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Abstract: Technological and informatics advances as well as the availability of well-annotated and
reliable genomic data have ushered in the era of genomics research. We describe in this brief
review how the genomics approach has impacted lymphoma research in the understanding of the
pathogenesis and biology of lymphoma, in lymphoma diagnosis and in targeted therapy. Some
exciting directions that could be explored in the future are also discussed.
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1. Introduction

Traditionally, laboratory research in cancers has been focused on hypothesis-driven
investigation based on prior observations or experimental findings. With technological and
informatics advances, it became possible to measure gene expression on a transcriptomic
scale in the mid to late 1990s [1–4]. This raised the exciting possibility of measuring the
gene expression profile of lymphomas and identifying the differences among different
types of lymphomas and their putative normal counterparts, leading to a better under-
standing of the biology and pathogenesis of different types of lymphomas and perhaps a
classification that is more biologically based. Initially, there was some skepticism regarding
the accuracy and reproducibility of these global measurements and hence the usefulness
of this approach [5–9]. However, with further refinement of the technology and analytical
approaches and more experience gained in this type of study, it is now clear that this is a
reliable, powerful approach that can lead to rapid advances in many aspects of lymphoma
investigation and diagnosis [10,11].

Another major initiative starting at the beginning of this century is the sequencing
of the human genome [12,13]. Only recently has the human genome sequence been com-
pleted [12], but the availability of drafts and near-complete versions has enabled and greatly
enhanced various aspects of genomic research [14]. As neoplastic transformation is based
on genetic alterations, it is important to identify key driver changes that contribute to the
perturbation in gene expression. Moreover, with the human genome better characterized,
it was possible to correct some of the annotation errors in the various array-based GEP
platforms. One of the first applications of the human genome sequence was the study of
genomic copy number abnormalities (gCNAs) which represented a major advance over
the traditional comparative genomic hybridization [15–20]. Furthermore, as the sequence
and location of the vast majority of coding genes, pseudogenes and non-coding sequences
are known, it greatly facilities related genetic research that can utilize and build upon this
known structural and sequence information.

The more recent development of next-generation sequencing has revolutionized ge-
nomic research and allowed individual laboratories to conduct cutting-edge research
previously in the domain of genome centers. A vast array of genetic, epigenetic, transcrip-
tomic, interactomic and other more specific investigations can be performed, frequently
in collaboration with institutional core facilities. In this communication, how lymphoma
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research has been impacted in this omics age will be briefly reviewed, drawing mostly from
the experience of a consortium of investigators in the Lymphoma/Leukemia Molecular
Profiling Project (LLMPP) and their collaborators. Potential exciting developments with
major implications on future research will also be discussed.

2. Gene Expression Profiling (GEP) Analysis
2.1. Diffuse Large B-Cell Lymphomas (DLBCLs)

GEP performed in a microarray format was developed in the 1990s. The probes on
the array may consist of cDNA fragments or oligonucleotides [21–23]. Both of these may
be spotted on the array, but oligonucleotides may also be synthesized in situ [24,25]. The
initial arrays were generally not transcriptome-wide, but later commercial arrays such
as the Affymetrix U133 arrays are close to whole transcriptome, and commercial arrays
also tend to be more reproducibly manufactured with standard operating procedures and
hence more comparable among studies than institution/lab-based ones [4]. The earliest
microarray analysis of lymphoma was based on a cDNA array platform and is significant
in demonstrating that different lymphoid malignancies tend to form unique clusters [26]
(Figure 1). Furthermore, in diffuse large B-cell lymphomas (DLBCLs), two distinct clusters
could be identified with one of them expressing many germinal center (GC) B-cell associated
transcripts and hence having a GC B-cell differentiation program. The other cluster did not
express the GC B-cell signature but expressed many transcripts associated with in vitro B-
cell activation. The former was named GC B-cell like (GCB)-DLBCL, and the latter activated
B-cell like (ABC)-DLBCL, which had worse survival independent of the international
prognostic index (IPI) [26]. The findings were later confirmed in a follow-up study with a
larger number of cases [27]. There was a group of cases that could not be classified into
these two subtypes, initially called group 3, which was not a specific entity but a rather
heterogeneous group of cases including some with low tumor content that precluded
classification into the GCB or ABC subgroups. These earlier studies were performed on
patients treated with CHOP chemotherapy, but a subsequent study on Rituximab (R)-CHOP
treated patients confirmed that the ABC group has worse outcomes, even with R-CHOP
treatment [28]. Since these two subtypes of cases have been validated to be biologically
distinct and have different clinical outcomes [29], attempts have been made to reproduce
the GEP-based classification with immunohistochemical (IHC) stains that can be readily
performed on FFPE tissue and thus are applicable to routine clinical settings. The first
published one, the “Hans algorithm”, divided DLBCL into GCB and non-GCB (contained
mostly ABC cases) subtypes based on three immunostains (CD10, BCL6 and MUM1) with
a concordance rate to GEP-classified cases of >80% and demonstrated the more favorable
prognosis of the GCB subtype [30]. The reproducibility of this algorithm has been quite
variable with some laboratories unable to demonstrate a prognostic difference between GCB
and non-GCB types. This may be related to the differences in the staining protocol, scoring,
number of patients studied and even the composition of the patient populations. Several
other IHC-based classification algorithms have been proposed, but the above-mentioned
factors may still be major limitations [31,32]. A more recent attempt was made to transfer
the original array-based diagnostic algorithm to another simpler transcript-based platform.
The original diagnostic signature was condensed to 15 parameters with the assay performed
on the NanoString platform [33]. This resulted in an assay with over 90% concordance with
the original diagnosis, and the platform is highly reproducible in different laboratories [33].
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Figure 1. Hierarchical clustering of GEP data. Different lymphoid malignancies form distinct clus-
ters based on their gene expression profile. Reproduced from Figure 1: Alizadeh AA et al. Nature 
volume 403, pages 503–511 (2000). 

