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Abstract: The development of molecular studies to define the somatic genetic alterations has revolu-
tionized the diagnostic and therapeutic management of acute myeloid leukemia (AML). AML is a
highly heterogenous disease that includes many molecular subtypes; each subtype is heterogeneous
both for the presence of variable co-mutations and complex combinations of clones and subclones,
changing during disease evolution and in response to treatment. The treatment of AML is changing
from standardized schemes of induction and consolidation chemotherapy to tailored approaches
according to molecular and genetic profiles and to targeted therapy. Several molecularly targeted
therapies have been approved for the treatment of some AML patients, including mutation-specific
targeted drugs such as FLT3, IDH1 and IDH2 inhibitors, mutation-independent targeted drugs
such as the Bcl2 inhibitor venetoclax, the hedgehog inhibitor glasdegib and the CD33-targeted drug
gemtuzumab ozogamicin. Furthermore, recent studies have shown the feasibility of a personalized
medicine approach for the treatment of AML patients, where the therapy decisions are guided by the
results of genomic studies.
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1. Introduction

The development of massive parallel sequencing techniques has revolutionized the
study of human cancers, allowing to sequence the entire genome and to provide detailed
information on the genetic alterations present in tumor cells. The techniques of next
generation sequencing (NGS) allowed to define the most recurrent genetic alterations
observed in cancer cells, including gene mutations, small insertions/deletions (indels),
gene fusions, alternative splicing and copy number alterations. NGS can provide, in a few
days, the profile of genetic alterations in the blood or bone marrow samples from a patient
with leukemia.

These dramatic progresses in the study of genomic alterations have considerably
contributed to improve the understanding of the genetic alterations occurring in a het-
erogeneous disease, such as acute myeloid leukemia (AML). The current diagnostics of
AMLs implies cytomorphology analysis, multiparameter flow cytometry, cytogenetics and
molecular genetics. NGS studies have allowed to define the genomic landscape of AMLs, in
its complexity and heterogeneity; >90% of AMLs display at least one gene mutation [1-4].
Different patterns of genetic instability are observed in AML cells; in fact, about 20% of
AML patients can be defined according to fusion genes, 31% by chromosomal aneuploidies
and 46% by gene mutations only [5]. Frequently, AML patients share mutations observed
in normal subjects with clonal hematopoiesis; however, the majority of these patients
acquired >two mutations, with clonal distribution [5]. The molecular classification of
AMLs identified some major molecular subtypes: (i) AMLs characterized by peculiar
translocation events (balanced rearrangements) leading to the formation of fusion genes
and correspondent fusion proteins, including inv(16) with CBFB-MYH11, t(15;17) with
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PML-RARA, t(8;21) with RUNI1-RUNXT1, inv(3) with GATA2-MECOM, MLL fusions and
t(6;9) with DEK-NUP214; (ii) AMLs exhibiting chromatin-spliceosome gene abnormalities,
including mutations of genes involved in RNA splicing (SRSF2, SF3B1, U2AF1, ZRSR2),
chromatin (ASXL1) and transcription RUNX1); (iii) AMLs characterized by TP53 muta-
tions, complex karyotype alterations and copy-number chromosome alterations; (iv) AMLs
displaying mutations of the nucleophosmin 1 (NPM1) gene, mutually exclusive to other
genomic rearrangements and with frequent co-mutations in hydroxymethylation genes
(DNMT3A, TET2, IDH1, IDH2); (v) AMLs with chromosomal aneuploidies, characterized
by double CEBPA mutation, with GATA2 and NRAS co-mutations found in about 30% of
cases; (vi) AMLs with IDH2R172 mutation, defined as a distinct subgroup for the mutual
exclusivity with NPM1 mutation and other class-defining lesions [3,4].

The application of NGS techniques has led to the identification of 40-50 genes recur-
rently mutated in AMLs [6-8]. Driver gene mutations play a key role in AML development
with a clear pathogenetic and prognostic relevance [6-8]. The identification of these
mutations has led to the individuation of molecular targets for mutation-based targeted
therapy [9-13]. This progress has involved a careful definition of AML subtypes at the level
of their main mutational events, of their genotypic and phenotypic heterogeneity, thus
defining sensitive tools for risk stratification of these patients and for a sensitive and accu-
rate evaluation of therapy response and for better planning the optimal treatment for each
patient. Examples of treatment improvements are related to the development and to the
clinical introduction of mutation-specific targeted small molecule inhibitors against mutant
FLT3 or mutant IDH1/IDH?. In parallel, the introduction in the therapeutic armamentarium
of venetoclax, a Bcl2 inhibitor, in association with hypomethylating agents is providing
a consistent improvement in the survival of a part of older AML patients [9-13]. Thus,
recently some new drugs were approved for the treatment of AML patients (Table I). Un-
fortunately, a significant proportion of patients develop resistance to these novel therapies
whose molecular mechanism has been identified, in part bypassed by rationally designed
combination therapies [9-13]. The final demonstration that these targeted treatments result
in a clear benefit in terms of overall survival requires time and the careful definition of the
most responsive AML patients.

The aim of this review paper is to provide an outline of the major contributions of
molecular studies on AMLs to the development of a targeted /personalized treatment.

2. The Fundamental Contribution of Precision Medicine to a More Rational and
Predictive Risk Stratification of AML Patients

A correct risk stratification of AML patients is of fundamental importance for the
adoption of the potentially optimal treatment strategy for each patient. Some clinical
parameters and the integration of immunophenotypic characteristics, cytogenetic abnor-
malities and molecular mutations, co-occurring or in isolation, contributed to a more
refined prognostic assessment.

The development of genomics has improved our understanding of AML development
and resulted in novel modes of AML risk stratification that have been in part adopted in
recently proposed classifications of AMLs. Prognostic risk of AMLs is defined at diagnosis
according to the presence of specific cytogenetic and molecular aberrations [14-16]. Criteria
for AML classification and risk stratification have been proposed by several organizations,
including the European Leukemia NET (ELN) [14], National Comprehensive Cancer Net-
work (NCCN) [15] and World Health Organization (WHO) [16]. The NCCN and ELN
guidelines are the most adopted and stratify AML patients into three different risk groups:
Favorable, intermediate and poor/adverse [14,15]. The most adopted risk classification is
the 2017 ELN risk stratification; according to this classification, patients are classified into
one of the three risk groups, including favorable, intermediate and adverse. Favorable prog-
nosis group includes AMLs with acute promyelocytic leukemia (APL) t(15;17)(q22;q12),
balanced translocations t(8;21)(q22;q22), biallelic mutated CEBPA and inv(16)(p13.1q22),
mutated NPM1 without FLT3-ITD or with FLT3-ITD"®. The intermediate group comprises
mutated NPM1 with FLT3-ITD"8", WT-NPM1 without or with FLT3-ITD"%, (9;11), MLLT3-
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MLL and cytogenetic abnormalities neither favorable or adverse. The adverse AML group
comprises AMLs with complex karyotype, inv(3)(q21q26)/t(3;3)(q21;q26), DEK-NUP214
t(6;,9)(p23;q34), RPN1-EVI1, t(6;11), —5 or del(5q), —7 or abnormal (17p) or monosomal
karyotype, TP53 mutations, RUNX1 mutations, ASXL1 mutations, FLT3-ITD"%" isolated
without NPM1 mutations and with normal karyotype. The NCCN and ENL adopt a
similar classification scheme for favorable-risk AMLs, although the criteria for favorable
risk differ in some respects in these two evaluation systems [14,15]. It is important to
point out that each of these risk groups is consistently heterogeneous, even considering the
favorable-risk AML group. Thus, a consistent genotypic and clinical heterogeneity exists
within the favorable risk AML, a variability observed also in single molecularly-defined
AML subtypes.

A recent study by Herold and coworkers, on 1116 adult AML patients not selected by
genetics, validated the ELN-2017 classification and showed that: (i) In 599 patients < 60 years,
the overall survival (OS) was 64% for ELN-2017 favorable, 42% for intermediate-risk and
20% for adverse-risk AMLs; (ii) In 517 patients > 60 years, corresponding five-year overall
survival (OS) was 37%, 16% and 6% [17]. The analysis of the mutational profile showed
that the large majority of RUNX1, ASXL1 and TP53 mutations were observed in the ad-
verse risk group; SRSF2 and BCOR mutations were more frequent in the adverse group
than in the two other groups; MLL-PTD mutations were more frequent in the adverse
and intermediate groups, compared to the favorable group; NRAS and DNMT3A muta-
tions were more frequent in the favorable-intermediate groups compared to the adverse
group [17]. These authors proposed to refine the 2017 ELN classification by separating a
very favorable subgroup (patients with inv(16)/t(16;16) or biallelic CEBPA mutations) from
the favorable group, and a very adverse subgroup (patients with TP53 mutations and a
complex karyotype) from the adverse group [17].

The 2017 ELN stratification system has provided and continues to provide an essential
support to the risk evaluation of AML patients both in clinical current practice and in
clinical trials. However, it is evident that 2017 ELN cannot predict the real risk of a part
of AML patients, resulting in either an underestimation or in an overestimation of the
individual patient’s risk. Furthermore, the 2017 ELN is based on scoring systems that
are intrinsically limited by significant heterogeneity existing in AML subtypes. Several
recent studies have provided evidence that the 2017 ELN classification can be implemented
through a better evaluation of the impact of the individual AML mutational profile; only
a technology like NGS makes it feasible to capture the genetic heterogeneity underlying
AML heterogeneity, at individual level.

Risk stratification systems integrating mutational or gene expression data were found
to add prognostic value to the current ELN risk classification [18,19]. Risk classification of
AML based on a combination of molecular and clinical data may contribute to improve
AML patient stratification. An example of this approach is given by the prognostic model
for AML patients recently proposed by Ma and coworkers; in this model, several param-
eters including age, hematopoietic cell transplantation-comorbidity index, white blood
cell count, hemoglobin, biallelic CEBPA, DNMT3A mutations, FLT3-ITD/NPM1 status and
ELN cytogenetic risk status were identified as independent prognostic factors for overall
survival in multivariate analysis [20]. This model showed a good performance with a
C-index of 0.74 and can be applied to both young and older AML patients, and allows also
the distinguishing of eligible candidates for hematopoietic stem cell transplantation [20].

