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Abstract: In some patients, SARS-CoV-2 infection induces cytokine storm, hypercoagulability and
endothelial cell activation leading to worsening of COVID-19, intubation and death. Prompt identi-
fication of patients at risk of intubation is an urgent need. Objectives. To derive a prognostic score
for the risk of intubation or death in patients with COVID-19 admitted in intensive care unit (ICU),
by assessing biomarkers of hypercoagulability, endothelial cell activation and inflammation and a
large panel of clinical analytes. Design, Setting and Participants. A prospective, observational study
enrolled 118 patients with COVID-19 admitted in the ICU. On the first day of ICU admission, all
patients were assessed for biomarkers (protein C, protein S, antithrombin, D-Dimer, fibrin monomers,
FVIIa, FV, FXII, FXII, FVIII, FvW antigen, fibrinogen, procoagulant phospholipid dependent clotting
time, TFPI, thrombomodulin, P-selectin, heparinase, microparticles exposing TF, IL-6, complement
C3a, C5a, thrombin generation, PT, aPTT, hemogram, platelet count) and clinical predictors. Main
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Outcomes and Measures. The clinical outcomes were intubation and mortality during hospital-
ization in ICU. Results: The intubation and mortality rates were 70% and 18%, respectively. The
COMPASS-COVID-19-ICU score composed of P-Selectin, D-Dimer, free TFPI, TF activity, IL-6 and
FXII, age and duration of hospitalization predicted the risk of intubation or death with high sensitivity
and specificity (0.90 and 0.92, respectively). Conclusions and Relevance. COVID-19 is related to
severe endothelial cell activation and hypercoagulability orchestrated in the context of inflammation.
The COMPASS-COVID-19-ICU risk assessment model is accurate for the evaluation of the risk of
mechanical ventilation and death in patients with critical COVID-19. The COMPASS-COVID-19-ICU
score is feasible in tertiary hospitals and could be placed in the diagnostic procedure of personalized
medical management and prompt therapeutic intervention.

Keywords: COVID-19; hypercoagulability; risk assessment; hypercoagulability; endothelial cell;
inflammation

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus
disease 2019 (COVID-19), characterized by acute pneumonia which may progress to res-
piratory failure requiring intubation and may have a fatal outcome [1,2]. SARS-CoV-2
invades host human cells by binding of the spike protein (S-protein) to the angiotensin-
converting enzyme 2 (ACE 2) receptor by means of the transmembrane protease serine 2
(TMPRSS2) [3–7]. Endothelial cells, cardiomyocytes, Type I and Type II alveolar epithelial
cells in human lung tissue express ACE2 and TMPRSS2 and are targets of SARS-CoV-2 [8,9].
The SARS-CoV-2 and the cells affected by the virus trigger immune response and the
cytokine storm. Infiltration, accumulation, and activation of defense cells (i.e., neutrophils,
monocytes, lymphocytes, macrophage and dendritic cells) amplify the immune reaction
and cytokine secretion. The cytokine IL-6 together with TNF are among the major effectors
of the cytokine storm in COVID-19. The infection with SARS-CoV-2 induces activation
of the complement system, which further promotes inflammation. The anaphylatoxins
C3a and C5a are also major contributors to cytokine storm [10,11]. Subsequent tissue dam-
age can initiate the kinin formation, the activation of the contact system and the intrinsic
pathway of blood coagulation composed of plasma prekallikrein (PPK), the nonenzymatic
cofactor “high molecular weight kininogen” (HMWK) and the clotting factors XII (FXII) and
XI (FXI) [12,13]. Cleavage of free HMWK by plasma kallikrein releases bradykinin, a potent
inflammatory mediator and activator of the complement and contact system [14]. Platelet
activation and neutrophil extracellular traps are also involved in the pathogenesis of im-
munothrombosis in COVID-19. The polyphosphates (polyP) released by activated platelets
appear to play major role in FXII activation [15]. SARS-CoV-2 may also directly induce
activation of coagulation through the highly conserved main proteinase (Mpro) [16,17].
Initiation of a vicious cycle of thrombin generation may lead to consumption of natural
coagulation inhibitors; antithrombin (AT), protein C (PC) and protein S (PS). Heparanase is
a proinflammatory and proangiogenic protein, capable of degrading heparan sulfate chains
both at cell surface and at the extracellular matrix [18]. Glycocalyx degradation that leads to
decreased endothelial nitric oxide production is critical for platelet accumulation [19]. Aug-
mented expression of heparanase can boost both the innate and adaptive immune system
and propagate inflammatory reactions which could be relevant to severe presentations of
COVID-19 [20]. Figure 1 summarizes the principal mechanisms triggered by SARS-CoV-2
infection, leading to hypercoagulability and pulmonary intravascular coagulation.