Several studies with global miRNA analysis demonstrated distinct miRNA signa-
tures associated with DLBCL subtypes [34,35] and identified predictive miRNA bi-
omarkers in DLBCL, including high expression of miR-155 and miRNA-363 [36], which is 
significantly associated with R-CHOP failure. miRNA-based studies are fewer than 
mRNA-based studies partly because of the rather late entry of miRNA into the field when 
many seminal studies were already reported. The advantage of using miRNA is the sta-
bility of the molecules and their good preservation in FFPE tissues. 

The initial GEP studies were performed on DLBCL-NOS cases [26–28,37]. There are 
many other DLBCL subtypes that occur at rather low frequencies and likely have different 
biology and hence unique GE signatures. Some of these have been studied by GEP and 
demonstrated interesting findings. Among these is primary mediastinal large B-cell lym-

Figure 1. Hierarchical clustering of GEP data. Different lymphoid malignancies form distinct clusters
based on their gene expression profile. Reproduced from Figure 1: Alizadeh AA et al. Nature volume
403, pages 503–511 (2000).

Several studies with global miRNA analysis demonstrated distinct miRNA signatures
associated with DLBCL subtypes [34,35] and identified predictive miRNA biomarkers in
DLBCL, including high expression of miR-155 and miRNA-363 [36], which is significantly
associated with R-CHOP failure. miRNA-based studies are fewer than mRNA-based
studies partly because of the rather late entry of miRNA into the field when many seminal
studies were already reported. The advantage of using miRNA is the stability of the
molecules and their good preservation in FFPE tissues.

The initial GEP studies were performed on DLBCL-NOS cases [26–28,37]. There
are many other DLBCL subtypes that occur at rather low frequencies and likely have
different biology and hence unique GE signatures. Some of these have been studied by GEP
and demonstrated interesting findings. Among these is primary mediastinal large B-cell
lymphoma (PMBL), which unexpectedly exhibited a signature similar to that of Hodgkin
lymphoma (HL) cell lines [38,39]. It also characteristically had JAK/STAT pathway, IL13
and IL4, and NK-κB pathway activation [40]. Interestingly, later genetic studies also
indicated overlaps of genetic alterations between these two diseases [41,42]. There is
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a study that examined the presence of PMBL signature in a series of “non-mediastinal
DLBCL” with GEP studies [43]. A more detailed analysis of the clinical/radiological data
indicated that most of the cases with this signature had evidence of mediastinal disease and
morphology compatible with PMBL, indicating that the lymphoma most likely originated
from the mediastinum, but there were rare cases with no apparent mediastinal involvement,
suggesting that there may be PMBL-like DLBCL without clinical and radiological evidence
of mediastinal disease. Most of the other types of DLBCL studied are non-GCB tumors
with similarity to the ABC subtype (such as primary CNS, testicular, CD5+ and cutaneous
diffuse large B-cell lymphoma-Leg type) or with more plasmablastic features (plasmablastic
lymphoma and primary effusion lymphoma) [44–52].

There have been numerous attempts at identifying prognostically important biomark-
ers with the current standard R-CHOP therapy independent of the IPI [53,54]. Most of the
single-parameter prognosticators described have not been reproducible. TP53 mutation [55],
BCL2 expression in GCB-DLBCL [56] and high BCL2 expression in the ABC-DLBCL [57,58]
appeared to be associated with worse outcome. It should be noted that BCL2 expression
is controlled by different mechanisms in these two types of DLBCL. BCL2 expression is
mainly associated with BCL2 rearrangement in the GCB-DLBCL while in ABC-DLBCL,
it is regulated by NF-κB activation and/or 18q21 gain or amplification [57]. GEP-based
prognosticators have also been developed including the one published by the LLMPP
group [28]. These signatures still need to be independently validated and perhaps also
examined in the context of genetic profiles, as discussed later.

2.2. Other B-Cell Lymphomas

Mantle cell lymphoma (MCL) was found to have a unique GEP that included high
expression of cyclin D1 as expected, but also some transcripts not generally expressed in
normal B-cells such as SOX11 [59]. Interestingly, there were some cases with strong MCL
signature but lacking cyclin D1 expression and translocation. It was suspected that these
cases may be initiated by translocation associated with other cyclin molecules, some of
which were found to be overexpressed [60]. This is indeed the case as demonstrated by
translocations involving cyclin D2 and cryptic insertion of Ig light chain enhancers near
CCND2 and D3 [61]. The expression of SOX11 in classical MCL and also in these cyclin
D1 negative cases makes it a useful marker for diagnosis [62]. A key prognosticator for
MCL is the proliferation signature [62], and based on this finding, an assay (MCL35) has
been developed using the NanoString platform that can be applied to FFPE tissues. This
assay could be more objective and reproducible than the counting of Ki67 positive tumor
cells in histological sections [63]. A unique group of MCL with indolent clinical course,
non-nodal disease with blood involvement, small cell morphology and SOX11 negativity
have been identified and under active investigation [64]. Aside from GEP studies, miRNA
profiling studies also revealed a 19-miRNA classifier that was able to distinguish MCL
from other B-cell lymphomas [65], and MCL patients with high expression of miRNAs
from the polycistronic miR17-92 cluster and its prologues, miR-106a-363 and miR-106b-25,
were associated with high proliferation gene signature and poor clinical outcome in further
correlative observation [65].

