lines [12].
Other recurrent mutations in MYD88 have also been reported, although the impact of
these mutations is still under investigation due to their low prevalence [20]. As previously
mentioned, MYD88 DD and ID are responsible for downstream signal propagation via
IRAKs, whereas the TIR domain integrates signals from upstream TLR and IL1R [21–23].
In the case of the MYD88L265P mutation, the TIR domain of MYD88, where this mutation
resides, is highly activated compared to the MYD88WT, and this increases downstream
signaling and formation of the Myddosome complex. It has been shown that mutated
MYD88 recruits IRAK1 and, together with IRAK4, promotes the survival of activated
B-cell-(ABC)-diffuse large B-cell lymphoma (DLBCL) cell lines [12]. Hence it has been
hypothesized that MYD88L265P occurs in B-cell neoplasms where there is a strong selection
for aberrant NFκB signaling [23]. Since MYD88L265P constitutively activates the NFκB path-
way, it is contemplated as an important oncogenic driver in B-cell lymphomas [12,24,25].
Non-L265P mutations (M232T, S243N, S222R, and T294P) have an intermediate effect on
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NFκB pathway signaling compared to the MYD88WT, which shows the lowest activity [12].
In addition to NFκB activation, L265P induces B-cell proliferation, which is accompanied
with the induction of TNFAIP3 [26]. However, although studies have shown that L265P
triggers the anti-apoptotic NFκB signaling that, in turn, enables cell survival during B-cell
development, is not capable of providing a continuous B-cell clonal selection on its own,
and for this reason, a second somatic mutation is required [26]. In WM, these mutations
usually reside in genes such as CXCR4, which is the second most mutated gene, TNFAIP3,
CD79 A/B, and ARID1 A/B [27,28]. In WM, patients who harbor the L265P mutation have
also been reported to bear a mutation in the 196 tyrosine residue of CD79B gene, leading to
a better response to BTK-based therapies [29].

In addition to NFκB pathway signaling, the BCR pathway also plays an important
role in B-cell survival and proliferation and the oncogenesis of various B-cell lymphomas
in combination with MYD88 mutations [30]. Within the BCR signaling cascade, BTK
acts as an integral protein which forms complexes with MYD88L265P but not MYD88WT

cells [31]. Furthermore, the level of phosphorylated BTK is higher in WM cells with L265P
mutation than lymphoma cells with WT MYD88 [31]. Therefore, inhibition of BTK would
result in the disruption of the MYD88L265P complex but would not significantly affect the
MYD88WT cells.

3. MYD88 Mutation Detection Assays

Currently used methods to detect MYD88L265P mutation most often involve allele-
specific polymerase chain reaction (AS-PCR), ddPCR and Sanger sequencing, or use of
NGS-based protocols in unsorted or sorted (for Sanger sequencing or NGS) bone marrow
(BM) aspirates of patients with IgM monoclonal gammopathies [32–38]. The sensitivity of
the molecular assay for the detection of MYD88L265P should not exceed a detection limit of
10−3. It has been shown that conventional polymerase chain reaction (PCR) and Sanger
sequencing–based methods for MYD88 mutational detection have a low sensitivity of 25%,
and although fairly described, should be considered especially when used in non-selected
B-cells [39,40]. Non-L265P MYD88 mutations have also been identified in patients with
WM, including S219C, M232T, and S243N [41,42]. Furthermore, the evaluation of cell-free
DNA (cfDNA) for the mutational characterization and monitoring of disease burden has
recently been described in several hematological malignancies, including IgM monoclonal
gammopathies, and has shown remarkable results [43–45]. It is a less invasive, patient-
friendly test that could provide a good diagnostic yield, even comparable to BM, but
the challenges in the detection sensitivity should be evaluated. Data so far have shown
that only highly sensitive techniques such as ddPCR or Cast-PCR should be used for
the detection of MYD88L265P mutation in cfDNA [36,38]. However, all these techniques,
although promising, need to be standardized and implemented in prospective studies
before they can be used in clinical practice; therefore, the current recommendation for
molecular analysis is to perform BM aspiration at diagnosis [3].