While most people infected with SARS-CoV-2 remain asymptomatic or develops
only mild COVID-19, approximately 5% of patients present critical COVID-19 requiring
admission to an intensive care unit (ICU) [2,21,22]. In these patients, the intubation rate is
up to 80% and the mortality ranges from 20% to 40%. Prompt identification of patients at
risk of disease worsening is a challenging issue [23,24].
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Figure 1. The principal mechanisms triggered by SARS-CoV-2 infection leading to hypercoagulabil-
ity and pulmonary intravascular coagulation. GAG, glycosaminoglycans; HMWK, high-molecular-
weight kininogen; IL, interleukin; INF, interferon; NET, neutrophil extracellular trap; PK, plasma 
kallikrein; PPK, plasma prekallikrein. 
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Machine learning is a valuable tool to respond to big COVID-19 datasets, which may
contribute to further improvement of the accuracy in the identification of the most suscepti-
ble patients who could benefit from prompt personalized therapeutic interventions [25–27].

The prospective, observational study ROADMAP-COVID-19 (pROspective Risk As-
sessment anD bioMArkers of hyPercoagulability for the identification of patients with
COVID-19 at risk for disease worsening) was conducted aiming to derive a prognostic
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score for the risk of intubation or death in patients with critical COVID-19 by assessing
biomarkers of hypercoagulability, endothelial cell activation and inflammation and a large
panel of clinical analytes.

2. Methods
2.1. Participants

ICU-COVID-19 group: The ROADMAP-COVID-19 study was conducted at the Tenon
University Hospital Paris and enrolled all admitted patients in the ICU from March 2020
to July 2020. All patients had laboratory-confirmed COVID-19 infection as defined else-
where [28]. Disease worsening requiring ICU admission was defined according to the
criteria published elsewhere [29]. Pregnant women, and patients younger than 18 years
were not enrolled in the study. All patients with COVID-19 routinely received standard
prophylactic dose of enoxaparin (4000 anti-Xa IU once daily s.c.) upon hospital admission.
Patients admitted in ICU received intermediate dose of body weight-adapted enoxaparin.

Control group: The control group consisted of 30 healthy individuals, with the same age
as patients. All subjects provided informed written consent before inclusion in the study.

Ethics: The study was conducted in accordance with the Helsinki declaration, and all
patients received healthcare according to the recommended institutional practice during
COVID-19 pandemic. All hematological tests were performed in the frame of routine
monitoring of patients. This is a non-interventional data-based study, using the care data
collected during patients stay, involving all the consecutive critically ill COVID-19 patients
admitted to the ICU in Tenon Hospital during the pandemic. There is no processing of
indirectly identifiable data, or chaining with data from other sources, or long-term patient
follow-up for this research. This study was approved by the institutional review board
of Sorbonne University (Reference CER-2020-54) according to the French regulations. All
participants (or their relatives) gave consent to participate.

Outcomes: The clinical outcomes of the study were intubation and death during
hospitalization in ICU.

Blood sample collection and plasma preparation. Blood was collected, at the 1st
day of ICU admission, from a peripheral vein using a 19-Gauge needle at BD vacutainer
tubes (Becton Dickinson, Franklin Lakes, NJ, USA; 3.8% sodium citrate 109 mMol/L or
EDTA 5.4 mg). Platelet-poor plasma (PPP) was prepared within 1 h of blood collection by
double centrifugation (2 × 20 min at 2000× g) at room temperature and stored in aliquots
at −80 ◦C until analysis.