3. The Contribution of the Machine Learning Approach to Improve the Assessment of
AML Diagnosis and Prognosis

Machine learning is a branch of computer science and statistics that represents a form
of artificial intelligence, based on the development of predictive and descriptive models
by learning from training data rather than being pre-programmed according to rigid
schemes; the learning approach implies both supervised learning and an unsupervised
learning [21,22]. Therefore, machine learning can be considered as a form of interpretation
and analysis of a specific reality based on the accumulation and elaboration of thousands of
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data, allowing the development of algorithms suitable to analyze the individual complexity
and heterogeneity. Thus, it is not surprising that machine learning has rapidly found many
applications in medicine from diagnosis, to prognosis and treatment [23]. The applications
include also the management of hematological malignancies and particularly of AMLs, at
the level of the analysis of genomic and gene expression data for diagnostic, prognostic
and therapeutic purposes [21,22,24].

Various recent studies have shown the support of a machine learning approach to the
analysis of genomic and transcriptomic data on AML samples.

Some studies were focused to explore a machine learning approach based on large
dataset of mutational profiles and clinical data to perform diagnosis of several bone marrow
myeloid neoplasms [25] and to predict the outcomes of myelodysplasias, myeloproliferative
disorders and chronic myelomonocytic leukemia, particularly for that concerns the risk of
AML transformation [26]. Radakovich et al. have used a machine learning approach to
explore the genotype-phenotype correlations in patients with MDS and related myeloid
malignancies using a large genomic database based on 2697 patients [27]. This analysis
showed some associations between genotype and clinical phenotype: SF3B1 mutations
were associated with normal karyotype and some clinical features and TP53 mutations
were associated with complex karyotype; clinical characteristics were also associated with
specific genomic alterations: Normal karyotype correlated with the presence of SF3B1,
ZRSR2 and DNMT3A mutations and absence of TP53, ASXL1 and KRAS mutations, while
age <65 years was associated with the presence of NRAS and JAK2 mutations and the
absence of TET2, SF3B1 and SRSF2 mutations [27]. These observations support the existence
of a link between mutational data and clinical characteristics [27].

Many studies showed the consistent impact of machine learning approach in the
discovery of algorithms to improve the AML classification, prognosis prediction and
outcomes and screening of drug sensitivity.

Gerstung et al., through the analysis of 1540 AML patients with available matched
genomic-clinical data (knowledge bank), developed multistage statistical models more
accurately predicting likelihoods of remission, relapse and mortality [24]. This study was
based on a modified regression-based method for estimating the likelihood of survival
whether a patient received hematopoietic stem cell transplantation in first remission or
after relapse [28]. Particularly, this study showed that: (i) Clinical and demographic factors,
such as patient age, performance status and blood counts, exerted the most influence
on early death rates, including death in remission (due to treatment-related mortality);
(ii) genomic features, mostly influencing the dynamics of disease remission and relapse [24].
Using a knowledge bank to model patient outcomes, a substantial fraction (about 1/3)
was reclassified and would have their treatment altered compared to current recommenda-
tions [28]. Furthermore, personal tailored management decisions could reduce the number
of hematopoietic stem cell transplants by 20-25%, while maintaining overall survival
rates [28]. Furthermore, about 15% of ELN favorable risk patients are predicted to poten-
tially benefit from stem cell transplantation in first complete remission [28]. It is important
to point out that the accuracy of the predictive potential of knowledge bank-based systems
largely depend on continuously updated databases based on thousands of patients [28].

Recently, Fleming and coworkers proposed a machine learning (ML) approach to
develop a hierarchical prognostic risk model that hierarchically categorizes cytogenetic and
molecular factors into groupings that accurately predict survival [25]. This approach was
used to explore two large cohorts of AML patients that were classified into four prognostic
groups: good (30%), intermediate (26%), poor (26%) and very poor (18%); the ELN2017
classification evaluated these AMLs as: good (39%), intermediate (31%) and poor (30%) [29].
It is important to note that, in this system of AML prognostication, a large number of
molecular parameters was taken in account: Complex karyotype, inv(16), CEBPA“"",
inv(3)/t(3;3), FLT3-ITD, spliceosome mutations (U2AF1, SRSF2 or SF3B1), NPM1"" (in
the absence of FLT3-ITD), t(8;21), MLL translocations, NRAS"™, TP53"#  ASXL1™" [29].
This evaluation system allowed the prognostication of many AML subgroups: (i) In



Hemato 2021, 2

135

the group characterized by complex karyotype, the presence of high-risk monosomies
or chromosomal abnormalities or TP53 mutations have a very poor prognosis, whereas
complex karyotypes without these alterations have a better prognosis; (ii) CEBPA"
AMLs have a good prognosis, particularly when associated with NRAS mutations; (iii) co-
occurrence of FLT3-ITD and spliceosome mutations was associated with very negative
outcome; (iv) FLT3-ITD high allelic ratio (>0.5) has a very poor prognosis when present in
the absence of concomitant NPM1 mutations; (v) triple mutant NPM1/DNMT3A/FLT3-ITD
AMLs display a poor prognosis; (vi) AMLs with spliceosome mutations display a poor
prognosis when associated with ASXL1 mutations or ASXL1 heterozygous deletion; (vii)
among NPM1-mutant AMLs, NRAS co-mutations identified a subgroup associated with
good prognosis, whereas those associated with IDHI mutations display an intermediate
prognosis; (vii) the presence of KIT mutations in #(8;21) AMLs was associated with an
intermediate prognosis [29].

Using a machine learning approach, Shreve et al. have developed a novel prognostic
model of AMLs that incorporates clinical, cytogenetic and mutational data to predict
personalized outcomes specific of individual patients [26]. This study was based on
genomic data from 3421 patients; a machine learning algorithm capable of accounting
for survival was used to generate the new model: In this model, clinical and molecular
variables were randomly selected for inclusion in determining overall survival [30]. The
analysis of the mutational impact in the various cytogenetic risk groups showed that the
most frequently mutated genes in low risk were NRAS, KIT, FLT3 and KRAS, in intermediate
risk were NPM1, FLT3, DNMT3A, IDH2, TET2 and in high risk were TP53, DNMT3A,
NRAS, RUNX1, PTPN11 [30] (Figure 1). Importantly, when assayed on individual data
from four cohorts of patients, this evaluation system showed a C-index for overall survival
ranging from 0.80 to 0.85 compared to 0.59 when using the 2017 ELN criteria [30]. This
study reached also another important conclusion concerning the differential impact of
genomic alterations on overall survival in each cytogenetic risk group, thus indicating all
the complexities relative to the incorporation of mutational data into risk stratification [30].
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Figure 1. Recurrent gene mutations observed in a group of 3421 AML patients subdivided into three
prognostic risk groups (low risk, intermediate risk and high risk), according to a machine learning
algorithm accounting for survival. The data are reported in Shreve et al., 2019 [30]. Abbreviations:
mut: mutant; del: deletion; abn: abnormal.
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Awada et al. have used the machine learning approach to improve the subclassification
and prognostication of AML through the collection and analysis of genomic data from
a multicenter cohort of 6788 AML patients [31]. Using a logistic regression model some
mutations resulted enriched in pAML (CEBPA™", CEBPAbYiallelic. DNMT3A, FLT3-ITD,
FLT3-TKD, GATA2, IDH1, IDH2R140 NRAS, NPM1, WT1) and other mutations in sAML
(ASXL1, RUNX1, SF3B1, SRSF2, U2AF1, —5/del(5q), —7/del(7q), —17/del(17P), del(20q), +8
and complex karyotype) [31]. Using the Bayes latent class analysis, four unique genomic
clusters of distinct prognoses were identified: low risk, intermediate-low risk, intermediate-
high risk and high risk [27]. The generation of a random forest model allowed the extraction
of invariant genomic features driving each group; the main genomic alterations observed
in these four groups are reported in Figure 2 [31].
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Figure 2. Recurrent genetic abnormalities observed in 6788 AML patients stratified into four prog-
nostic risk groups (low risk, intermediate-low risk, intermediate-high risk and high risk), according
to a machine learning algorithm. The data are reported in Awada et al., 2020 [31].

Siddiqui et al. have shown the potential of machine learning algorithms, trained using
factors available at the time of admission for AML treatment, to predict death during the
patient’s hospitalization; this study was based on the acquisition of data relative to a total
of 29,613 patients with AML [32].

The machine learning approach was shown to be very useful for a prognostic identifi-
cation of AMLs with specific driver mutations. Supervised machine learning analysis of
the profile of genetic alterations observed patients with RUNX1-RUNXT1 AMLs identi-
fied the presence of concurrent NRAS mutations and the absence of mutations in ASXL2,
RAD?21, KIT and FLT3 genes and low mutational burden as conditions of favorable genetic
risk [33]. According to these data, the patients were stratified into a poor genetic risk group
associated with lower overall survival and relapse-free survival, compared to the group of
patients classified as good genetic risk [33]. In another study, Patkar and coworkers, using
the machine learning approach, have developed a scoring model for the risk stratification
of AML patients with NPM1 mutations; in this model, the five top variables to predict
the outcomes of these leukemias were NPM1 VAF (variant allelic frequency), FLT3-ITD
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VAF, presence of IDH2 mutations, DNMT3A R882 mutation, and type A NPM1 mutation:
The presence of type A NPM1 and IDH2 mutations and low levels of FLT3-ITD VAF and
NPM1 VAF and absence of DNMT3A mutations were favorable prognostic factors [34]. This
scoring system allowed to stratify NPM1-mutant AMLs into three groups with favorable,
intermediate and poor genetic risk, exhibiting a remarkably different outcome in terms of
overall survival and relapse-free survival. Furthermore, a strong statistical correlation was
observed between ML-derived genetic risk and post-induction flow cytometry minimal
residual disease [34].