4. MYD88 Mutation Status in B-Cell Neoplasms

L265P mutation was first reported in DLBCL [46]. The study by Ngo et al. found that
MYD88 mutations are more frequently seen in the activated B-cell-like subtype of DLBCL
(ABC-DLBCL) at a frequency of 29% of cases, rather than the germinal center B-cell-like
subtype (GCB-DLBCL) where the mutated cases are rare to absent [12]. The mutation is also
frequent in the primary DLBCL of the central nerve system (70%), in primary cutaneous
PCDLBCL leg-type (54%), and in testicular DLBCL (74%) [30].

Lymphoplasmacytic lymphoma (LPL) is a B-cell neoplasm characterized by the ab-
normal growth and clonal proliferation of small mature B lymphocytes and plasma cells
in the bone marrow and lymphoid tissues. WM is a distinct clinical entity of LPL charac-
terized by the presence of lymphoplasmacytic bone marrow infiltration and the secretion
of monoclonal IgM immunoglobulin [1] WM represents about 95% of LPL cases, based
on the presence of monoclonal IgM, while other types of LPL produce either IgA or IgG
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monoclonal immunoglobulins (non-IgM LPL) [47]. Treon et al. ware the first to identify the
presence of L265P mutation in 91% of WM patients compared to the frequency of 25% seen
in non-IgM LPL [8].

The presence of disease-associated symptoms distinguishes the symptomatic from the
asymptomatic/smoldering WM [48], whereas those patients with an IgM serum protein of
less 3 g/dL and a BM infiltration of less than 10% but no symptoms, are classified as IgM
monoclonal gammopathy of undetermined significance (MGUS) which is considered the
pre-malignant phase of WM (or rarely IgM myeloma) [49,50]. Patients with IgM-MGUS are
at higher risk for developing WM, DLBCL, and mucosa-associated lymphoid tissue (MALT)
lymphoma, as well as chronic lymphocytic leukemia. MYD88L265P is found in 50–80%
of patients with IgM-MGUS and cannot be used to differentiate WM (symptomatic or
asymptomatic) from IgM-MGUS [32–35,51]. Studies have shown that IgM-MGUS patients
with MYD88L265P are at greater risk of progression to WM [8,33,34,52,53] while the mutation
has not been found in IgG or IgA MGUS [34,52]. On the other hand, in IgM myeloma,
which is commonly characterized by the presence of t(11;14) translocation in clonal plasma
cells, a typical cytogenetic feature of multiple myeloma (MM), MYD88L265P mutation
is absent.

Marginal-zone lymphoma (MZL) is an indolent disease comprising 7% of all non-
Hodgkin lymphomas [54]. There are three subtypes of MZL: MALT lymphoma, nodal
marginal-zone lymphoma (NMZL), and splenic marginal-zone lymphoma (SMZL). Two
small series report the presence of L265P mutation in 4–21% of MZL cases [1,9,55]. Interest-
ingly, those with MYD88L265P were also more likely to present with an IgM paraprotein [9].

Finally, the MYD88L265P mutation seems to be absent in primary mediastinal B-cell
lymphoma [12,20,56] and primary cutaneous follicle center lymphoma, and it is rarely
present in hairy cell leukemia (1.1%) [10,57–59], Burkitt lymphoma (1.5%) [12], follicular
lymphoma (1.9%), [23,57,60–62] and CLL (2.5%) [23,55,57,63–65].