2.2. Biomarkers of Hypercoagulability, Endothelial Activation and Inflammation

Protein C (PC), protein S (PS), antithrombin (AT), D-Dimer and fibrin monomers
(FM), factor VIIa (FVIIa), Factor V (FV), Factor XII (FXII), Factor VIII (FVIII), Factor von
Willebrand antigen (FvW), Fibrinogen, procoagulant phospholipid-dependent clotting
time (PPL-ct) Free TFPI, plasma thrombomodulin (TM) were measured with commercially
available assays from Diagnostica Stago, (Asnières, France) on a STA®-R analyzer. P-selectin
and heparanase were measured with ELISA kits from Cusabio Biotech (CliniSciencies,
Nanterre, France) and R&D Systems (Lille, France), respectively. The procoagulant activity
of microparticles exposing TF (MP-TF) was measured by Zymuphen MP-TF from Hyphen
Biomed (Neuville sur Oise, France). Kininogen levels in PPP were measured by Human
Kininogen ELISA Kit (BioVision, Inc., Milpitas, CA, USA) and IL-6 by Human IL-6 ELISA
kit, ThermoFisher (Scientific, Asnieres-sur-Seine, France). Complement C3a and C5a were
measured with ELISA kit. Thrombin generation in PPP triggered by PPP-Reagent High®

was measured with the Calibrated Automated Thrombogram (CAT) Diagnostica Stago.
Thrombogram parameters were analyzed lag-time (LT): time to peak (ttPeak), peak (Peak),
endogenous thrombin potential (ETP), and mean rate index (MRI). Prothrombin time (PT)
and activated partial thromboplastin time (aPTT) with STA-neoPT and STA-PTT-automat
(Diagnostica Stago). Hemogram and platelet count were assessed using the Sysmex XN-
3100 instrument (Paris, France).
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2.3. Statistical Analysis

A number of patients had to provide statistical power for the derivation of an accurate
score by responding to the following criteria: (a) the model had to be constructed according
to the rule of thumb, the so-called events per variable (EPV) 10-1, (b) less than 10 variables
should be included in the model in order for it to be easy to use [30–32]. Patients with
missing data (clinical variables or biomarkers) were excluded from the analysis. Values of
biomarkers measured in the cohort of patients were compared against values measured in
the control group. When comparisons were required, continuous variables were assessed
using Mann–Whitney U tests; a p-value < 0.05 was considered statistically significant.
Separate random forest classifiers were trained on variables to predict intubation and
mortality. During training, the random forest classifier performed an implicit feature
selection; the top features are those that appear highest ranked in the most trees. To reduce
overfitting, the number of trees were limited to ten, the maximum depth of each tree was
limited to three, and a three-fold cross validation approach was used [33–35]. To remain
conservative and to limit the risk of overfitting further, no hyperparameters were tuned
or optimized by design and intent. The samples were split into two stratified training
(70%) and validation sets (30%), one set for intubation and another for mortality with their
respective features. A Boruta feature reduction method, based on random forest classifiers,
was then used to develop two models, one for intubation and one for mortality, using the
training dataset [36]. The latter provided the two respective models with the least number
of features providing the most accurate prediction ability. The reduced variable sets were
then visualized with a nonlinear dimensionality reduction on the full data matrix using
the t-distributed stochastic nearest neighbor embedding (t-SNE) algorithm [37]. The t-SNE
assumes that the “optimal” representation of the data lies on a manifold with complex
geometry, but with low dimension, embedded in the full-dimensional space of the raw data.
Receiver operating characteristic (ROC) curves were conducted with the random forest to
determine sensitivity and specificity of the reduced variable sets for predicting their binary
outcome, either intubation or mortality. To avoid circular analysis and reduce overfitting,
the reduced model was tested using the validation dataset and a random forest classifier
with ten trees, maximum depth of three, and three-fold cross validation. When evaluating
the diagnostic ability of a test to discriminate the binary outcomes of the subjects, areas
under the curve [>0.90 are generally considered to provide excellent accuracy classification,
while 0.80–0.89 are considered to provide very good accuracy classification (with 1.0 being
a “perfect” test and 0.5 attributed to “luck”)] [38]. All clinical and biological data were
cross-checked with the electronical files using the ORBIS software (Agfa Healthcare®, Paris,
France) and the GLIMS laboratory information system (MIPS®, Paris, France) of Tenon
University Hospital. Data analysis and statistics were performed with the “scikit-learn”
module for Python 3.8.5 Open Source.