The analysis of gene expression profiling was essential to improve the molecular classi-
fication of AMLs and to identify new biomarkers suitable for clinical studies. Initial studies
have led to the identification of gene expression signatures with a prognostic predictive
value. Thus, Bullinger et al. reported the identification of a 133-gene clinical-outcome pre-
dictor, which accurately predicted overall survival, including also patients with AML with
a normal karyotype [35]. Li et al., through the analysis of a very large set of data derived
from different cohorts of AML patients, identified a robust prognostic signature composed
of 24 genes, capable of predicting overall survival and event-free survival. Furthermore,
this signature provides a significant improvement of the ELN risk classification of AML [36].
Marcucci et al., through an epigenetic analysis involving the analysis of genes with dif-
ferently methylated regions in older AML patients, reported the identification of seven
genes whose expression was associated with outcome: A low score was associated with a
better complete remission rate and longer disease-free survival and overall survival [37].
Ng et al. used an approach aiming to develop predictive and/or prognostic biomarkers
related to stemness, based on the identification of genes that are differentially expressed
between leukemic stem cell-positive and leukemic stem cell-negative cell fractions derived
from 78 AMLs. Using this approach, they identified 17 genes whose expression score was
highly prognostic in five different cohorts of AML patients, comprising different AML
subtypes [38]. More recently, some machine learning studies were based on the analysis of
transcriptomic AML profiles. Warnat-Herresthal reported the use of LASSO (Least Abso-
lute Shrinkage and Selection Operator) regression analysis, a machine learning method
allowing to automatically select the most predictive characteristics, for the automatic diag-
nosis and classification of AMLs based on transcriptomic data [35]. This analysis utilizes
data from 105 studies, involving 12,029 AML, ALL (Acute Lymphoblastic Leukemia), MDS
patients and normal subjects; this system identified AMLs based on transcriptomic data,
with >99% accuracy [39]. Interestingly, Wagner et al. used an artificial neural network
(ANN)-based machine learning approach to a dataset of 593 AML and identified a three-
gene expression signature comprising CALCRL, CD109 and LSP1, predictive of both overall
and relapse-free survival [40]. This three-gene prognostic index separated the adult AML
patients in each 2017 ELN cytogenetic risk category into subgroups with different survival
probabilities and allowed also the identification of patients with high-risk features [40].
The prognostic impact of this three-gene index was validated in different cohorts of AML
patients, including childhood AML [40]. In another study, Rouphail and coworkers have
used a machine learning approach, based on the analysis of transcription data relative to
242 AML patients, mainly NPM1-mutated, to define differences in transcription signatures
of NPM1™"t /FLT3-ITD compared to NPM1™4/FLT3-WT [41]. The algorithm that this study
developed, identified 20 genes that are highly specific for NPM1™""/FLT3-ITD AMLs; these
genes affect key biochemical pathways involved in the regulation of cell differentiation,
proliferation, mitochondrial oxidative phosphorylation, histone modification and lipid
metabolism [41].

Other few recent studies have started to explore the possible contribution of machine
learning approach to develop models to predict the outcome of allogeneic stem cell trans-
plantation. Thus, Gandelman and coworkers provided preliminary evidence that machine
learning computational studies may better reveal biomarkers and stratify risk of patients
with hematological malignancies undergoing allogeneic SCT, than the current approach
based on cumulative severity [42]. Choi and coworkers have shown the feasibility of the
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machine learning-based approach, using random forest models, to predict survival after
allogeneic stem cell transplantation in hematologic malignancies [43]. Finally, Nazha and
coworkers have developed a personalized prediction model for outcomes after allogeneic
SCT in patients with MDSs; the algorithm developed in this model identified the following
variable prior to cell transplant impacting overall survival: Age, TP53, RAS, JAK2, ZRS2
and CUX1 mutations, cytogenetic profile, conditioning regimen, donor age, WBC count,
hemoglobin and diagnosis of therapy-related MDS [44]. Importantly, this novel model
is able to provide survival probability at different time points specifically for a given
patient [44].

A machine learning-based approach was used also in drug discovery and develop-
ment. Thus, Lee et al. have reported the development of a novel method for predicting
AML drug sensitivities; this approach incorporates information learned from the Tumor
Cancer Genome Atlas to help to support the link between genetic alterations and the
pattern of drug sensitivity [45]. Using this approach, the authors identified SMARCA4
as a marker and driver of sensitivity to the topoisomerase II inhibitors mitoxantrone and
etoposide, showing that the increased sensitivity predicted by the model was confirmed by
in vitro assays [41]. Other studies reported the use of machine learning in drug screening:
Chen et al. adopted machine learning to evaluate potential STAT3 inhibitors in AML [46];
Cutler and Fridman developed a machine learning-based model to predict high sensitivity
to the compound FLX925, a FLT3 inhibitor, in AML [47].

Machine learning algorithms have been also applied to the detection and analysis of
minimal residual disease. Minimal (or measurable) residual disease refers to the detection
of residual leukemic cells below the threshold for morphological recognition and represents
an important tool to evaluate the response after anti-leukemia treatment and is an important
prognostic indicator for AML. MRD (Minimal Residua Disease) can be detected either
using molecular assays or multiparameter flow cytometry (MFC). MFC has been and is
extensively used in the detection of MRD in various hematological malignancies, including
AML and MDS. However, the current methodology of MFC is complex at the level of data
interpretation for the problem of manual flow cytometer gating. To bypass these difficulties,
Ko et al. have used two machine learning techniques to develop an MFC interpretation
algorithm for MRD detection using two large cohorts of AML and MDS patients [48].
High clinical validity of the algorithm was demonstrated through appropriate outcome
prediction in the post-induction chemotherapy setting [48].

4. An Integrated Approach Is Required for the Development of Personalized Medicine
in AML

The diagnosis of AMLs requires a multidisciplinary, integrated diagnostic approach,
based on cytomorphology, cytochemistry, immunophenotyping, cytometry and molecular
genetics [49]. A multidisciplinary diagnostic approach is today fundamental for appro-
priate AML subtype identification, patient prognostication and to define optimal therapy
and also for definition of markers to monitor response to therapy [49]. This approach is
particularly important in view of the development of precision medicine.

Furthermore, functional approaches, such as ex vivo drug sensitivity and resistance
profiling, may cooperate with genomic, epigenomic and transcriptomic data in the identifi-
cation of new targeted therapies and thus increase the number of drugs that can be tailored
to AML patients [50].

Tyner and coworkers performed an integrative analysis of clinical, cytogenetic, molec-
ular genetic and transcriptional data, together with in vitro testing of primary samples,
examining drug sensitivity against 122 different compounds [46]. This functional genomic
analysis was performed on a large cohort of 562 AML patients based on whole exome
sequencing, RNA-sequencing and ex vivo drug sensitivity analyses [51]. This approach
showed several relevant findings: (i) Genetic subgroups, including TP53 or ASXL1 mu-
tations, were associated with widespread drug sensitivity; (ii) a sensitivity of FLT3-ITD
mutant AMLs to FLT3 inhibitors; (iii) NRAS-mutant AMLs resistant to most of the drugs,
but sensitive to MAPK inhibitors; (iv) IDH2-mutant AMLs are sensitive to several drugs,
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whereas the contrary is true for IDHI-mutant AMLs; (v) RUNXI-mutant AMLs are sensi-
tive to PIK3C/MTOR inhibitors; (vi) AMLs with mutations of spliccosome genes display
a peculiar pattern of drug sensitivity; (vii) triple mutant NPM1/FLT3/DNMT3A AMLs
are sensitive to ibrutinib [51]. Co-occurrence of some genetic mutations and some gene
expression clusters were associated with and predicted response to specific drugs [51].

Recent advancements in understanding of the molecular alterations of AMLs have de-
termined the generation of a growing number of molecularly targeted drugs, such as FLT3
and IDH inhibitors. However, several limiting factors hinder the development of effective
single-agent targeted therapies, including the more or less pronounced heterogeneity of
AML subtypes, the emergence or amplification of pre-existing subclones leading to relapse,
and protective signals mediated by the tumor microenvironment. The combination of drugs
that target different pathways may represent a valuable strategy to improve the response
and to reduce the resistance mechanisms by tumor cells. Thus Kurtz et al. have evaluated,
on fresh AML blast cells, the sensitivities to combinations of molecularly targeted drugs
acting on different cell-signaling responses, and have correlated these responses with
the diagnostic clinical /genetic/cytogenetic and cellular features of the various patient
samples [52]. These studies showed that, for AML cells, several combinations of targeted
agents that include venetoclax (a Bcl2 inhibitor) and a kinase inhibitor are affective [52].

Various authors have reported automated systems for ex-vivo drug testing capable of
predicting chemosensitivity in AML patients [53-55].

Other studies have evaluated the chemogenomic landscape of molecularly-defined
AML subsets. Thus, Simon et al. have evaluated, in parallel, the mutational spectrum
and gene expression profile of RUNX1-mutated AMLs and have correlated these results
to drug sensitivity assayed in vitro [56]. Chemical screening showed that most RUNX1-
mutated AML specimens are sensitive to glucocorticoids, resulting in an inhibitory effect
on cell proliferation [56]. Moison et al. have reported a comprehensive genomic and
transcriptomic analysis of a cohort of AML patients with complex karyotype and identified
in these AMLs the frequent (about 80%) aberrant expression of the HMGA?2 oncogene, in
a TP53-independent manner [46]. HMGA2 mediated sensitization of complex karyotype
AMLs to G2/M checkpoint, thus offering a potential therapeutic opportunity using drugs
such as CHK1 and PLK1 inhibitors [57].

As above reported, venetoclax-based therapy (venetoclax in association with hy-
pomethylating agents such as azacytidine or decitabine) can induce responses in about
70% of older previously untreated AML patients. However, upfront resistance, as well as
acquired resistance determining relapse limit the effectiveness of this treatment. Zhang
and coworkers have used an integrated genomic and functional screen data analysis to
identify biomarkers predicting venetoclax sensitivity and resistance in AML and to identify
venetoclax combination strategies to bypass resistance mechanisms [54,55]. By integrating
the clinical data, exome and RNA sequencing, and inhibitor data from samples derived
from approximately 200 samples of treated patients, several conclusions were reached: A
myelomonocytic phenotype of leukemic cells (as supported by high CD14 expression),
upregulation of BCL2A1 and CLEC7A and mutations of PTPN11 and KRAS were associated
with resistance to venetoclax and multiple venetoclax combinations; venetoclax in combi-
nation with an inhibitor of the antiapoptotic protein MCL1 (AZD5991) induced synthetic
lethality and bypassed venetoclax resistance [58,59].

Another study confirmed a link between PTPN11 mutations and venetoclax resis-
tance and showed also that mutant PTPN11 induces, in leukemic cells, an increase of
oxidative phosphorylation and glycolysis: This metabolic modification determines resis-
tance to venetoclax that can be bypassed by a MCL1 inhibitor [60]. Recent studies have
characterized AMLs bearing PTPN11 mutations showing several peculiar findings: Fre-
quent myelo-monocytic morphology; frequently co-mutated with NPM1 and FLT3-ITD
and less frequently with IDH2 and complex karyotype; an adverse prognosis compared to
PTPN11-WT AMLs (8.4 vs. 13.6 months of median overall survival) [61].
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Another study confirmed the resistance to venetoclax of monocytic AMLs: These
leukemic cells have a distinct transcriptomic profile, lose expression of BCL2 and rely on
MCL1 to mediate oxidative phosphorylation and survival [62].