Burkitt lymphoma (BL) with classical morphology, MYC rearrangement and IHC profile
is generally readily distinguishable from other aggressive B-cell lymphomas [66]. There are,
however, cases with more atypical features that makes it challenging to diagnose. Several
groups, including LLMPP, had tried to derive a BL diagnostic signature that is highly
sensitive and specific [67,68]. BL characteristically has a high MYC signature as expected,
and a low level of expression of major-histocompatibility-complex class I genes and the
NF-κB signature. It does express a GCB cell signature enriched in a subset of genes related
to the dark zone of the GC [67,69]. The dark zone of the GC is normally largely devoid
of MYC expression, but in the presence of MYC translocation, both a GC dark zone and
a MYC signature are observed. However, even with GEP analysis, there are still cases
that are difficult to classify. The utility of miRNA profiling has been studied, and BL also
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has a unique profile that can help distinguish it from DLBCL [34]. It is unclear whether
combining these signatures would improve the diagnostic performance. Interestingly, the
GEP signatures of pediatric and adult BL show remarkable similarity.

2.3. Follicular Lymphoma (FL) and Transformed FL (t-FL)

FL is a GC B cell-derived lymphoma and is therefore expected to express the GC B
cell signature, which is clearly the case for the major group of FL with t(14;18) [70]. Higher
grade cases tended to have a higher proliferation signature [71]. For the t(14;18) negative
cases, there is an enrichment of ABC-like, NF-κB, post-GCB and T-cell signature [72,73].
Proliferation and cell cycle signatures also tend to be higher, which may be related to
the observation of the frequent Grade 3A morphology in this type of FL. There is further
heterogeneity within the t(14;18) negative group, such as pediatric-type FL, testicular
FL and primary cutaneous follicular center lymphoma, that has been described and will
not be further discussed here [74]. In the study by Dave et al. on prognosticators in FL,
stromal signatures appear to be predictive of outcome [75]. There are generally many FL
subclones in individual patients, and the clonal composition of the biopsied LN might
be quite different from other lymphoma sites. It is possible the clone(s) that ultimately
determine prognosis may not be well represented in the sample studied. This may explain
why no specific tumor-related signature was identified as prognostic. The host response to
the FL could be more uniform, and unique stromal responses could thus be more readily
identified as prognosticators [76]. In the Dave study, factors specifically predictive of
transformation were not investigated [75]. However, a gene expression signature predictive
of FL prognosis when treated with R-CHOP was recently generated for tumor biopsies at
the time of diagnosis [77]. In addition, miRNA studies identified upregulation of miR-193a-
5p, 193b* and 663 downregulation of miR-17*, -30a, -33a, -106a) in FL [78] and a miRNAs
profile associated with t(14;18) negative cases [79].

2.4. Peripheral T-Cell Lymphoma (PTCL)

PTCL constitutes only ~10–15% of all non-Hodgkin’s lymphoma (NHL) in Western
countries [80,81]. The current World Health Organization (WHO) classification recognizes
many distinct PTCL subtypes, including angioimmunoblastic T-cell lymphoma (AITL),
anaplastic large cell lymphoma (ALCL), adult T-cell leukemia/lymphoma (ATLL) and
extra-nodal NK/T-cell lymphoma of nasal type (ENKTL) [74] as well as additional rare
PTCLs that are mostly extra-nodal lymphomas [74]. Even for expert hematopathologists,
the diagnosis and subtyping of PTCL is challenging [74,82], and 30–50% of PTCL cases
are not classifiable with current approaches and are categorized as PTCL, not otherwise
specified (PTCL-NOS) [74]. Thus, PTCL-NOS represents the most common group of PTCL
with a broad morphological and immunophenotypic spectrum that does not correspond to
any of the distinct T-cell entities in the WHO classification [83,84].

The study and understanding of the biology of PTCL has lagged behind that of
their B-cell counterpart partly because of the relative rarity of PTCL [85]. A number of
GEP studies have been reported for PTCL, but the number of cases is generally small
and conclusions from these studies need to be validated [86–92]. Through extensive
international collaborations, it was possible to perform several larger GEP studies on
PTCL that led to the definition of robust molecular signatures for major subtypes of
PTCL [93–95]. It validated previous reports suggesting a link between AITL and TFH
cells [90,92]. Importantly, two novel biological and prognostic subgroups within PTCL-NOS
with distinct GEP signatures were identified [95]. One subgroup, representing about a third
of PTCL-NOS, is characterized by high expression of GATA3 and its target genes. GATA3 is
the master transcriptional regulator in TH2 cell differentiation and regulates interleukin-4
(IL-4), IL-5 and IL-13 expression [96]. The other subgroup, representing about half of PTCL-
NOS, has high expression of TBX21 and its target genes. TBX21 is a master regulator of TH1
cell differentiation and regulates the expression of IFNγ [97]. The “high GATA3” subgroup
(designated as PTCL-GATA3) had poorer clinical outcomes, supported by an independent
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study [98]. The PTCL-GATA3 group had higher MYC and proliferation signatures, whereas
NF-κB targets were enriched in the TBX21 subgroup. Further examination of the “TBX21”
subgroup (designated as PTCL-TBX21) identifies a subset with a high cytotoxic signature
including the expression of CD8 and cytotoxic molecules such as perforin, granzyme B,
TIA1 and others. These cases have a poorer clinical outcome than the rest of the PTCL-
TBX21 subgroup and may represent a separate cytotoxic subgroup of PTCL [94,95]. While
these studies suggest the “cell-of-origin” of different subgroups of PTCL, it is unclear
whether the tumors are derived from a certain subtype of T cells, or whether different
genetic changes initiating/promoting the transformation may favor the polarization of
the lymphocytes to a certain lineage. It is also uncertain how stable are the phenotypes
and whether further genetic changes or the cytokine environment may re-polarize the cells
either partially or completely due to the plasticity of T-cell differentiation [99]. There are
little data on relapsed PTCL to address some of these questions.