3. Results
3.1. Hypercoagulability, Cellular Activation and Inflammation Biomarkers

The derivation cohort consisted of 118 ICU patients who had no missing data out
of 130 patients admitted in ICU during the study period. Baseline demographics and
comorbidities of patients prior to hospital admission are reported in Table 1. The intubation
rate was 70% and the mortality rate was 18% in the studied cohort, being similar in the
ensemble of the ICU-admitted patients. The levels of biomarkers of hypercoagulability,
cellular activation and inflammation in patients and controls are reported in Table 2.
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Table 1. Demographic and clinical data from patients with COVID-19 admitted in ICU.

Variables ICU-COVID-19 Patients
(n = 118)

Demographic Data

Age (age in years) 62.0 (52.3, 70.0)

Sex (male) 82/118 (69%)

Body mass index 27.6 (25.6, 30.1)

Cardiovascular risk factors and disease

Obesity (BMI > 30) 15/118 (13%)

Diabetes 37/118 (31%)

Hypertension 70/118 (59%)

Cardiovascular disease 26/118 (22%)

Stroke 74/118 (63%)

Obliterating arterial disease of the lower limbs 4/118 (3%)

Acute myocardial infraction 17/118 (14%)

Regular tobacco use 10/118 (8%)

Non-vascular comorbidities

Active cancer 4/118 (3%)

Chronic Renal Disease 9/118 (8%)

Dialysis in patients with chronic renal disease 6/118 (5%)

Acute renal failure 18/118 (15%)

Dialysis in patients with acute renal failure 8/118 (7%)

Chronic obstructive pulmonary disease 4/118 (3%)

Chronic respiratory insufficiency 9/118 (8%)

Sickle cell anemia 2/118 (2%)

Personal history of VTE 3/118 (3%)

Antithrombotic treatment before hospital admission

Anticoagulant treatment 5/118 (4%)

Antiplatelet treatment 26/118 (22%)

ICU related complication

Hemoptysis 3/118 (3%)

Choc 53/118 (45%)

EER Dialysis 23/118 (19%)

All Infections 47/118 (40%)

Outcome

Death 21/118 (18%)

Intubation 83/118 (70%)

3.2. Risk Assessment for Intubation Using Machine Learning

A total set of 69 variables including clinical predictors (n = 28) and biomarkers (n = 41)
was analyzed to determine those associated with intubation risk. Feature selection by way
of random forest identified overall ranking, while feature reduction identified the top six
variables with the greatest intubation prediction (Figure 2A). A t-SNE plot illustrating that
the intubated COVID-19 patients were distinct and easily separable from non-intubated
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COVID-19 patients (Figure 2B). Given the imbalanced numbers between cohorts, intubated
or not, we performed the more precise ROC curve analyses using only the top six variables
(Figure 2C). The ‘excellent’ predictive ability of the top six variables for discriminating
an intubated COVID-19 patient from a non-intubated one is shown (AUC = 0.95). The
sensitivity and specificity were 0.90 and 0.92, respectively; positive predictive value (PPV)
and negative predictive value (NPV) were 0.82 and 0.96, respectively. The cut-off val-
ues were: sP-Selectin > 21.5 ng/mL; D-Dimer > 1.347 ng/mL; TFPI > 21.3 ng/mL; TF
activity > 72.8 pg/mL; IL-6 > 14.0 pg/mL; and FXII < 71.5%. Direct comparisons of the
top six variables between intubated and non-intubated COVID-19 patients are shown
in Table 3.

Table 2. Levels of biomarkers of hypercoagulability, cellular activation, and inflammation in patients
with critical COVID-19 and controls. Values are median (range).