Spinner et al. used an ex-vivo drug screening to define novel drug sensitivity patterns
for informing personalized therapy in a group of 21 MDS patients resistant to hypomethy-
lating agents [63]. Ex-vivo drug screening was performed within a clinically actionable
time frame (a median time of 15 days) and showed drug sensitivity patterns heterogeneous,
defining distinct patient clusters with differential sensitivity to hypomethylating agents,
anthracyclines, histone deacetylase inhibitors and kinase inhibitors. Furthermore, a syn-
ergy between hypomethylating agents and venetoclax was observed [63]. These results on
drug sensitivity informed personalized therapy. In 21 patients with ex vivo and in vivo
clinical response data, the ex-vivo drug sensitivity screening platform showed a positive
predictive value of 0.92, negative predictive value of 0.82, and overall accuracy of 0.85 [63].

While the above reported studies supported a role of integrated chemogenomic
approach to identify AML subsets associated with sensitivity/resistance to specific drugs
or to identify new potential treatments in AML subtypes, other recent studies directly
implied the chemogenomic approach into a clinical trial.

Snijder et al. evaluated, in a prospective study, the feasibility and efficacy of ex-vivo
drug-response profiling to guide personalized treatment selection across large panels
of possible treatments for patients affected by aggressive hematological malignancies,
including AMLs [64]. This study was based on a new image-based, drug-response profil-
ing technique called pharmacoscopy, which uses high-throughput, automated confocal
microscopy, immunofluorescence and singe-cell image analysis [64]. Pharmacoscopy, retro-
spectively predicted the clinical response of 20 AML patients to induction therapy with
88% accuracy [64]. Seventeen patients received the pharmacoscopy-guided treatment,
providing preliminary evidence that this treatment is feasible, safe and effective [64].

In another study, Collignon et al. have assessed the feasibility of a tailored treatment
strategy guided by systematic ex vivo drug sensitivity /resistance profiling and targeted
NGS for patients with refractory/relapsed AML [65]. A tailored treatment strategy could
be achieved in 47/55 AML patients: Five based only on targeted NGS, six on drug sensitiv-
ity /resistance profiling and 36 on both techniques [65]. The tailored treatment strategy was
available in <21 days for 28 patients participating to the study; three to four potentially
active drugs were selected for each patient; five patients resulted resistant to the whole
panel of drugs tested [65]. Seventeen patients received a tailored treatment strategy and
resulted in 4 complete remissions, one partial remission and five decreased peripheral blast
cell counts [65].

5. Challenges in Clinical Development of Targeted Therapies for AML

The fundamental aim of targeted therapy consists in improving overall survival
compared to the best standard therapy. The results obtained using various agents targeting
mutant FLT3 or IDH showed that while it is possible to obtain a consistent number of
objective responses, it is much more difficult to obtain an improvement of overall survival
compared to standard therapy.

The analysis of the clinical results observed using the various FLT3 inhibitors provides
an example of this problem. Three FLT3 inhibitors, midostaurin, quizartinib and gilteritinib,
have shown the capacity to induce significant therapeutic effects on FLT3-mutated AMLs
in the context of randomized clinical studies.

The phase III randomized RATIFY study showed that midostaurin, in association
with standard induction chemotherapy, administered during induction and consolidation
phases, to de novo AML patients with FLT3-TKD or FLT3-ITD mutations, significantly
improved overall survival compared to chemotherapy plus placebo: At four years, overall
survival of 51.4% vs. 44.3%; median overall survival of 74.7 months vs. 25.6 months [66].
On the basis of these results, midostaurin was approved for the treatment of adult AML
patients with newly diagnosed FLT3-mutated AMLs [66]. A recent update of the follow-up
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at five years of this study confirmed, in part, the results previously reported. For patients
treated with midostaurin plus chemotherapy versus placebo plus chemotherapy: Event-
free survival was 45.2% vs. 30.1%; disease-free survival was 67.3% vs. 53.4%; however,
the overall survival was similar in the two groups [67]. A sub-analysis of molecular AML
subtypes showed that NPM1-mutated and CBF-mutated AMLs display a significantly
improved overall survival in the group treated with midostaurin [68].

In AML patients with refractory/relapsed FLT3-mutated AMLs, two second-generation
FLT3 inhibitors, quizartinib and giltertinib were evaluated at clinical level. Quizartinib
showed clinical activity as single treatment in refractory/relapsed FLT3-mutated AML
patients, with a 47% of marrow complete responses [69]. In a phase III randomized study
(QUANTUM-R trial) on 367 AML patients with refractory/relapsed FLT3-mutated AML
patients, quizartinib improved complete remission rates and overall survival compared to
investigator choice salvage chemotherapy—48% vs. 27% and 6.2 months vs. 4.7 months,
respectively [70]. Thus, the effect of quizartinib on overall survival was minimal for this
category of patients. Similarly to quizartinib, gilteritinib, another second generation FLT3
inhibitor, displayed activity as single-agent in refractory/relapsed FLT3-mutated AMLs
(CHRYSALIS trial), inducing 37% of marrow complete responses [71]. In a randomized
phase III study (ADMIRAL trial), giltertinib administration was associated with higher
complete remission rates and overall survival compared to investigator choice salvage
chemotherapy—54% vs. 22% and 9.3 months vs. 5.6 months, respectively [72]. A secondary
analysis of the ADMIRAL trial showed that treatment with gilteritinib compared with
salvage chemotherapy induces more refractory/relapsed FLT3-mutant AMLs to achieve
complete responses, to proceed to hematopoietic stem cell transplantation and to remain
alive at one year [73]. An analysis carried out both in the CHRYSALIS and in the ADMIRAL
trials provided evidence that patients with refractory/relapsed AMLs who received prior
FLT3 inhibitors (midostaurin or sorafenib) were able to achieve remission with gilteritinib
(about 50% of responding patients) [74].

A comparative analysis of the results obtained in QUANTUM-R and in ADMIRAL
trials suggested comparable results in terms of complete responses with quizartinib or with
gilteritinib; this comparison suggested also that remission is achieved faster with quizar-
tinib, while response may be durable and survival potentially longer with gilteritinib [75].

These two FLT3 inhibitors have been tested also in combination therapies. Thus,
quizartinib is under evaluation in combination with azacytidine or low-dose AraC in older
FLT3-ITD-mutated AML patients, reporting a complete remission rate of 83% and a median
overall survival of 18.6 months [76]. In a similar ongoing study (LACEWING trial), using
gilteritinib in place of quizartinib, 67% of complete responses were observed [77]. However,
at the end of December 2020, Astellas Company reported that in the phase III LACEWING
trial gilteritinib failed to extend survival in newly diagnosed AML patients and thus failed
to meet its primary overall survival endpoint.

Other ongoing clinical studies are exploring the FLT3 inhibitors gilteritinib or quizar-
tinib in combination with the Bcl-2 inhibitor venetoclax. Preliminary interesting results
were reported in a study based on the administration of gilteritinib in combination with the
BCL2 inhibitor venetoclax to a cohort of heavily pretreated FLT3-mutated AML patients,
showing 84% of molecular complete responses [78]. In line with this observation, Maiti et al.
have recently reported the results on the treatment with venetoclax, FLT3 inhibitor and
decitabine of 30 FLT3-mutated AML patients, 14 previously treated and 16 treatment-naive.
In previously treated AMLs, the complete remission rate was 64% and MRD negativity
rate was 88%; in treatment-naive AML patients, the complete remission rate was 88% and
the MRD negativity was 100%, with an overall survival rate at two years of 90% [79]. These
observations suggest that the giltertinib plus venetoclax may have great therapeutic impact.
The combination of venetoclax with quizartinib is under evaluation in an ongoing study.
Preliminary results on 11 FLT3-mutated AML patients, mostly refractory/relapsing, treated
with quizartinib, venetoclax and decitabine showed a high response rate (90%) and a six
months overall survival rate of 86% [80].
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The results of induction chemotherapy trials in association with second generation
FLT3 inhibitors such as quizartinib or giltertinib will be of fundamental importance, and
will allow to perform a comparison with the results observed in the RATIFY trial with
midostaurin. In this context, Pratz et al. recently reported a phase 1 study assessing
the tolerability and antileukemic effects of gilteritinib plus induction chemotherapy and
high-dose AraC consolidation chemotherapy, and as single-agent maintenance therapy
in adults with newly diagnosed AML; patients achieving complete remission undergo
HSCT and resume gilteritinib treatment post-HSCT [81]. Median overall survival for
FLT3-mutant patients was not reached and the survival probability at 8, 12, 26, 52 and
104 weeks was 98%, 95%, 93%, 83% and 72%, respectively [81]. Based on these results,
randomized clinical trials of induction and consolidation chemotherapy plus gilteritinib
versus midostaurin have been initiated. Preliminary results in the phase I trial based on
quizartinib administration in association with standard induction chemotherapy have
shown 74% of complete responses [82].

Crenolanib is a potent type I multikinase inhibitor with activity against PDGFR,
FLT3-ITD and FLT3-TKD mutations, including resistance-conferring point mutations [83].
Phase 1II clinical studies have shown the efficacy of crenolanib as single-agent in refrac-
tory/relapsing FLT3-mutated AML patients, reporting a rate of complete remission ranging
from 23% to 39% in patients naive to treatment with FLT3 inhibitors and 5% among patients
previously exposed to FLT3 inhibitors [84,85]. Two phase II clinical studies have shown
promising activity of crenolanib in association with chemotherapy. One of these two studies
showed a high complete remission rate of 85% in patients with newly diagnosed FLT3-
mutated AML undergoing treatment with crenolanib plus chemotherapy: At a median
follow-up of 29.3 months, 70% of patients remained alive and disease-free [86]. The other
study enrolled newly diagnosed FLT3-mutated adult AML patients with an age comprised
between 61 and 75 years: the treatment with crenolanib plus chemotherapy induced a com-
plete remission rate 86% [87]. An ongoing phase III randomized multi-center study (NCT
03258331) was designed to compare the efficacy of crenolanib with that of midostaurin
when administered following induction chemotherapy, consolidation chemotherapy and
bone marrow transplantation in newly diagnosed AML patients with FLT3 mutation. Two
recent reports on a limited number of patients treated on compassionate basis provided
evidence of clinical benefit of crenolanib in FLT3-mutated adult AML patients relapsing
after previous gilteritinib treatment [88] and in FLT3-mutated pediatric AML patients re-
lapsing after multiple previous treatments and harboring resistant FLT3-ITD and FLT3-TKD
mutations [89].