5. MYD88WT Genotype in IgM Monoclonal Gammopathies

Patients with MYD88WT genotype have not been studied extensively due to the low
prevalence of this genotype; hence, the effect of this genotype on the disease outcome of
patients with IgM monoclonal gammopathies is still unclear. While most WM cases have
mutated MYD88 gene, 5–10% do not carry MYD88 mutations. Some studies show that WT
WM patients may have a shorter overall survival (OS) (10-year OS of 73% in WT versus 97%
in mutated patients) [66,67] while other studies indicate that the OS is not affected in this
subgroup of patients [28,68]. Treon et al. suggested that although MYD88WT patients with
suspected WM fulfil the WHO criteria for WM diagnosis, around 30% have an alternate
diagnosis [69] such as IgM MM, where the predominant plasma cell compartment and the
high IgM levels are the main characteristics [70]. A study by Lee et al. showed that DLBCL
patients with L265P had a statistically significant inferior overall survival compared to
DLBCL patients with the WT genotype [57]. In other subtypes of B-NHL, such as CLL and
SMZL, MYD88L265P is associated with superior survival compared to WT MYD88 [71–73].
In IgM-MGUS patients, although the presence of MYD88L265P mutation has been associated
with greater risk of progression to WM [34,52], most IgM-MGUS patients never progress
to WM or other lymphoproliferative disorders, so this mutation cannot be considered a
unique pathogenic factor in WM, and other WM precursors might exist rather than the
transformation from IgM-MGUS [51,74]. In contrast to the “classic” IgM-MGUS cases
that typically evolve to WM or even MZL, IgM-MGUS cases with a plasma cell infiltrate,
rather than a predominant B-cell clone, may serve as precursors to IgM MM [69]. A study
by Treon et al. showed that among patients with suspected MYD88WT WM, 10% had
findings consistent with IgM myeloma characterized by predominant plasma cell clone
and a significantly higher IgM level compared to MYD88WT WM patients [69].

Few studies have compared the clinical and laboratory features of MYD88WT versus
MYD88L265P cases in WM. Patkar et al. found that WT patients had lower hemoglobin and
IgM paraprotein levels, lower tumor burden in the bone marrow, lower prognostic score,
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higher total leukocyte counts (TLC), and higher platelet counts compared to MYD88 mu-
tated cases [11]. Treon et al., in a study which included 150 patients with B-cell neoplasms,
also showed lower serum IgM levels, TLC, and bone marrow infiltration, but also an
association with older age in WT patients. Given the low prevalence of WT genotype across
patients with IgM monoclonal gammopathies, some experts in the WM field consider the
disease with this genotype to be an entirely separate clinicopathological entity, distinct from
the typical WM associated with MYD88 gene mutation, and are proposing that the presence
of the L265P mutation should be considered as a WM-defining feature [66]. However, since
the WM disease characteristics and severity assessed by the IPSS-WM, the bone marrow
involvement, and patients’ performance status are similar between the two subgroups, the
diagnosis could not be other than an active WM with a different genotype status. Therefore,
more studies on MYD88WT patients need to be conducted, wherein the combination of high
throughput molecular assays, such as single-cell RNA seq analysis and a close follow-up of
these patients, will lead to a better understanding of this genetically distinct subgroup of
patients at both the biological and the clinical level.

In terms of the genomic landscape of WM patients harboring the MYD88WT geno-
type, Hunter et al. provided the first—and, to date, only—study, aiming to explore the
genomic and transcriptomic characteristics of WM WT patients in a cohort of patients
that included 18 MYD88WT patients [75]. Data from this analysis were compared with
previous genome and transcriptome data from MYD88L265P WM patients [8,42,69,76]. This
analysis in WT WM patients identified the presence of somatic mutations in NFκB-related
genes, in genes that impact epigenomic dysregulation, and in genes that impair DNA dam-
age repair. Transcriptionally, MYD88WT patients showed similarities to the MYD88L265P

patients, justifying the many overlapping disease characteristics noted between the two
subsets of patients [66,69]. Transcriptomic studies have also shown that MYD88WT WM
clonal cells represent an earlier stage of B-cell differentiation compared to the MYD88L265P

clonal cells [76] which is also consistent with the lower rate of IgH somatic hypermutation
previously described in MYD88WT WM patients [35].