Normal Reference Range Control Group
(n = 30)

ICU-COVID-19
Patients
(n = 118)

Complete blood count

Red blood cell count
×106/µL 4.32–5.72 4.20 (2.82–6.32) 4.17 (2.46–6.07)

White blood cell count 4.0–10.0 6.20 (3.87–8.43) 7.88 (2.20–72.46) *

Hematocrit (%) 35.0–47.0 39 (38–46) 34 (21–46)

Hemoglobin (g/dL) 12.0–16.0 11.6 (12.2–14.3) 11.9 (7–15.8)

Platelet count (×109/L) 150–400 220 (180–350) 214 (48–490) **

Neutrophil count (%) 1.5–7.0 4.5 (2.2–7.5) 6.3 (0.78–21.6) *

Eosinophils (×109/L) 0.03–0.7 0.05 (0.02–0.09) 0.01 (0–0.84)

Basophil count (%) <0.1 0.3 (0.1–0.6) 1.0 (0–1) *

Lymphocyte count (%) 1.5–4.0 2.10 ± 0.96 (1.8–2.12) 0.75 (0.13–1110) *

Monocyte count (%) 0.1–1.0 0.11 (0.1–0.3) 0.29 (0.07–5.8) *

Routine coagulation tests

aPTT (ratio
Patient/Control) <1.21 1.11 (0.9–1.2) 1.24 (0.81–3.02) *

PT (s) <13.6 s 11.2 (10–12) 14.7 (11.9–34.7) *

Fibrinogen (g/L) 1.8–4.0 2.41 ± (2–4) 6.97 (3.95–10.0) *

Thrombin generation parameters

lag-time (min) 2.1–3.8 2.5 (2.4–3.2) 2.59 (1.4–5.7)

tt-Peak (min) 4.0–6.6 5.0 (4–5.8) 5.0 (3.1–16.7)

Peak (nM) 222–330 284 (230–300) 253 (12–463) **

MRI (nM/min) 60–120 109 (80–120) 107 (2–250)

ETP (nMxmin) 1000–1900 1520 (1200–1800) 1077 (115–2170) *

Intrinsic and extrinsic clotting pathway parameters

Factor V (%) 70–120 90 (80–110) 121 (42–214) *

Factor VIIa (U/mL) 65–130 75 (68–120) 24 (3–188) *

Factor VIII (%) 50–150 110 (90–120) 143.0 (50–600) *

Factor XII (%) 80–120 105 (85–115) 70 (30–178) *

Natural coagulation inhibitors

Protein C (%) 68–110 99 (85–110) 93 (46–140) *

Protein S (%) 70–115 86 (75–110) 59 (10–112) *

TFPI (ng/mL) 8–12 10 (9–11) 31 (10–460) *

ATIII (%) 80–120 98 (90–110) 92 (51–131) **
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Table 2. Cont.

Normal Reference Range Control Group
(n = 30)

ICU-COVID-19
Patients
(n = 118)

Fibrin degradation products

D-Dimers (µg/mL) <0.50 0.3 (0.2–0.4) 1723 (305–20,000) *

Fibrin Monomer (µg/mL) 0.5–5.50 2.5 (1.5–3.3) 5 (5–150) *

Procoagulant phospholipids and platelet activation

PPL—ct (s) 42–85 63 (55–78) 32 (13–68) *

P-selectin (ng/mL) 82–42 63 (50–75) 28 (10–71) *

Endothelial cell activation

Factor von Willebrand (%) 70–150 90 (70–110) 331 (43–764) *

TF (pg/mL) 35–60 49 (35–60) 71 (17–323) *

TM (ng/mL)) 70–120 90 (75–110) 72 (37–482)

MP-TF+ (pg/mL) 0.05–1.00 0.85 (0.6–1) 1.90 (1.1–7.5) *

Heparanase (ng/mL) 0.08–0.16 0.1 (0.8–1.15) 0.15 (0.1–3.1)

Complement—Cytokine—Kininogen

HMWK (µg/mL) 70–90 77 (70–85) 167 (89–800) *

C3a (ng/mL) 880–2870 2100 (1200–2700) 14,903 (1587–53,602) *

C5a (ng/mL) 4.7–9.5 5.8 (4.8–9.2) 6.1 (1.6–63.6) *

IL-6 (pg/mL) 0–5 1.2 (0.8–1.5 15.6 (0.1–693) *
* p = 0.001, ** p = 0.01 versus the control group.