The clinical studies based on the use of FLT3 inhibitors for the treatment of FLT3-
mutated AML patients clearly support the rationale of this therapeutic strategy but at the
same time indicate the difficulties of improving patient’s survival. Thus, these studies
indicate in some instances the need of selecting subgroups of FLT3-mutated AML patients
(see the final results of the midostaurine studies) or the need of selecting the appropriate
FLT3 inhibitor (see the studies using quizartinib or gilteritinib in relapsed/refractory AML
patients). The combination studies based on the use of quizartinib or gilteritinib have
shown promising results, but phase III randomized studies are required to prove that these
initial promising results will translate into an improved overall survival.

Oral small-molecule inhibitors of mutant IDH1 (ivosidenib) and IDH?2 (enasidenib)
have been tested in preclinical studies and then have been evaluated at clinical levels,
showing efficacy in AML patients with IDH1 and IDH2 mutations, respectively. A phase I
clinical study on relapsed/refractory AML patients with IDH1-mutated AMLs ivosidenib
induced a complete remission rate of 21.6%, with an overall survival of 8.8 months [90].
Enasidenib, in a phase Il study on relapsed/refractory IDH2-mutant AMLs, induced a 20.6%
complete remission rate with an overall survival of 9.3 months, with an estimated one-year
survival of 39%; in patients achieving a complete response, the median overall survival
was 19.7 months [91]. An update of this study showed that response rates were similar for
patients in relapse or with refractory disease and for patients with either IDH2-R140 or
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IDH2-R172 mutations [92]. On the basis of the clinical activity of these IDH inhibitors, the
FDA approved ivosidenib and enasidenib for patients with refractory/relapsed IDHI- and
IDH2-mutated AML, respectively, in 2018. Ivosidenib was approved also for the treatment
of newly-diagnosed AML patients with IDHI mutations who are old (>75 years of age)
on the basis of the results of a phase I trial showing a complete remission rate of 42%,
with median overall survival of 12.6 months; furthermore, IDH1 mutation clearance was
observed in 65% of patients achieving a complete response [93]. Similarly, Pollyea et al.
reported the results of a phase I/1I study showing in a group of 39 older IDH2-mutant
AMLs treated with enasidenib a response rate of 30.8%, with 18% of complete responses
and a median overall survival of 11.3 months; in these patients, the presence of DNMT3A
mutations was associated with complete responses [94].

Paschka et al. have recently reported a comparison of the outcomes in a group of 105
IDHI-mutant AML patients treated with ivosidenib after at least two previous treatments
with historical control, showing that: Ivosidenib-treated patients showed a significantly
improved overall survival compared to historical control (8.1 months vs. 2.9 months,
respectively) [95].

Unfortunately, a significant proportion of IDH-mutant AML patients show primary or
secondary resistance to IDH inhibitors. Among the mechanisms of primary resistance, an
important role is played by mutations in NRAS/KRAS genes or in other genes encoding
MAPK effectors, such as PTPN11, NF1 and FLT3 mutations, enriched at baseline in patients
with primary resistance to ivosidenib and enasidenib [96]. Mechanisms of secondary
resistance englobe mutations at the level of IDH genes, involving isoform switching from
IDH]1 to IDH2 mutation or vice versa [97] or development of second-site IDH2 missense
mutations at the level of the nonmutant allele [98].

In order to improve the clinical response to IDH inhibitors, combination therapies that
target both leukemic clones/subclones IDH-dependent and IDH-independent have been
attempted. Notable examples are given by combination studies using IDH inhibitors with
hypomethylating agents or chemotherapy or BCL2 inhibitors.

In a phase I study, DiNardo and coworkers have evaluated the safety and efficacy of
ivosidenib in association with azacytidine in newly diagnosed IDHI1-mutant AML patients
ineligible for intensive chemotherapy, showing an overall response rate of 61% and 12-
month survival of 82%; mutant IDH1 clearance was observed in 71% of patients achieving
complete remission [99,100]. The results of this study have supported the development of
the phase IIl randomized AGILE study, aiming to compare event-free survival in patients
receiving azacytidine + ivosidenib compared to that observed in patient treated with
azacytidine+placebo. A similar study was performed in IDH2-mutant AML patients
involving the randomization of 101 patients to treatment with azacytidine alone or in
association with enasidenib: the combination treatment was associated with significantly
improved complete remission and overall response rates and significant mutant IDH2 VAF
reductions compared with treatment with azacytidine alone [99]. An update evaluation of
this study showed that overall response rate, duration of remission and complete remission
rates were all significantly improved in azacytidine+enasidenib-treated patients compared
to azacytidine alone [101].

IDH mutations were detectable in about 40-50% of AML patients in remission and are
associated with an increased risk of disease relapse, as compared to those with undetectable
IDH1/IDH2 mutations [102]. This finding strongly supports the rationale of associating
chemotherapy with IDH inhibitors in an attempt to reduce/abrogate residual leukemic
disease. In 2018, Stein and coworkers have reported the preliminary results of a phase I
trial involving the administration of ivosidenib or enasidenib in association with induction
chemotherapy in patients with newly diagnosed IDHI-mutant or IDH2-mutant AMLs [103].
Forty-one patients were treated with ivosidenib and induction chemotherapy—93% of
patients with de novo AML achieved a complete response and 46% of those with sAML;
77 patients were treated with edasidenib and induction chemotherapy: 73% of patients
with de novo AML achieved a complete response and 63% of those with sAML [104]. The
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final report of this phase Ib study involved 60 patients with IDH1-mutated AMLs and
91 with IDH2-mutated AMLs; complete remission rates were 72% and 63%, respectively;
in patients achieving complete response, 39% of those receiving ivosidenib had mutant
IDH]1 clearance by digital PCR and 23% of those receiving enasidenib displayed mutant
IDH? clearance [103]. However, although results have not yet published, the phase III
IDHENTIFY study evaluating enasidenib plus best supportive therapy, versus conventional
care regimens, failed to support the primary endpoint consisting to show an improved
overall survival using the IDH2 inhibitor in older patients with refractory/relapsed AMLs
with IDH2 mutations.

Recent studies have shown the consistent efficacy of the BCL2 inhibitor venetoclax
in combination with either hypomethylating agents (azacytidine or decitabine) or low-
does AraC for the treatment of elderly AML patients [105,106]. The most responsive
patients to the treatment with venetoclax plus low-dose AraC are those with IDH1/IDH?2
mutations (with a median overall survival of 19.4 months) and to the treatment with
venetoclax in combination with hypomethylating agents (with a median overall survival
of 24.4 months) [106]. The molecular characterization of older AML patients undergoing
treatment with venetoclax plus low-dose AraC or azacytidine showed that high-response
rates were associated with NPM1 and IDH2 mutations. Particularly, IDH2 mutations were
absent among patients resistant to these treatments [107]. In contrast, the frequency of
IDH1 mutations does not seem to be associated with the response to venetoclax [108].

DiNardo et al. have recently reported the results of a confirmatory, randomized
clinical study (VIALE-A) involving 431 newly diagnosed AML patients treated with aza-
cytidine+venetoclax or azacytidine plus placebo. At a median follow-up of 20.5 months,
the median overall survival was 14.7 months in the azacytidine-venetoclax group and
9.6 months in the control group; the incidence of complete remissions was higher with
azacytidine+venetoclax than in the control regimen (66.4% vs. 28.3%) [107]. Importantly,
in patients with IDH1 and IDH2 mutations, the incidence of remission was 75.4% in the
azacytidine+venetoclax group compared to 10.7% in the control group; in patients with
IDH1 and IDH2 mutations, overall survival at 12 months was 66.8%, compared to 35.7% in
the control group [107]. Very recently, Pollyea and coworkers reported the results of an
ongoing phase Il study involving the evaluation of venetoclax+azacytidine vs. azacytidine
plus placebo in a group of 107 IDH1/IDH2-mutated treatment-naive AML patients unfit
for intensive treatment either due to comorbidities and/or age > 75 years [109]. Vene-
toclax+azacytidine compared to azacytidine monotherapy resulted in higher response
rates and median overall survival for both IDHI-mutated (complete remission—59% vs.
9%; median overall survival—17.5 months vs. 2.2 months) and IDH2-mutated (complete
remission—=80% vs. 6%; median overall survival—not-reached vs. 13.0 months) [109].

In parallel to the use of azacytidine as a hypomethylating agent, other studies have
investigated another hypomethylating agent, decitabine. To this end, a phase II trial
explored older AML patients (>60 years) not eligible for intensive chemotherapy, secondary
AML and relapsed /refractory AML [110]. In this study, patients received decitabine and
venetoclax in the induction and in the consolidation phases. A final report of this study was
recently published [110]. The median overall survival was 18.1 months in newly diagnosed
AMLs; 7.8 months in untreated secondary AMLs; 6.0 months in treated secondary AMLs;
7.8 months in refractory/relapsed AMLs [110]. Importantly, some molecularly-defined
AML subsets showed a consistent sensitivity to this treatment. Particularly, IDHI-mutant
and IDH2-mutant AMLs showed among newly diagnosed AML patients a complete
remission rate of 84%, a median duration of response and of overall survival not reached;
among previously treated, high-risk IDHI-mutant and IDH2-mutant AML patients showed
a complete remission rate of 50%, with an MRD negativity in 25% of cases and a median
overall survival of 7.8 months [111].

Few studies have explored patient outcomes after failure of frontline therapy with
venetoclax and hypomethylating agents. Thus, Maiti et al. have investigated 41 patients
relapsing after venetoclax plus hypomethylating agent treatment, and reported a very
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short overall survival of 2.4 months for these patients. In this group of patients, all IDH1
and IDH2-mutant AML patients had adverse-risk cytogenetics and co-occurring mutations
in TP53, NRAS, KRAS, FLT3 and KIT [110]. Hammond and coworkers have recently
reported the analysis of response patterns of 65 IDH-mutant AML patients with newly
diagnosed or refractory /relapsing disease treated with venetoclax and a hypomethylating
agent [112]. A total of 79% of patients achieved an objective response, with 69% of complete
responses; 90% of complete responders displayed a negative flow cytometry minimal
residual disease; presence of a RAS pathway and/or TP53 mutation was associated with a
lower frequency of complete responses in refractory/relapsing patients [112]. The analysis
of the results in different groups of patients showed that: The combination of venetoclax
and hypomethylating agents induced a very high rate of complete responses, with a long
duration of response, in IDH1/IDH2-mutated AMLs, in the frontline setting and in NPM1
co-mutated cases; about 50% of the treated patients retain an IDH mutation detectable by
next generation sequencing; good outcomes have been observed also in the relapsed setting,
although the presence of TP53/RAS mutations confer resistance to the treatment; high rates
of salvage responses were observed in relapsed patients switched from venetoclax plus
hypomethylating agent to IDH inhibitor treatment [112].