WM patients with MYD88WT have also been shown to have an increased risk of disease
transformation and resistance to ibrutinib monotherapy [69,75,77]. A study by Treon
et al. showed a higher incidence of disease transformation to DLBCL in MYD88WT WM
patients, which also contributed to 36% of the death events observed in these patients [69].
Furthermore, this study showed that associated DLBCL events in MYD88WT patients were
also associated with shortened survival. In terms of response to ibrutinib therapy, IgM
and hemoglobin responses were more frequent and deeper in MYD88L265P WM cases, and
significantly lower in MYD88WT WM cases [78]. Response to therapy was also affected by
the CXCR4 mutational status, where patients with the CXCR4WT genotype achieved better
response rates compared to those with the CXCR4WHIM genotype. Given the above data, it is
suggested that patients with WT genotype should be followed closely due to the higher risk
of histological transformation and higher resistance to BTK-based therapies [68,69,75,79,80].

6. MYD88WT and Related Genes

NGS data from Hunter et al.’s study on MYD88WT patients showed that the majority
of the genes with distinct mutational patterns affected pathways of NFkB signaling, epige-
nomic regulators, and DNA damage response [75]. The mutations found in NFκB-related
genes, which have also been found in aggressive B-cell lymphomas, were rare or absent in
the L265P-mutated subset of patients, and included TBL1XR1, PTPN13, MALT1, BCL10,
NFKB1, NFKB2, NFKBIB, NFKBIZ, and UDRL1F [81–83]. TBL1XR1, a gene frequently
mutated in the WT patients, encodes transducin-β–like 1 X-linked receptor 1, which is a
transcriptional regulator that interacts with nuclear hormone receptor corepressors [84]
and which may play a regulatory role in the NFκB pathway and Wnt-mediated transcrip-
tion. Deletions and mutations of TBL1XR1 have also been reported in acute lymphoblastic
leukemias [85,86], however, the specific mechanisms by which TBL1XR1 mutations con-
tribute to tumorigenesis are yet to be discovered. Furthermore, mutations in genes such
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as NFKBIB, NFKB2, and MALT1 were also identified in this study, i.e., genes that have
also been linked to promoting ibrutinib resistance in MCL patients [87]. In terms of the
mutations observed in epigenomic regulator genes closely linked to the MYD88WT patients,
KDM6A, KMT2C, and KMT2D have also been found to be the most frequently mutated
epigenetic regulators in several types of cancer [88–92] highlighting their role in tumori-
genesis. On the other hand, structural alterations, such as the deletion of chromosome 6q
(chr6q), mostly observed in MYD88L265P-mutated WM patients (30–50%), seem to be absent
in WT WM patients [41,42].

One other important mechanism in lymphomagenesis is the DNA damage repair
(DDR) pathway, and studies have shown that lymphoma patients often display mutations
in genes involved in DDR pathways [93–95]. DDR pathways have been shown to affect
sensitivity to alkylating agents [96–99], and a study by Li et al. demonstrated that inhibition
of PAK4 and NAMPT by KPT-9274, a compound which affects the DDR pathway, sensitizes
WM cells to the activity of alkylating agents, such as melphalan or bendamustine [100]. So
far, little is known about the role of DDR genes, and specifically mutations of the TP53 gene,
in the development of WM. About 8% of WM patients bear TP53 mutations and studies
have shown an association with poor survival [41,101,102] and an increase in frequency
after the first-line of therapy [103]. TP53 mutations are mostly associated with mutated
MYD88 and CXCR4 [28,102,104]; however, Hunter et al. showed that MYD88WT patients
are also presented with mutations in DDR genes, including TP53, and this subset of patients
is considered to be an ultra-high-risk disease group [75].