While activation of distinct oncogenic pathways in these subgroups [94,95,100] and
the observed clinical differences support the validity of the classification, recent genetic
analysis including high-resolution genomic copy number abnormalities (gCNA) [101],
and mutational analysis and even miRNA analysis [102], provided further evidence that
PTCL-GATA3 and -TBX21 subgroups represent distinct diseases and exploit distinct genetic
pathways for tumorigenesis [101], which will be elaborated on further in later sections.

Attempts have been made to use routine IHC assays to help to separate these two sub-
types of PTCL, and it is possible to have a good concordance of around 80% with molecular
classification using four immunostains (GATA3, CCR4, TBX21 and CXCR12) [103]. As IHC
staining and scoring may not be readily standardized, a more objective and quantitative
assay with high reproducibility is preferred. An assay based on the previous microarray
data and adapted to the NanoString platform has been recently developed that can be
performed using FFPE tissues and thus could be utilized in routinely processed biopsy
materials [104]. This assay could benefit the classification of PTCL in clinical practice as
well as in clinical trials for accurate stratification of patients.

Similar to B-cell lymphomas, GEP generates data that can be used for biological
pathway and signature analysis, some of which could be correlated with clinical outcome or
suggest response to targeted therapy. Thus, in ENKTCL, there is evidence for the activation
of the aurora kinase A (AURKA) pathway and potential efficacy of a AURKAi [93,105,106].
A more extensive in vitro drug screening study independently confirmed that AURKAi was
active against NK-lymphoma cell lines [107]. High NF-κB activation has been associated
with worse prognosis in ALCL [108], while in AITL, a high B-cell signature is associated
with better prognosis and a high macrophage/dendritic cell signature was associated with
poorer outcome [94,95]. In the TBX21 PTCL, there is an inverse correlation between B-cell
and cytotoxic signature and high B-cell signature is associated with better prognosis [95]
while the reverse is true for the cytotoxic signature.

3. Global Genetic Analysis

The International Human Genome Sequencing Consortium announced on 14 April 2003,
the successful completion of the Human Genome Project, and the sequence was published
next year in Nature [13,109,110]. While the human genome was not completely sequenced
and assembled until recently [12], the publication was an important landmark that ush-
ered in the era of large-scale genomic research. The initial and subsequent cumulative
published data on the human genome provide the information that has enabled numerous
investigations to move forward. Subsequent development of massive parallel sequencing
technology allows next generation sequencing (NGS) to be done in many facilities outside
of the genome centers and further enables the rapid growth of genome-based research.

3.1. The Study of Genomic Copy Number Abnormalities (gCNAs)

One of the first applications in lymphoma research based on human genomic data
is the study of genomic copy number abnormalities (gCNAs) that could be done using
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either SNP arrays or oligonucleotide arrays. A study by Lenz et al. on DLBCL revealed the
common gCNAs and highlighted the different profiles between GCB and ABC DLBCL [111].
The simultaneous availability of GEP data further facilitated the identification of the
potential driver genes associated with each of the gCNAs [111] such as PRDM1 in 6q21
deletion, BCL2, MALT1 and TCF4 in 18q21 gain/amplification [112], c-REL and BCL11A
in 2p14-16 gain/amplification. The selective requirement of a potential candidate genes
to specific molecular subgroups could also be shown experimentally by the selective
cytotoxic effect of knocking down of SPIB [19q telomeric gain/amp] [111] in ABC-DLBCL
cell lines but not to GCB-DLBCL cell lines. Additionally, certain gCNAs or combinations
appeared to be associated with prognosis as exemplified by the association with poor
prognosis in ABC-DLBCL with del 9p21 (CDKN2A and 2B) and trisomy-3 [111]. Some
common translocations also have differential distribution in the subtypes of DLBCL, such
as the almost exclusive presence of BCL2 translocation in GCB-DLCBL [113], and the more
frequent BCL6 translocation in ABC-DLBCL [114]. Methylation analysis also demonstrated
distinct abnormal profiles in these two subtypes [115].