Venetoclax was explored in association with low-dose and with intensive chemother-
apy. Concerning the studies with low-dose chemotherapy, venetoclax was associated with
low-dose cytarabine. In a first study, 82 older AML patients, not eligible for intensive
chemotherapy (50% with sAML and 32% with poor-risk cytogenetics), were enrolled and
treated with low-dose AraC, associated with venetoclax: de novo AMLs displayed 71%
complete remission and median duration of response of 11.6 months; sSAML showed 35%
complete remission and a median duration of response of 8.1 months [106]. Patients
with NPM1 and IDH1/IDH2 mutations had better outcomes, with complete remission
rates of 89% and 72%, respectively [108]. The confirmatory VIALE-C trial randomized
211 older AML patients to the treatment with low-dose AraC with or without venetoclax:
The median overall survival was 8.4 months in the double treatment and 4.1 months in
the single treatment arm; the event-free survival was 4.7 months versus 2.0 months; the
complete remission rates were 48% and 13% for the venetoclax combination and low-
dose chemotherapy alone [113]. Concerning the patients with IDH1/IDH2 mutations,
the complete remission rate was 57% in the double treatment compared to 38% in the
single treatment arm; the overall survival was 10.8 months compared to nine months,
respectively [113].

The CAVEAT study involved the treatment of older AML patients with an initial
treatment with seven-day administration of venetoclax, followed by venetoclax in com-
bination with intensive chemotherapy; the overall response of complete remissions was
72-97% in de novo AMLs and 42% in secondary AMLs [114,115]. NPMI-mutant and
IDH1/IDH2-mutant AMLs are the AMLs achieving greatest bone marrow blast reduction
after seven days of pre-treatment with venetoclax; complete remissions were observed in
100% of IDH2-mutant AMLs and in 62% of IDH1-mutant AMLs [107,109]. IDH2-mutant
AMLs displayed the longest overall survival; IDHI-mutant AMLs are less sensitive to this
treatment [114,116].

The data related to the efficacy and to the favorable safety profiles of venetoclax and
of IDH1/IDH2 inhibitors have strongly supported the evaluation of the drug association
of venetoclax and IDH inhibitors, aiming to demonstrate a potential synergy between
these two drug types. Preliminary results of the trial NCT03471260, a phase I/1I trial of a
combination of venetoclax with ivosidenib, with or without azacytidine in AML patients
with mutated IDH1, were recently presented for the first 18 evaluated patients: The global
complete remission rate was 89% (100% with ivosidenib+venetoclax 800 mg, 67% with ivosi-
denib+venetoclax 400 mg and 67% with ivosidenib+venetoclax 400 mg + azacytidine) [117].
After a median follow up of 3.5 months, median overall survival was not reached in
treatment-naive patients, and 9.7 months in refractory/relapsing patients; half of patients
who achieved complete response also were MRD negative [115].
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In conclusion the clinical studies carried out using IDH1/IDH?2 inhibitors support
the rationale of using these drugs for the treatment of IDH-mutant AMLs. However, the
clinical results obtained using these drugs in monotherapy are limited and combination
therapy approaches are required. Future studies will be required to determine the optimal
treatment for IDH1 or IDH2-mutant AML patients, younger or older, with de novo or
refractory/relapsing disease. Particularly, randomized clinical trials will be required to
confirm the therapeutic impact of BCL2 inhibitor with hypomethylating agents or with
chemotherapy on IDH-mutant AMLs. In addition, to determine whether the addition of
IDH inhibitors to these regimens will be compatible with an acceptable safety profile and
will improve the therapeutic response.

6. Personalized Therapy for AML Patients Is Feasible

Given the consistent advances in the understanding of the molecular alterations
occurring in AMLs, there was a great expectancy that data deriving from NGS analyses
could be integrated into therapy decisions, to support the development of an individual,
patient-adapted therapeutic approach, a condition formulated by the so-called precision or
personalized medicine [117]. Surprisingly, concrete applications of personalized medicine,
consisting in clinical trials where the therapy decisions for frontline therapy are guided by
the results of genomic studies, remain very limited [118].

Thus, in spite the dramatic improvements in our understanding the molecular basis
of AML, molecular data in AML have been used predominantly for prognostication and
for second-line therapeutic choices after induction therapy and not for initial therapeu-
tic options, with the exception of FLT3 inhibitors. The clinical application of precision
medicine implies the definition of the right drug, for the right patient, at the right time.
The practical application of this approach is hampered by the time required to obtain the
data on the profile of molecular abnormalities observed in the leukemic blasts of each
AML patient. Currently, AML treatment is started rapidly after diagnosis, thus precluding
the opportunity to consider the individual mutational profile of the patient for treatment
decisions. However, at variance with this common view, in a retrospective analysis on
599 newly diagnosed AML patients, Bertoli et al. explored the potential impact of time from
diagnosis to treatment (TDT) on overall survival, early death and response rate [119]. The
median TDT in this study was eight days; in multivariate analysis, TDT had no impact on
overall survival and was not associated with response rate and early death [119]. Thus, this
study supported that waiting seven to 10 days for laboratory tests to characterize leukemias
at the molecular level and to design adapted, personalized treatment at diagnosis seemed
possible [119].

A recent study, the Beat AML trial (this clinical study englobes 11 sub-studies),
provided evidence supporting the feasibility of precision medicine for elderly AML pa-
tients [120,121]. The Beat trial aims to evaluate the feasibility of using NGS to assign
treatment tailored to individual genomics of elderly patients with AML within seven days
of diagnosis [120,121]. Enrollment criteria included age of >60 years at diagnosis of AML
and absence of any previous treatment, with exception of hydroxyurea. In an initial phase,
the investigators have shown the feasibility of completing the evaluation of the cytogenetic
and mutational profiles and of assigning patients to a targeted therapy within seven days
of samples arriving at the reference laboratory [120]. In line with this initial information, at
the end of the study, on 395 eligible patients enrolled in the study, 94.7% of these patients
had genetic and cytogenetic analysis completed within seven days [121]. Once NGS results
are received, patients are assigned to therapy according to the best option for curability
based on dominant clones of any of the following genetic abnormalities: Core Binding
Factor; NPM1 mutation/FLT3 wild-type; MLL rearrangements; I[DH2 mutations; IDH1
mutations; TP53 mutations; complex karyotype with no TP53 mutations; FLT3-ITD or
FLT3-TKD mutations; TET2/WT1 mutations; marker-negative AMLs [121]. Each of these
molecular groups is admitted to a specific treatment option. Of the 374 AML patients
with complete genetic analysis, 224 were enrolled in a Beat AML sub-study, whereas the
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remaining 171 patients were treated with standard of care therapy, 28 with investigational
therapy and 40 with palliative care; nine patients died before treatment assignment [121].

Importantly, thirty-day mortality was less frequent and overall survival was signifi-
cantly longer for patients enrolled on the Beat AML sub-studies, versus those who were
elected for standard-of-care treatment [121]. The results of this trial are important because
they support the feasibility of personalized medicine for the large majority of AML patients,
and indicate that a delay in therapy to perform molecular profiling is safe [121]. Acute
events requiring more urgent therapy were observed in 26 patients and 32 patients began
therapy before treatment assignment [121]. It is important to note that 30-day mortality was
3.7% for patients electing to enroll on Beat AML trial (244 patients), whereas it was 20.4%
in patients electing standard of care (103 patients) [121]. Overall survival was significantly
longer in the Beat AML group (12.8 months, with 54.7% of patients surviving at 12 months)
compared to standard of care (3.9 months, with 27.6% of patients surviving at 12 months)
or palliative care (0.6 months, with 11% of patients surviving at 12 months) groups, but not
to the group of 28 AML patients treated with an alternative protocol with investigational
therapy (not reached, with 57.4% of patients surviving at 12 months).

In conclusion, this prospective precision medicine trial raises several important obser-
vations: (i) For the majority of older AML patients, a delay in therapy to perform detailed
molecular profiling is safe; (ii) a precision medicine approach requires a coordinated effort
by investigators, patients and caregivers, genomic and cytogenetic laboratories; (iii) the
majority of enrolled patients could be assigned to a specific molecular-adapted therapy
based on the analysis of the dominant AML clone; (iv) patients elected to receive the
treatment based on the molecular profiling display lower early death rate and superior
overall survival, compared to patients elected to receive standard of care [121]. However,
the last point must be considered with some caution, in that, the standard of care treatment
did not involve the use of venetoclax plus azacytidine, a drug combination that seems to
improve the overall survival in older AML patients.

While this study provides a strong support to the feasibility of a personalized treat-
ment for AML patients using genetic information to match patients to targeted therapies,
additional studies will be required to demonstrate that this approach leads to better survival
rates than traditional one-size-fits all treatment approaches. The Leukemia and Lymphoma
Society, using the Beat AML infrastructure, intends to launch the Stops MDS trial for pa-
tients with myelodysplastic syndrome and the LLS (Leukemia Lymphoma Society) Ped AL
(Pediatric Acute Leukemia) trial for children with acute leukemia.

7. Conclusions

Individualizing patient treatment is a main objective of whole oncology, and particu-
larly of hematology, for the therapy of hematological neoplasia. Reaching this objective has
been elusive for long-time for a number of limiting factors. However, the recent progresses
in the study of genetic abnormalities of tumors and particularly of AMLs have led to
decipher the heterogeneous genetic abnormalities underlying this disease and to define
tailored treatments targeting AMLs bearing specific genetic abnormalities. In parallel, the
development of integrated diagnostic and prognostic systems, supported by artificial intel-
ligence platforms, have globally optimized the capacity to perform an accurate diagnosis,
classification and risk stratification of individual AML patients. Finally, recent studies have
supported the feasibility of a personalized treatment for AML patients, where the therapy
decision was guided by the results of genomic studies, performed within a frame of time
compatible with clinical activity.

However, the future of personalized treatments for AML patients remains difficult
for various reasons: The complexity of these studies were limited to highly specialized
medical centers; the requirement of an optimal organization, based on the interaction
between different technological teams with the clinical unit; the necessity of demonstrating
the clinical benefit of these treatments in terms of patient’s survival with respect to the
standard-of-care; and the cost of these treatments.