Table 3. Top six feature combination associated with intubation risk at patients with COVID-19
admitted in ICU. Continuous data are presented as medians (IQRs).

Variable No Intubation (n = 35) Intubation (n = 83) p-Value *

sP-Selectin (ng/mL) 19.5 (15.6, 27.5) 29.9 (23.6, 41.1) <0.0001
D-Dimer (ng/mL) 1124.0 (747.5, 1956.5) 1878.0 (1448.0, 3243.0) 0.0001
TFPI free (ng/mL) 20.5 (18.7, 28.2) 39.4 (27.0, 58.5) <0.0001

TF Ag (pg/mL) 54.7 (42.8, 66.8) 80.5 (59.9, 102.2) <0.0001
IL-6 (pg/mL) 5.0 (1.3, 11.1) 29.7 (7.9, 76.6) <0.0001

FXII (%) 84.0 (73.5, 94.0) 62.0 (47.0, 73.0) <0.0001
* intubation versus non intubation.

3.3. Risk Assessment for Death Using Machine Learning

The full set of 69 variables was analyzed to determine those associated with mortality.
Feature selection by way of random forest identified overall ranking, while feature reduc-
tion identified the top four variables with the greatest mortality prediction (Figure 3A). A
t-SNE plot illustrates that the COVID-19 patient cohort that died was distinct and separable
from those COVID-19 patients that survived (Figure 3B). Given the imbalanced numbers
between cohorts, dead or alive, we performed the more precise ROC curve analyses using
only the top four variables (Figure 3C).

The very good predictive ability of the top four variables for discriminating COVID-19
patient mortality is shown (AUC = 0.82). The sensitivity and specificity were 0.91 and
0.75, respectively (PPV = 0.97 and NPV = 0.50). The cut-off values were: age > 69.5 years;
TFPI > 35.1 ng/mL; TF Ag > 80.4 pg/mL; and mechanical ventilation duration > 1 days.
Direct comparisons of the top 4 variables between COVID-19 patients that died or lived is
shown in Table 4.
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characteristic (ROC) curve analysis of COVID-19 patients, intubated or non-intubated, using the top 
six patient variables, demonstrates an area-under-the-curve (AUC) of 0.95. The diagonal broken 
dark blue line represents chance (AUC 0.50). The cut-off values were: sP-Selectin > 21.5 ng/mL; D-
Dimer > 1.47 ng/mL; TFPI > 21.3 ng/mL; TF activity > 72.8 pg/mL; IL-6 > 14.0 pg/mL; and FXII < 
71.5%. 

Figure 2. The top six variables associated with intubation risk of critically ill patients with COVID-19.
(A): Feature reduction demonstrating the top six patient variables that classify COVID-19 intuba-
tion status, with their % association. (B): COVID-19 patients plotted in two dimensions following
dimensionality reduction in their top six patient variables by stochastic neighbor embedding (tSNE).
Orange dots represent intubated COVID-19 patients, whereas blue dots represent non-intubated
COVID-19 patients. The dimensionality reduction shows that based on the top six patient variables,
the two cohorts are distinct and easily separable. The axes are dimensionless. (C): Receiver operating
characteristic (ROC) curve analysis of COVID-19 patients, intubated or non-intubated, using the top
six patient variables, demonstrates an area-under-the-curve (AUC) of 0.95. The diagonal broken dark
blue line represents chance (AUC 0.50). The cut-off values were: sP-Selectin > 21.5 ng/mL; D-Dimer
> 1.47 ng/mL; TFPI > 21.3 ng/mL; TF activity > 72.8 pg/mL; IL-6 > 14.0 pg/mL; and FXII < 71.5%.
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two cohorts are distinct and separable. The axes are dimensionless. (C): Receiver operating charac-
teristic (ROC) curve analysis of COVID-19 patient outcomes, dead or alive, using the top four patient 
variables, demonstrates an area-under-the-curve (AUC) of 0.82. The diagonal broken dark blue line 
represents chance (AUC 0.50). The cut-off values were: age > 69.5 years; TFPI > 35.1 ng/mL; TF Ag > 
80.4 pg/mL; and mechanical ventilation duration >1 days. 