Several genome-wide DNA copy number studies on MCL identified recurrent dele-
tions of tumor-suppressor genes, including TP53 (17p21), ATM (11q), RB1 (13q14.2) and
CDKN2A, CDKN2B, MTAP (9p21.3), which provided insights into various deregulated
pathways such as DNA damage repair (ATM) and cell cycle (TP53, RB1 and CDKN2A,
CDKN2B) [116–118]. Somatic mutation and deletions/hypermethylation of TNFAIP3
(6q23.3) leading to NF-κB pathway activation have been observed [119,120]. Similarly,
methylation analysis revealed a hypo-methylated genome in MCL; however, a subset of
tumors with extensive CpG methylation, as well as an increased proliferation signature,
were associated with poor prognosis [121]. Targeting the epigenome or specific aberrantly
expressed genes (such as CD37) could be novel therapeutic options in MCL [122].

The genomic alteration in BL is generally much less complex compared with DLBCL,
with far fewer numbers of gCNAs. In addition to the t(8;14) translocation or variant
t(8;22) or t(2;8) translocations, BLs show recurrent gains involving a small locus in 13q31.3
encoding the miR17-92 cluster, recurrent gains of 1q localized to a minimal common region
at 1q21.1 and 1q31.3, and frequent loss of 17p [123,124]; however, other observations are less
consistent among studies [125,126]. Genomic aberrations (e.g., del13q14, del17p, gain8q24,
and gain18q21) and effectors of chronic BCR– > NF-κB signaling were more associated
with adult-mBL, and gain/amplification of MIR17HG and its paralogue are particularly
frequent (present in 50%). BLs may be associated with EBV infection, particularly in those
arising in endemic regions (>90%); recent studies have demonstrated differences in GEP
as well as genetic landscape in EBV+ cases [127,128], notably the higher mutation burden
due to increased AICDA activities but lower frequency of mutation in TP53, USP7 and
TCF3/ID3 [129].

FL is associated with recurrent genetic alterations including chromosomal gains (7,
12, 18 and X) and deletions (6q and 1p) [130–134] and further refined to genetic loci del of
1p36.33-p36.31, 6q23.3-q24.1 and 10q23.1-q25.1 and gains of 2p16.1-p15, 8q24.13-q24.3 and
12q12-q13.13 with higher resolution techniques [135]. The transformation to aggressive
lymphoma [136] is rarely associated with c-MYC rearrangement [136], but no specific
changes are unique to transformation, although some genetic changes have been reported
to be associated with transformation, including mutation of p53 [137] and BCL2 [138] and
homozygous 9p21 deletions [139], and gains of 3q27.3-q28, 6p12-p21 and 17q21.33 [140].
Overall, genetic abnormalities associated with transformation impair immune surveil-
lance, activate the NF-κB pathway and deregulate the cell cycle and B-cell transcription
factors [135,141]. Of special interest are mutations and CNAs affecting S1P-activated path-
ways, which likely regulate lymphoma cell migration and survival outside of follicles [141].
Global methylation profiling of sequential FL and transformed-FL biopsies revealed a
hypermethylated genome common to FL, and an over-representation of genes targeted
for epigenetic repression by PRC2 within the hypermethylated gene set. Along with the
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similarity in hypermethylation pattern between paired biopsies, this suggested that the
widespread methylation observed may represent an early event in lymphomagenesis [142].

3.2. Mutation Analysis: Example on DLBCL

Several driver mutations were identified before the era of NGS in DLBCL, such as
CD79b affecting BCR signaling [143], CARD11 activating the NF-κB pathway, TNFAIP3
mutation or loss dysregulating NF-κB and MYD88 linking IL1/TLR pathway to NF-κB
activation [144–147]. These mutations are far more common in the ABC-DLBCL, supporting
the previous GEP finding of the importance of BCR signaling and NK-kB activation in
this subtype of DLBCL [29]. Subsequent application of NGS in the study mutations in
lymphoma leads to an explosive growth in mutations identified and the construction
of the genomic landscape of several types of lymphoma including DLBCL [148–151],
MCL [117,120,152], FL [153,154], BL [155,156] and marginal zone lymphomas [157–161].
As DLBCL is the most common lymphoma, it has also been most extensively studied, and
genomic subgroups have been delineated. Using consensus clustering, Chapuy et al. [151]
identified five genomics clusters based on mutation and gCNA analyses, and these clusters
have biological and clinical implications. Schmitz et al. [150], using a different approach,
identified four genetic subgroups, and three of these appear to overlap with three of the
clusters reported by Chapuy et al. [151] (Table 1). These studies indicated there are genetic
subgroups of DLBCL that could be robustly defined, and they could further refine the GCB
vs. ABC distinction. In a subsequent analysis, Wright et al. [162] re-affirmed the previous
findings by Schmitz et al. and reported an additional subgroup associated with TP53
abnormalities and another a small subgroup called ST2 that has a similar profile to T-cell
rich B-cell lymphoma or DLBCL transformed from LPHL [163,164]. Whether ST2 tumors
are de novo DLBCL or represent un-recognized transformation of LPHL is unclear. While
mutation and gCNA data are critical in the defining of these genetic subgroups of DLBCL,
other genetic information is also important such as BCL2, BCL6 or MYC rearrangement.
Some of the genetic abnormalities may suggest the potential usefulness of targeted agents
as pointed out by Wright et al. [162]. For example, DLBCL in the MCD group typically
have mutations affecting MYD88 and CD79B and are associated with high response rate to
ibrutinib. However, despite the apparent match of a putative driver mutation to a targeted
drug, the effectiveness of the agent still needs to be determined by rigorous pre-clinical
studies followed by well-designed clinical trials.

Table 1. Comparison of two genetic classification schemes for DLBCL.