Hemato 2021, 2 148

Author Contributions: U.T., E.P. and G.C. searched the articles and reviews related to this topic
and wrote this manuscript based on the published results. U.T. supervised the final version of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Cancer Genome Atlas Research Network; Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mingall, A.J.; Robertson, A.G.; Hoadley,
A.SK,; Triche, T.J.; Laird, PW.,; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J.
Med. 2013, 368, 20959-22074.

Hou, H.A,; Lin, C.C,; Chou, W.C,; Liu, C.Y,; Chen, C.Y,; Tang, J.L.; Lai, YJ.; Tseng, M.H.; Huang, C.E; Chiang, Y.C.; et al.
Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid
leukemia. Leukemia 2014, 28, 50-58. [CrossRef]

Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, K.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Hauser, M.; Thol, F.; Bolli,
N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209-2221. [CrossRef]
[PubMed]

Bullinger, L.; Dohner, K.; Dohner, H. Genomics of acute myeloid leukemia diagnosis and pathways. J. Clin. Oncol. 2017, 35,
934-946. [CrossRef]

Moarii, M.; Papaemmanuil, E. Classification and risk assessment in AML: Integrating cytogenetics and molecular profiling.
Hematol. Am. Soc. Hematol. Educ. Program. 2017, 8, 37—44. [CrossRef] [PubMed]

Kishtagari, A.; Levine, R.L.; Viny, A.D. Driver mutations in acute myeloid leukemia. Curr. Opin. Hematol. 2020, 27, 9-57.
[CrossRef]

Short, N.J.; Konopleva, M.; Kadia, T.M.; Borthakur, G.; Ravandi, F; DiNardo, C.D.; Daver, N. Advances in the treatment of acute
myeloid leukemia: New drugs and new challenges. Cancer Discov. 2020, 10, 506-525. [CrossRef]

Daver, N.; Wei, A.H.; Pollyea, D.A_; Fathi, A.T.; Vyas, P; DiNardo, C.D. New directions for emerging therapies in acute myeloid
leukemia: The next chapter. Blood Cancer |. 2020, 10, 107. [CrossRef]

Yu, J.; Jiang, P; Sun, H.; Zhang, X,; Jiang, Z.; Li, Y.; Song, Y. Advances in targeted therapy for acute myeloid leukemia. Biomarker
Res. 2020, 8, 17. [CrossRef] [PubMed]

Samra, B.; Knopleva, M.; Isidori, A.; Daver, N.; DiNardo, C. Venetoclax-based combinations in acute myeloid leukemia: Current
evidence and future directions. Front. Oncol. 2020, 10, 562558. [CrossRef] [PubMed]

Ganget, N.; Tefferi, A. Venetoclax-based chemotherapy in acute and chronic myeloid neoplasms: Literature survey and practice
points. Blood Cancer J. 2020, in press. [CrossRef]

Marando, L.; Huntly, B.].P. Molecular landscape of acute myeloid leukemia: Prognostic and therapeutic implications. Curr. Oncol.
Rep. 2020, 22, 61. [CrossRef] [PubMed]

Hou, H.A,; Tien, H.F. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted
therapies. J. Biomed. Sci. 2020, 27, 81. [CrossRef] [PubMed]

Dohner, H,; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, ER.; Buchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A,;
et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017,
129, 424-447. [CrossRef]

O’Donnell, M.R,; Tallman, M.S.; Abboud, C.N.; Altman, ] K.; Appelbaum, ER.; Arber, D.A. Acute myeloid leukemia, version
3.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 926-957. [CrossRef]

Arber, D.A,; Orazi, A.; Hasserjian, R.; Thiede, J.; Borowitz, M.].; Le Beau, M.M. The 2016 revision in the World Health Organization
classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 1391-2405. [CrossRef]

Herold, T.; Rothenberg-Thurley, M.; Grumwald, V.V,; Janke, H.; Goerlich, D.; Sauerland, M.S.; Kostandin, N.P,; Dufour, A.;
Schneider, S.; Neusser, M.; et al. Validation and refinement of the revised 2017 European Leukemia Net genetic risk stratification
of acute myeloid leukemia. Leukemia 2020, in press. [CrossRef] [PubMed]

Wang, M.; Lindberg, J.; Kelvebring, D.; Nillsson, C.; Mer, A.S.; Rantalaien, M.; Lehmann, S.; Gronberg, H. Validation of risk
stratification models in acute myeloid leukemia using sequencing-based molecular profiling. Leukemia 2017, 31, 2029-2036.
[CrossRef]

Wang, M.; Lindberg, J.; Klevebring, D.; Nillsson, C.; Lehmann, S.; Gronberg, H.; Rantalainen, M. Development and validation of a
novel RNA sequencing-based prognostic score for acute myeloid leukemia. J. Natl. Cancer Inst. 2018, 110, 1094-1101. [CrossRef]
Ma, T.T,; Lin, X.J.; Cheng, W.Y.; Xue, Q.; Wang, S.Y.; Liu, EJ.; Yan, H.; Zhu, Y.M.; Shen, Y. Development and validation of a
prognostic model for adult patients with acute myeloid leukemia. EBioMedicine 2020, 62, 103126. [CrossRef]


http://doi.org/10.1038/leu.2013.236
http://doi.org/10.1056/NEJMoa1516192
http://www.ncbi.nlm.nih.gov/pubmed/27276561
http://doi.org/10.1200/JCO.2016.71.2208
http://doi.org/10.1182/asheducation-2017.1.37
http://www.ncbi.nlm.nih.gov/pubmed/29222235
http://doi.org/10.1097/MOH.0000000000000567
http://doi.org/10.1158/2159-8290.CD-19-1011
http://doi.org/10.1038/s41408-020-00376-1
http://doi.org/10.1186/s40364-020-00196-2
http://www.ncbi.nlm.nih.gov/pubmed/32477567
http://doi.org/10.3389/fonc.2020.562558
http://www.ncbi.nlm.nih.gov/pubmed/33251134
http://doi.org/10.1038/s41408-020-00388-x
http://doi.org/10.1007/s11912-020-00918-7
http://www.ncbi.nlm.nih.gov/pubmed/32476069
http://doi.org/10.1186/s12929-020-00674-7
http://www.ncbi.nlm.nih.gov/pubmed/32690020
http://doi.org/10.1182/blood-2016-08-733196
http://doi.org/10.6004/jnccn.2017.0116
http://doi.org/10.1182/blood-2016-03-643544
http://doi.org/10.1038/s41375-020-0806-0
http://www.ncbi.nlm.nih.gov/pubmed/32231256
http://doi.org/10.1038/leu.2017.48
http://doi.org/10.1093/jnci/djy021
http://doi.org/10.1016/j.ebiom.2020.103126

Hemato 2021, 2 149

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Radakovich, N.; Nagy, M.; Nazha, A. Machine learning in haematological malignancies. Lancet Haematol. 2020, 7, e541-e550.
[CrossRef]

Radakovich, N.; Cortese, M.; Nazha, A. Acute myeloid leukemia and artificial intelligence, algorithms and new scores. Best Pract.
Res. Clin. Hemat. 2020, 33, 101192. [CrossRef]

Goecks, |.; Jalili, V.; Heiser, L.M.; Gray, ].W. How machine learning will transform biomedicine. Cell 2020, 181, 92-101. [CrossRef]
[PubMed]

Eckardt, ].N.; Bornhauser, M.; Wendt, K.; Middeke, ]. M. Application of machine learning in the management of acute myeloid
leukemic: Current practice and future prospects. Blood Adv. 2020, 4, 6077-6085. [CrossRef] [PubMed]

Beau Hilton, C.; Meggendorfer, M.; Sekeres, M.A; Shreve, J.; Radakovich, N.; Rouphail, Y.; Walter, W.; Hutter, S.; Padron, E.;
Savona, M.R;; et al. Geno-clinical model for the diagnosis of bone marrow myeloid neoplasms. Blood 2019, 134 (Suppl. S1), 4238.
[CrossRef]

Morita, K.; Wang, F.; Makishima, H.; Yan, Y.; Yoshizato, T.; Yoshida, K.; Przychodzen, B.P.; Patel, K.; Bueso-Ramos, C.E.; Gumbs,
C.; et al. Pan-myeloid leukemia analysis: Machine learning-based approach to predict phenotype and clinical outcomes using
mutation data. Blood 2018, 132 (Suppl. 1), 1801. [CrossRef]

Radakovich, N.; Malcovati, L.; Meggendorfer, M.; Sekeres, M.A; Shreve, J.; Beau Hilton, C.; Rouphail, Y.; Walter, W.; Hutter, S.;
Galli, A ; et al. Henotype-phenotype correlations in patients with myeloid malignancies using explainable artificial intelligence.
Blood 2020, 138 (Suppl. S1), 31-32. [CrossRef]

Gerstung, M.; Papaemmanuil, E.; Martincorena, I.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Heuser, M.; Thol, F; Bolli, N.; Ganly, P;
et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat. Genet. 2017, 49, 332-340. [CrossRef]
[PubMed]

Fleming, S.; Tsai, C.H.; Dohner, H.; Dohner, K.; Papaemmanuil, E.; Tien, H.F,; Reynolds, J.; Wei, A.-H.; Hou, H.A. Use of
machine-learning in 2074 cases of acute myeloid leukemia for genetic risk profiling. Blood 2019, 134 (Suppl. S1), 1392. [CrossRef]
Shreve, J.; Meggendorfer, M.; Awada, H.; Mukherjee, S.; Walter, W.; Hutter, S.; Makhoul, A.; Beau Hilton, C.; Radakovich, N.;
Nagata, Y.; et al. A personalized prediction model to risk stratify patients with acute myeloid leukemia (AML) using artificial
intelligence. Blood 2019, 134 (Suppl. S1), 2091. [CrossRef]

Awada, H.; Durmaz, A.; Gurnari, C.; Kishtagari, A.; Meggendorfer, M.; Kerr, C.M.; Kuzmanoviuc, T.; Durrani, J.; Nagata, Y.;
Rdivoyevitch, T.; et al. The application of machine learning to improve the subclassification and prognostication of acute myeloid
leukemia. Blood 2020, 136 (Suppl. S1), 28. [CrossRef]

Siddiqui, N.S.; Klein, A.; Godara, A.; Varga, C.; Buchsbaum, R.J.; Hughes, M.C. Supervised machine learning algorithms using
patient related factors to predict in-hospital mortality following acute myeloid leukemia therapy. Blood 2019, 134 (Suppl. S1),
3435. [CrossRef]

Shaikh, A.F,; Kakirde, C.; Dhamne, C.; Bhanshe, P; Joshi, S.; Chaudhary, S.; Chatterjee, G.; Tembhare, P.; Prasad, M.; Roy Moulik,
N.; et al. Machine learning derived genomics driven prognostication for acute myeloid leukemia with RUNX1-RUNXI1T1. Leuk.
Lymphoma 2020, 61, 3154-3160. [CrossRef]