Figure 3. The top four clinical variables associated with COVID-19 patient mortality. (A): Feature
reduction demonstrating the top four patient variables that classify COVID-19 outcome status, dead
or alive, with their % association. (B): COVID-19 patients plotted in two dimensions following
dimensionality reduction in their top four patient variables by stochastic neighbor embedding (tSNE).
Red dots represent COVID-19 patients that died, whereas green dots represent COVID-19 patients
that survived. The dimensionality reduction shows that based on the top four patient variables,
the two cohorts are distinct and separable. The axes are dimensionless. (C): Receiver operating
characteristic (ROC) curve analysis of COVID-19 patient outcomes, dead or alive, using the top four
patient variables, demonstrates an area-under-the-curve (AUC) of 0.82. The diagonal broken dark
blue line represents chance (AUC 0.50). The cut-off values were: age > 69.5 years; TFPI > 35.1 ng/mL;
TF Ag > 80.4 pg/mL; and mechanical ventilation duration > 1 days.
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Table 4. Top four feature combination associated with mortality risk at patients with COVID-19
admitted in ICU. Continuous data are presented as medians (IQRs).

Variable Alive (n = 97) Dead (n = 21) p-Value *

Age (years) 60 (51, 66) 73 (70, 77) <0.0001
TFPI free (ng/mL) 28.6 (20.8, 50.1) 40.0 (35.4, 48.6) 0.057

TF Ag (pg/mL) 66.4 (53.4, 94.6) 89.5 (70.0, 115.4) 0.044
Duration of hospitalization in ICU (days) 0 (0, 0) 8 (0, 8) <0.0001

* dead versus alive.

Figures 2 and 3 represent two distinct models; generated separately but using the same
methodologies. The data was identical in both models with the exception that MV duration
was excluded for the intubation outcome. For intubation, the best model resulted in six
features determined by the algorithm. For mortality, the best model resulted in 4 features
determined by the algorithm. As such, Figures 2 and 3 only represent the features of these
best models.

4. Discussion

The observational cohort study ROADMAP-COVID-19 enrolled patients with severe
COVID-19 fulfilling the criteria for ICU admission and provides a methodology for the
identification of patients with COVID-19 at high risk for intubation or death using common
clinical predictors and biomarkers of inflammation, hypercoagulability, and endothelial
cell activation.

Critically ill patients with COVID-19 at the first day of ICU admission presented
significant alterations of clotting factors and natural coagulation inhibitors. Patients, as
compared to healthy controls, showed significant decrease in factor XII, which is the origin
of aPTT prolongation and increase in HMWK, C5 and C3. Patients also showed a significant
decrease in factor VIIa, which was related with the prolongation of PT. The decrease in FVIIa
could result from factor VII consumption following exaggerated TF pathway activation
and/or increased inhibition of factor VIIa by AT. The consumption of AT observed in the
patients’ cohort favors the second hypothesis, which needs to be explored by measuring
the factor VIIa-AT complexes in patients’ plasma. The data presented herein underline the
importance of exacerbated activation of contact phase and intrinsic clotting pathway and
TF pathway in the disease worsening process [39–42]. As it was expected, the levels of IL-6,
a major mediator of the cytokine storm and predictor of mortality was above the UNL in
the vast majority of the patients.

In addition, patients with critical COVID-19 showed an important consumption of the
natural coagulation inhibitors AT, protein C and protein S, which shifts the equilibrium of
coagulation towards hypercoagulability.

Nevertheless, this shift was not reflected on thrombin generation measured with
calibrated automated thrombogram most probably because of the increase in the TFPI
levels (which inhibit the initiation phase of thrombin generation) as a consequence of
endothelial cell activation.