Chapuy B. et al.
Nat. Med. 2018

Schmitz R. et al.
NEJM. 2018

COO
Classification Prognosis Genetic Characteristics

Cluster 1 BN2 ABC or
ABC + UC F

BCL6 rearrangement; Notch pathway: Notch
2, SPEN, DTX1; NF-κB: A20, TNIP1, BCL10,
PKCB; immune escape CD70, FAS, PDLI/L2

Cluster 2 N/C Mixed UF TP53 biallelic abnormalities; CDKN2A/RB
loss; miR17-92 gain; MCL1 gain

Cluster 3 EZB GCB UF

BCL2 translocation, EZH2 mutation, cRel
amplification, TNFRSF14 alteration, MEF2B,
and common chromatin modifier mutation:

MLL2, CREBBP, EP300; SIPR2 pathway;
STAT6; mTOR; MiR17-92; PTEN

Cluster 4 N/C GCB F Histone core and linkers; immune evasion;
GNA13, RHOA, SGK1; NF-κB; BRAF/STAT3

Cluster 5 MCD ABC UF
MYD88L265P, CD79B; 18p gain, PRDMI,

CDKN2A, ETV6, BTG1/2, TBL1XR1; PIM1;
immune editing, high cAID

N/C N1 ABC UF NOTCH1 mutation; IRF4, 1D3, BCOR, A20;
plasmacytic phenotype

F: favorable; UF: unfavorable.
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3.3. Mutation and gCNA Analyses: Peripheral T-Cell Lymphoma

As with GEP studies, the genetic analysis of PTCL also lagged behind its B-cell
counterpart, but a number of recent studies have provided important insights into the
pathogenesis of several PTCLs [165–167]. One of the earliest mutations detected was IDH2
mutation found in AITL [168]. Different from AML and glioblastoma, IDH1 mutations were
not found, and IDH2 R172 mutation was the only IDH2 mutation detected. Subsequently,
TET2 mutations were found to be very frequent in AITL, but surprisingly, IDH2 mutation in
AITL [100] almost always occurs together with TET2 mutation, distinct from their mutual
exclusivity in AML. DNMT3A was also found to be frequently mutated, and again, it
frequently co-occurs with TET2 mutations. This co-occurrence seems paradoxical as these
genes have opposite functions in DNA methylation. Both TET2 and DNMT3A mutations
are found in other PTCLs, being more frequent in the TBX21 than GATA3 subtype. There is a
hotspot DNMT3A mutation affecting R882 that seems to be more frequently associated with
tumors with the cytotoxic phenotype [169]. IDH2R172 mutants acquire a neomorphic enzyme
activity with the production of 2-hydroxyglutarate (HG) instead of alpha-ketoglutarate (aKG),
resulting in the inhibition of all TET enzymes. However, 2HG inhibits a large group of
dioxygenases, so there are functional alterations in addition to impaired DNA-demethylation.
An interesting finding is that in some PTCL patients with TET2 mutations, the same mutation
was also found in a co-existing myeloid disorder, suggesting that the TET2 mutation may be
present in a hematopoietic stem cell (HSC) which gives rise to both the myeloid and T-cell
disorders. There is evidence that AITL cases may also be associated with clonal hematopoiesis
of undetermined potential (CHIP) [170] instead of an overt myeloid disorder and share the
same TET2 mutations. Thus, the mutational landscape in AITL is dominated by mutations
that aberrantly modify the epigenome.

The other highly frequent mutation, present in about 70% of AITL, affects RHOA,
which is a small GTPase important in a number of T-cell functions in addition to cytoskele-
ton organization and cellular motility/migration [171–173]. In AITL and PTCL with TFH
phenotype, the RHOA mutation is a unique G17V mutation resulting in an inability of the
protein to associate with GTP or GDP and believed to be a dominant negative mutation.
Other RHOA mutations have been described in other PTCLs, including some that are gain-
of-function mutations such as RHOA C16R and K118. How these RHOA mutants contribute
to T-cell transformation needs further investigation. As RHOA G17V mutation almost
always occurs with TET2 mutation, their functional interaction is also intriguing. Another
group of mutations in PTCL affects the proximal TCR signaling pathway [174–176]. They
are much less common than the mutations just mentioned and affect signaling molecules
including CD28, PI3K components, FYN, PCLG1 and VAV1. A number of fusion proteins
have been described including CTLA4-CD28 [177], ICOS-CD28 [175], ITK-SYK [178], FYN-
TRAF3IP2 [179,180] and VAV1 fusions [181], with a number of partners with deletion of the
C-terminal autoregulatory SH3 domain of VAV1. These are generally activating mutations,
but exactly how TCR signaling is altered to favor T-cell transformation is unclear. Another
group of mutations affect the JAK/STAT pathway. JAK1 and JAK3 are the most commonly
mutated with the mutation affecting most frequently the pseudo kinase domain. JAK fu-
sions have also been described in ALK neg ALCL, which also contain a group of cases with
DUSP22 rearrangement and rarely TP63 rearrangement with the former associated with
good prognosis, while the latter with a very poor outcome [182,183]. Activated JAK may
not only promote phosphorylation of the associated STATs, but may also phosphorylate
other targets unrelated to STAT functions [184,185]. Of the STAT genes, STAT3 and STAT5B
are the ones involved. Mutations occur mostly in the SH2 domain and affect the affinity
and stability of the phosphorylated dimers, which persist much longer than the WT with
increased target occupancy and changes in transcription [186] (Figure 2). STAT5B and
STAT3 mutations have a different distribution profile, with STAT5B the dominant mutation
in T-PLL [187], γδ -TCL and HSTCL [186] while STAT3 mutated is more frequent in ALCL
and NK-cell lymphoma [188].
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gCNAs have been studied in AITL and several other PTCL, including the GATA3 and
TBX21 subtypes, and they have distinctive profiles [101]. PTCL-GATA3 has the highest
gCNAs, and there are highly frequent deletions of tumor suppressor genes (TSG) such as
TP53, p16/19, RB, PRDM1 and PTEN, while there are gains including STAT3 and MYC [101].
An unusual feature is the co-occurrence of TP53 mutation/deletion and heterozygous loss
of PTEN, rarely observed in lymphomas. These cases have similar genetic features to
a cluster of cases identified in the study by Watatani Y et al. [189] that probably also
represented mostly GATA3 cases. All these observations support the GEP classification of
PTCL-GATA3 and TBX21 as unique entities.