Studies have shown that some WM patients with WT genotype can also harbor muta-
tions that promote WHIM-like signaling in the CXCR4 gene [42,105], although these almost
always occur in those with a MYD88L265P mutation [42,66,105]. Although the frequency
of MYD88WT/CXCR4MUT WM patients is very low, it seems to also be accompanied with
mutations affecting NFκB signaling [75,106]. Mutations in NFkB-related genes observed
in a subset of MYD88WT patients are mainly observed downstream of the BTK pathway,
involving genes such as CARD11, BCL10, MALT1, and PTPN13 [75].

Finally, transcriptomic sequencing in WM patients revealed that gene expression in
the MYD88WT patient cohort was quite heterogeneous compared to the MYD88L265P patient
cohort, indicating a diversity in the pathogenesis of this population [76]. Specifically, a
downregulation of genes associated with NFκB signaling was observed in these patients,
including genes such as IL6, IRAK2, TNFAIP3, NFKBIZ, TIRAP, PIM1, and PIM2. In
addition, Hunter et al. suggested that the upregulation of members of the PIK3 pathway
observed in these patients, accompanied with increased promoter methylation, create
a rationale for assigning PIK3 inhibitors and demethylating agents as targets for future
preclinical studies [76].

7. MYD88WT and Therapeutic Implications

When it comes to therapy, there are several treatment options for patients with symp-
tomatic WM, mainly based on monoclonal antibodies targeting CD20 (rituximab and newer
ones) in combination with alkylators (cyclophosphamide, bendamustine) and, less often,
20S proteasome inhibitors (PIs) (bortezomib and carfilzomib) and BTK inhibitors (ibrutinib,
acalabrutinb, zanubrutinib) [78,107–109]. IgM-MGUS patients, regardless of MYD88 muta-
tion status, usually do not require treatment [110]. Treatment of IgM MM usually includes
regimens that are used for non-IgM MM patients [111]. Treatment of WM patients is highly
personalized depending on their clinical features, preferences, and comorbidities, as well
as the efficacy and toxicity profile of the various regimens [112,113].

The MYD88 mutation status is also important given the interest in therapies targeting
the components of pathways activated by the L265P mutation (Figure 1). As previously
mentioned, MYD88 is preferentially complexed to phosphorylated BTK (pBTK) in WM
cells harboring the L265P mutation, a complex which is observed less in lymphoma cells
with the WT genotype. Furthermore, the same study shows that overexpression of MYD88
WT did not show enhanced BTK activation; hence, the use of ibrutinib, an inhibitor of BTK
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kinase activity, resulted in decreased MYD88-BTK complexing in MYD88 L265P-expressing
cells and not in MYD88 WT-expressing cells. Studies have shown that activation of BTK
via signaling through the B-cell receptor or other signaling axes might contribute clinically
relevant pro-survival signals in patients harboring the MYD88WT genotype [114]. The data
from an extended follow-up study in relapsed/refractory WM patients, where ibrutinib
was used as a monotherapy, showed that among patients with MYD88L265P mutation but no
mutations in the CXCR4 gene, responses rates were very high, with a 75% progression-free
survival rate (PFS) at a follow-up of almost 5 years compared to and 3.5 years seen in
patients with MYD88L265P/CXCR4MUT, and a median PFS of just 5 months in patients with
MYD88WT genotype [115,116]. Additionally, no patient harboring the MYD88WT signature
achieved partial response (PR) or better in this study [78]. The presence of rare non-L265P
MYD88 mutations does not seem to affect response to therapy using ibrutinib [14,113]. In
terms of BTK inhibitors, the use of acalabrutinib, which is a more selective BTK inhibitor
compared to ibrutinib, showed better response rates, but none of the patients achieved
a very good partial response rate (VGPR) [117]. In another prospective study, the use
of zanubrutinib, a potent second-generation BTK inhibitor, which has shown reduced
off-target effects and a better BTK occupancy compared to ibrutinib, has shown better
response rates in MYD88WT WM patients [118]. This study was part of the non-randomized
arm of the ASPEN trial, comprising WM patients with only MYD88WT genotype, where
zanubrutinib led to an outstanding 50% major response rate (MRR), including a 27%
response rate with VGPR. Furthermore, its ongoing efficacy is highlighted by the fact that
at 18 months follow-up, the median PFS and OS was not reached for these patients. The
efficacy of BTK inhibitors in MYD88WT WM patients is indicated in Table 1.