P-Selectin, D-Dimer, free TFPI, TF activity, IL-6 and FXII, were identified as leading
predictors for the intubation risk while the leading variables for death were age, free TFPI,
TF activity and duration of hospitalization. The two panels of predictors showed excellent
discrimination capacity for the intubation risk and the mortality risk with an AUC 0.95
and 0.82, respectively. The number of predictors included in the algorithm responds to the
“rule of thumb” and warrants both feasibility and accuracy of the cut-offs. The designated
biomarkers can be easily measured in tertiary hospitals using commercially available
assays. Noteworthy, elevated D-Dimer was the strongest contributor in distinguishing
COVID-19 status. As it was expected, patients who were intubated had higher levels
of D-Dimer as compared to the patients who were not incubated. The increased levels
of D-Dimers document an environment of sustained fibrin formation and lysis. Two
systematic reviews highlight that D-dimer values are higher in non-survivors as well as in
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patients with severe COVID-19 than in those with mild disease showing the association
between D-dimer levels and disease severity, or death [43,44]. Nevertheless, our data
show that the predictive value of D-Dimers alone for intubation was weak. This finding
is in line with the concept that D-dimers cannot be used as a stand-alone test for the
evaluation of the risk of COVID-19 aggravation and mortality [44,45]. The derivation
group was homogenous regarding the timing of the assessment (all patients were enrolled
on the first day of ICU admission) and representative of the population of patients with
severe COVID-19, since very limited exclusion criteria were applied. Demographics and
epidemiological characteristics, the frequency of the underlying diseases, as well as the
rate of intubation (70%) and mortality (18%) were similar to those reported in the literature,
further supporting the generalizability of our findings [46,47]. These characteristics allow
implementation of the COMPASS-COVID-19-ICU RAM across in tertiary hospitals.

The prospective design is an additional strength of ROADMAP-COVID-19 study, since
a detailed registration of clinical variables was possible, and all analyzed patients were
tested with the whole panel of the 41 biomarkers. Time-to-event analysis is considered as an
optimal methodology for the elaboration of predictive scores, allowing for administrative
censoring in a competing risk framework. However, this strategy was not applied, because
both clinical end-points (intubation and death) occurred during hospitalization in ICU.
Thus, the interval from inclusion to the endpoint occurrence is dictated by the usual stay
in ICU. External validation is the optimal strategy to control the accuracy of predictive
cut-offs. However, in light of the actual status of the pandemic, this validation strategy
is practically impossible when taken into consideration with the persisting pressure on
the ensemble of the ICU and the workload of the medical groups of the public healthcare
system with which our group collaborates in France, as well as in other European countries
and in North America. A validation study in an independent cohort consisting of patients
hospitalized in the ICU is ongoing.

The COMPASS-COVID-19-ICU score applied on critically ill patients identified at least
95% and 82% of those at high risk for intubation or death, respectively.

The primary reason for intubation and ventilation in patients with COVID-19 is
refractory hypoxia, likely exacerbated by pulmonary microvascular thrombosis resulting
in ventilation/perfusion (V/Q) mismatch. Hence, the six variables retained in the model
are markers of hypercoagulability, activation of platelets and endothelial cells as well as
inflammation. Moreover, FXII together with TFa were retained in the model indicating
that deterioration of patients with critical COVID-19 is associated with activation of both
pathways of blood coagulation. Once again, the prognostic power of IL-6 levels became
significant for intubation risk.

The data presented herein lead to the conclusion that deterioration of patients with
critical COVID-19 is driven by endothelial cell activation and hypercoagulability. Thus, we
assume that patients identified as high risk using the COMPASS-COVID-19-ICU model
could be eligible for intensified antithrombotic treatment non-invasive ventilation/high-
flow oxygen and prone positioning [47–51]. This strategy needs to be tested in a prospective
clinical study. This has to be further analyzed, since it could orient the research of treatment
development towards the discovery of agents that downregulate endothelial cell activation
and the optimization of the antithrombotic treatment.

In conclusion, this study provides compelling evidence showing that critical COVID-19
is related with severe endothelial cell activation and hypercoagulability orchestrated in the
context of inflammation. This study led to a comprehensive and accurate predictive model
for the evaluation of the risk of mechanical ventilation and death in patients with critical
COVID-19. Accurate prediction requires the full set of reduced variables. It is possible that
a single multiplex immunoassay could be constructed to measure the identified biomarkers
and predict outcome shortly after admission. Such prediction with COMPASS-COVID-19-
ICU would aid resource mobilization, discussions with patients’ and their families, and
help stratify patients for clinical trials and to apply personalized medical management and
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prompt therapeutic intervention. A future prospective clinical trial could be initiated to
validate the identified biomarkers.
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