The concept of TFH cell-derived lymphoma has been expanded from AITL to tumors
with T cells having similar immunophenotype but a follicular growth pattern (follicular
T-cell lymphoma), and PTCL that would have been classified as PTCL-NOS except that
the tumor T cells express two or more TFH cell-associated markers, such as PD1, ICOS1,
BCL6, CXCL13 and CD10 (PTCL-TFH) [74,190]. PTCL-TFH, as currently defined, is likely
to be heterogeneous. Most of these cases appeared to have a stronger TFH signature and
AITL-like signature by GEP as well as mutations associated with AITL and thus likely to
be part of the spectrum of TFH-associated lymphoma [104,191]. However, there are also
cases that appear to be unrelated to TFH cells, and a more comprehensive study with more
cases may be needed to further characterize this group of cases.
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3.4. Cooperativity of Genetic Alterations

A mutation does not occur in isolation in a lymphoma; it co-operates with other
alterations that could be genetic or epigenetic to mediate neoplastic transformation. STAT3
is the most frequently mutated gene in ENKTCL and is often associated with PRDM1 defi-
ciency, which is also a very common event in this lymphoma. A recent study examined the
possible co-operation between these two abnormalities in normal NK-cells and found that
STAT3 mutants can only mediate enhanced cell growth for a limited period of time. How-
ever, if PRDM1 is knockout, the double mutant cells can undergo persistent proliferation
which can be sustained using IL15 alone without other cytokines or the presence of feeder
cells [188]. If the STAT3 mutant was replaced with a common STAT5B mutant, STAT5B
N642H, a co-operative effect with PRDM1 was not observed (unpublished observation).
This co-operative event may partly explain the difference in STAT mutations observed
in ENKTCL and γδ PTCL. Similar investigations in the future may unravel additional
important co-operative events.

4. The Integration of Multiomics Data

With the ability of performing multiomics studies on the same biological samples, it is
possible to obtain important complementary information that can lead to greater and more
comprehensive understanding of the biological processes under investigation that may
also provide novel leads to future investigations. This requires greater planning to obtain
the requisite tissues and perform the necessary studies. The analyses and interpretation
are more complex and require more expertise. An example of such an approach is the
investigation of transcription factor binding and its functional consequences. Traditionally,
ChIP analysis is performed and currently combined with NGS to identify binding sites.
However, binding may not be associated with functional activities, which are now generally
accessed by simultaneously determining chromatin accessibility and RNA expression.
Some binding peaks occur in genomic regions without clear association with a particular
gene. The availability of Hi-C data would be very helpful in identifying associations with
specific genomic sequences with each of these peaks [192], thus allowing the prediction of
the target of the TF when bound to specific DNA sequences.

5. The Tumor Microenvironment

It is quite clear from numerous studies that the TME is an integral and important
component of the tumor which may be critical for tumor cell survival and in regulating
the host/tumor interaction, particularly the immune reaction to the tumor, which could
be especially relevant in this era of immunotherapy. It is notoriously difficult to derive
cell lines from PTCL, clearly indicating the importance of TME in supporting the growth
and survival of the tumor cells. In multiple lymphomas, TME signatures have been shown
to be predictive of patient survival as mentioned above. In a bulk population, the GEP
signature is a mixture of signals from multiple components, and it is challenging to decipher
what components are present and their contributions to the GEP. Recent development in
computational analysis such as the CiberSort approach [193,194] may help to deconvolute
bulk GEP data to provide an estimate of the immune cell populations present in the
TME. An extension of this approach includes the subtyping of tumor cells by GEP and
defining their association with stromal elements to form unique tumor ecosystems that
may provide further insight into tumor biology and clinical behavior [195]. It would be
even more informative if these analyses are combined with immunophenotyping [196] to
validate the computational findings and visualize the distribution and spatial relationship
of the immune/tumor cells. Flow cytometry may be employed on isolated cells from the
tissue, but spatial information is lost. Multiparameter immunophenotyping by multicolor
fluorescence such as the Vectra Polaris (PerkinElmer) or CODEX (PhenoCycler, Akoya
Biosciences) technology has been developed and has the advantage of maintained spatial
relationship of the cells. The recent development of CyTOF technology [197–199] allows
the determination of more markers than possible using fluorescence-based assays and
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tissue-based CyTOF assay. Imaging mass cytometry (IMC) is being developed to evaluate
cellular populations in situ [200,201]. The drawback of IMC is the small area that can be
examined and the limited panel of labeled antibodies available, often necessitating the
labeling of antibodies by the user. The procedure is also destructive to the labeled tissues.
The technical and analytical considerations of these high dimensional imaging approaches
have been reviewed recently [202]. These are very promising tools for the study of the TME,
but computational approaches [203,204] to fully exploit the data from these systems are
challenging but critically needed.