Table 1. Data from BTK-based therapies on MYD88WT WM patients.

MYD88WT (n) TN (n) ORR MRR

Ibrutinib 4 0 50% 0 Treon SP et al.
J Clin Oncol 2020 [41]

Ibrutinib +
Rituximab 11 82% 73% Dimopoulos MA et al.

N Engl J Med 2018 [119]

Acalabrutinib 14 1 79% 64% Owen R et al.
Lancet Haematol 2020 [117]

Zanubrutinib 26 5 81% 50% Dimopoulos MA et al. Blood
Adv 2020 [118]

Given the above data, knowledge regarding the MYD88 and CXCR4 mutation status
of each patient seems to be important for the use of BTK-based therapy, especially in
cases of ibrutinib monotherapy [78,120]; however, this may not be the case for all BTKis
as data on non-covalent BKTis such as pirtobrutinib in patients with MYD88WT are still
lacking [121]. It is notable, however, that data from the phase 3 iNNOVATE study indicate
that the combination of ibrutinib and rituximab is not affected by the absence of MYD88
mutations [122]. In both the iNNOVATE and ASPEN trials, the evaluation of MYD88
mutational status was conducted centrally in NeoGenomics laboratory (NeoGenomics,
Aliso Viejo, CA, USA).

Available data indicate that the presence (or absence) of MYD88L265P does not affect
the efficacy of chemoimmunotherapy regimens (BR or dexamethasone, rituximab, and
cyclophosphamide (DRC) +/− bortezomib) [123,124], thus, based on these observations, it
seems reasonable to prioritize chemoimmunotherapy rather than BTKi monotherapy in WT
WM patients. If BTKi therapy is considered, and if available, then second-generation BTKis
(zanubrutinib, acalabrutinib) may be preferable over ibrutinib. Otherwise, a combination
of ibrutinib with rituximab is an approved option, independently of MYD88 mutational
status, based on the subgroup analysis of the iNNOVATE study.
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Overall, BTKi-based therapies are more effective in MYD88L265P patients; however,
second-generation BTKis seem to improve response rates in MYD88WT WM patients com-
pared to the first-generation BTKi therapy. These ongoing studies need to be extended and
more patients need to be included in order to obtain a clearer view of the efficacy of these
therapies, especially in MYD88WT patients.

8. Conclusions and Future Perspectives

MYD88WT IgM monoclonal gammopathies have become a diagnostic and treatment
challenge in the era of small-molecule targeting therapies. Data from studies have shown
that patients with MYD88WT genotype appear to have a higher risk of transformation,
shorter survival, and resistance to BTK-based therapy. Furthermore, the available data
indicate that this is quite a heterogeneous group of lymphomas, which may include WM and
its precursor conditions but also other lymphomas and plasma cell neoplasms. The genomic
and transcriptomic data support the contention that WT WM and WM with MYD88L265P

share some common characteristics despite their differences, and this is translated to
a similar clinical course with most non-BTKi therapies. Thus, absence of MY88L265P
should not exclude the diagnosis of WM. Ongoing research will further refine the special
characteristics of MYD88WT WM/IgM monoclonal gammopathies by further dissecting
the genetic characteristics of the clonal cells in an attempt to clarify the reasons behind
the distinct clinical outcomes observed between the different BTK- and non-BTK-based
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therapies in patients, and provide mechanistic insights as an opportunity to develop more
personalized therapeutic strategies.
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