Single-cell (sc) RNA-seq studies are now feasible, and the technology has been recently
reviewed [205,206]. It has been employed recently to decipher the biological complexity
of the tumor cells as well as the stromal cell populations [207–209]. When scRNA-seq is
performed on isolated cells, spatial information is lost, and various artefacts may also be
introduced. To overcome these barriers, techniques such as Slide-seq [210] that attempt to
preserve the spatial information have been reported. Commercial platforms such as the 10X
genomics (Visium) and NanoString platforms are now available for similar purposes and
applicable for FFPE tissues. These platforms are not at true single cell resolution yet, and
scRNA-seq has limitations such as high costs and low transcriptome coverage, but it is a
valuable component of GEP analysis and can provide important insight into the functional
states and activities of single cells, the heterogeneity of the tumor cell population, the
potential interactions of neighboring cells and the possible trajectories of these interactions.

6. A New Diagnostic Platform

Traditionally, diagnosis is based on tissue biopsy and study of the tissue thus obtained,
but a biopsy is an invasive procedure; yet, the biopsy obtained for diagnosis may not be
the most diagnostic or representative. Lymphoma patients frequently relapse after therapy
and usually a very limited needle biopsy or no biopsy is obtained, which is a tremendous
impediment in the adequate characterization of relapsed disease even for clinical purposes.
Thus, a new approach that addresses these major issues will have a powerful clinical
impact. Technological advances have allowed the performance of sophisticated analysis
on the small amounts of DNA and RNA present in cell-free plasma [211–213], an easily
obtainable biospecimen that allows more frequent sampling without an invasive procedure.
In addition, the plasma analytes represent the summation of the contribution from all tumor
sites and provide a more global picture of the entire tumor content [212]. The successful
development of the technology and implementation of it as a clinical assay would represent
a major breakthrough in diagnostics, allowing molecular characterization of each patient at
diagnosis and at different points of treatment to guide further actions. Circulating tumor
DNA (ctDNA) also enables monitoring of tumor evolution and characterization of resistant
clones [212,214]. The technology is applicable not only to lymphoma but also to other
types of cancer [215]. In lymphoma, many of the studies had been focused on DLBCL
using the Cancer Personalized Profiling by Deep Sequencing (CAPP-seq) approach [211],
which used a pre-defined panel to capture the DNA from selected loci for deep sequencing.
Another approach is to sequence the tumor to determine the mutations present and then
design a custom panel for deep sequencing [216]. An exciting report on HL [217] has
been published, demonstrating that it is possible to perform CAPP-seq successfully in
liquid biopsy, even in a disease where the neoplastic cells may be as low as or lower
than 1% of the cells in the tumor. Interestingly, their findings on the predictive value
of early reduction in ctDNA on chemotherapy on treatment response and survival are
quite similar to findings reported in DLBCL [218]. While ctDNA is the most frequently
investigated analyte, other analytes include plasma miRNA and 5mC [219] and possibly
5hmC-modified DNA that may be assayed and may complement ctDNA information or
constitute new assays. This is a rapidly evolving area with new technological and analytical
developments [220]. Liquid biopsy may provide the platform for sensitive and specific
molecular assays for multiple types of cancer and become the next-generation diagnostics
for precision medicine [221,222]. However, much still needs to be done to determine



Hemato 2022, 3 497

various preanalytical variables, standardize the assay and platforms and validate the
clinical characteristics and usefulness of the assays.

7. Perspectives

The last 22 years have seen an explosive growth in genomics data in lymphoid ma-
lignancies leading to a marked improvement in the understanding of their pathogenesis
and biology. For the more common lymphomas, the genomic landscapes are fairly well
defined, but the less common entities are still largely unexplored. A better understanding
of the tumor/microenvironment interaction is crucial, and we have better tools to make
significant discoveries in this area. Obtaining good, well-annotated tissue samples is partic-
ularly challenging in lymphoma, and samples collected often lack corresponding normal
controls, making tissue availability a major barrier in future research. As mentioned above,
multiomics investigations are important to more fully explore the omics data, but few
studies have performed such investigations. In the future, the integration of omics and com-
prehensive TME findings, particularly with spatial information, would markedly improve
our understanding of tumor biology and host/tumor interaction. The incorporation of
single cell analysis will further provide essential information on tumor heterogeneity, clonal
evolution and the diverse stromal components. While gaining genomic information is
critical, painstakingly focused investigations are still necessary to understand the biological
implications of specific findings. The information generated so far has suggested many
potential drug targets against individual genes and/or pathways, which has led to many
clinical trials. Further understanding of tumor biology and host/tumor interaction will no
doubt lead to more novel targets, better stratification of patients for clinical studies and the
elucidation of mechanisms of therapy resistance. This is true not only for traditional drug-
based trials but also for immunotherapy. Plasma-based diagnostic platforms are rapidly
advancing and could become the next-generation diagnostics that may vastly improve the
monitoring of patients under treatment and on prognostication.
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