Patkar, N.; Shaikh, A.F.; Kakirde, C.; Nathany, S.; Ramesh, H.; Bhanshe, P; Joshi, S.; Chaudhary, S.; Kannan, S.; Khizer, S.H.; et al.
A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome
in acute myeloid leukemia with mutated NPM1. Blood Cancer |. 2019, 9, 79. [CrossRef]

Bullinger, L.; Dohner, K.; Bair, E.; Frohling, S.; Schlenk, R.F,; Tibshirani, R.; Dohner, H.; Pollack, J.R. Use of gene-expression
profiling to identify prognostic subclones in adult acute myeloid leukemia. N. Engl. ]. Med. 2004, 350, 1605-1616. [CrossRef]
[PubMed]

Li, Z.; Herold, T.; He, C.; Valk, P.; Chen, P; Jurinovic, V.; Mansmann, U.; Radmacher, M.; Maharry, K.; Sun, M; et al. Identification
of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloiud leukemia: An
international collaborative study. J. Clin. Oncol. 2013, 31, 1172-1181. [CrossRef]

Marcucci, G.; Yan, P.,; Maharry, K.; Frankhouser, D.; Nicolet, D.E.; Metzler, K.H.; Kohlschmidt, J.; Mrozek, K.; Wu, Y.Z.; Bussi, D.;
et al. Epigenetics meets genetics in acute myeloid leukemia: Clinical impact of a novel seven-gene score. J. Clin. Oncol. 2013, 32,
548-556. [CrossRef]

Ng, S.; Mitchell, A.; Kennedy, J.; Chen, W.C.; McLeod, J.; Ibrahimova, N.; Arruda, A.; Popescu, A.; Gupta, V.; Schimmer, A.D.;
et al. A 17-gene stemness score for rapid determination of risk in acute leukemia. Nature 2016, 540, 433—437. [CrossRef]
Warnat-Herresthal, S.; Perrakis, K.; Taschler, B.; Becker, M.; Babler, K.; Beyer, M.; Gunther, P.; Schulte-Schrepping, J.; Seep, L.; Klee,
K.; et al. Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics.
iScience 2020, 23, 100780. [CrossRef]

Wagner, S.; Vadakekolathu, J.; Taisan, S.K.; Altmann, H.; Bornhauser, M.; Pockley, A.G.; Ball, G.R.; Rutella, S. A parsimonius
3-gene signature predicts clinical outcomes in an acute myeloid leukemia multicohort study. Blood Adv. 2019, 3, 1330-1340.
[CrossRef]

Rouphail, Y.; Radakovich, N.; Shreve, ]J.; Mukherejee, S.; Jha, B.K.; Maciejewski, J.P.; Sekeres, M.A.; Nazha, A. Personalized
transcriptomic analyses identify unique signatures that correlate with genomic subtypes in acute myeloid leukemia (AML) using
explainable artificial intelligence. Blood 2020, 136 (Suppl. S1), 33-34. [CrossRef]


http://doi.org/10.1016/S2352-3026(20)30121-6
http://doi.org/10.1016/j.beha.2020.101192
http://doi.org/10.1016/j.cell.2020.03.022
http://www.ncbi.nlm.nih.gov/pubmed/32243801
http://doi.org/10.1182/bloodadvances.2020002997
http://www.ncbi.nlm.nih.gov/pubmed/33290546
http://doi.org/10.1182/blood-2019-126967
http://doi.org/10.1182/blood-2018-99-116685
http://doi.org/10.1182/blood-2020-140023
http://doi.org/10.1038/ng.3756
http://www.ncbi.nlm.nih.gov/pubmed/28092685
http://doi.org/10.1182/blood-2019-128243
http://doi.org/10.1182/blood-2019-128066
http://doi.org/10.1182/blood-2020-139013
http://doi.org/10.1182/blood-2019-128823
http://doi.org/10.1080/10428194.2020.1798951
http://doi.org/10.1038/s41408-019-0244-2
http://doi.org/10.1056/NEJMoa031046
http://www.ncbi.nlm.nih.gov/pubmed/15084693
http://doi.org/10.1200/JCO.2012.44.3184
http://doi.org/10.1200/JCO.2013.50.6337
http://doi.org/10.1038/nature20598
http://doi.org/10.1016/j.isci.2019.100780
http://doi.org/10.1182/bloodadvances.2018030726
http://doi.org/10.1182/blood-2020-139522

Hemato 2021, 2 150

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Gandelman, J.S.; Byrne, M.T.; Mistry, A.M.; Polikowsky, H.G.; Diggins, K.E.; Chen, H.; Lee, S.J.; Arora, M.; Cutler, C.; Flowers, M.;
et al. Machine learning reveals chronic graft-versus host disease phenotypes and stratifies survival after stem cell transplant for
hematologic malignancies. Haematologica 2019, 104, 189-196. [CrossRef]

Choi, E.J.; Lee, ] H; Park, ].H.; Park, H.S,; Lee, ] H; Lee, Y.; Kang, Y.A ; Jeon, M.; Woo, ] M.; Kang, H.; et al. Machine learning-based
approach to predict survival after allogeneic hematopoietic cell transplantation in hematologic malignancies. Blood 2020, 136
(Suppl. S1), 33-34.

Nazha, A.; Hu, Z.H.; Wang, T.; Lindsley, R.C.; Abdel-Azim, H.; Aljurf, M.; Bacher, U.; Bashley, A.; Cahn, ].Y.; Cerny, J.; et al.
A personalized prediction model for outcomes after allogeneic hematopoietic cell transplant in patients with myelodysplastic
syndromes. Biol. Blood Marrow Transplant. 2020, 26, 2139-2146. [CrossRef]

Lee, S.; Celik, S.; Logsdon, B.A.; Lundberg, S.M.; Martins, T.J.; Oehler, V.G.; Estey, E.H.; Miller, C.P; Chien, S.; Dai, J.; et al. A
machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun. 2018, 9, 42.
[CrossRef]

Chen, X.; Chen, H.Y; Chen, Z.D.; Gong, ].N.; Chen, C.Y.N. A novel artificial intelligence protocol for finding potential inhibitors
of acute myeloid leukemia. J. Mater. Chem. B Mater Biol. Med. 2020, 8, 2063-2081. [CrossRef]

Cutler, G.; Fridman, J.S. A machine-learning analysis suggests that FLX925, a FLT3/CDK4/6 kinase inhibitor, is potent against
FLT3-wild type tumors via its CDK4/6 activity. Blood 2016, 128, 3520. [CrossRef]

Ko, B.S.; Wang, Y.E; Li, ].L.; Weng, P.E; Hsu, S.C.; Hou, H.A.; Huang, H.H.; Yao, M,; Lin, C.T.; Liu, J.H.; et al. Clinically validated
machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia
and myelodysplastic syndrome. EBioMedicine 2018, 37, 91-100. [CrossRef]

Haferlach, T.; Schmidts, I. The power and potential of integrated diagnostics in acute myeloid leukemia. Br. ]. Haematol. 2020, 188,
36—48. [CrossRef]

Letai, A. Functional precision cancer medicine -moving beyond pure genomic. Nat. Med. 2017, 23, 1028-1035. [CrossRef]

Tyner, ] W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al.
Functional genomic landscape of acute myeloid leukaemia. Nature 2018, 562, 526-531. [CrossRef]

Kurtz, S.E.; Eide, C.A.; Kaempf, A.; Khanna, V.; Savage, S.L.; Rofelty, A.; English, I.; Ho, H.; Pandya, R.; Bolosky, W.J.; et al.
Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid- derived hematologic
malignancies. Proc. Natl. Acad. Sci. USA 2017, 114, E7554-E7563. [CrossRef] [PubMed]

Lin, L.; Tong, Y.; Straube, J.; Zhao, J.; Gao, Y.; Bai, P,; Li, ].; Wang, J.; Wang, H.; Wang, X,; et al. Ex-vivo drug testing predicts
chemosensitivity in acute myeloid leukemia. J. Leukoc. Biol. 2020, 107, 859-870. [CrossRef]

Erkers, T.; Seashore-Ludlow, B.; Struyf, N.; Marabita, F; James, T.; Malani, D.; Vesterlund, M.; Pawitan, Y.; Lehmann, S.; Ostling,
P, et al. High-throughput functional ex-vivo drug testing and multi-omics profiling in patients with acute myeloid leukemia.
Blood 2019, 134 (Suppl. S1), 4641. [CrossRef]

Martinez-Cuadron, D.; Gil, C.; Serrano, J.; Rodriguez, G.; Perez-Oteyza, ]J.; Garcia-Boyero, R.; Jimenez-Bravo, S.; Vives, S.;
Vidriales, M.B.; Lavilla, E.; et al. A precision medicine test predicts clinical response after idarubicin and cytarabine induction
therapy in AML patients. Leukemia Res. 2019, 76, 1-10. [CrossRef]

Simon, L.; Lavallée, V.P; Bordeleau, M.E.; Krosl, J.; Baccelli, I.; Boucher, G.; Lenhertz, B.; Chagraoul, J.; MacRae, T.; Ruel, R.; et al.
Chemogenomic landscape of RUNX1-mutated AML reveals importance of RUNX1 allele dosage in genetics and glucocorticoid
sensitivity. Clin. Cancer Res. 2017, 23, 6969—-6983. [CrossRef] [PubMed]

Moison, C.; Lavallée, ].P,; Thiollier, C.; Spinella, J.F.; Boivin, L.; Lemiux, S.; Marinier, A.; Hébert, J.; Savageau, G. Chemogenomic
profiling of complex karyotype AML reveals a novel susceptibility to G2/M checkpoint inhibition mediated by HMGA?2
overexpression. Blood 2018, 132 (Suppl. S1), 3925. [CrossRef]

Zhang, H.; Wilmot, B.; Bottomly, D.; Kurtz, S.E.; Eide, C.A.; Damnernsawad, A.; Romine, K,; Patel, S.; Druker, B.].; Mcweeney,
S.K.; et al. Biomarkers predicting venetoclax sensitivity and strategies for venetoclax combination treatment. Blood 2018, 132
(Suppl. S1), 175. [CrossRef]

Zhang, H.; Nakauchi, Y.; Kohnkie, T.; Stafford, M.; Bottomly, D.; Thomas, R.; Wilmot, B.; McWeeney, S.K.; Majketi, R.; Tyner, J.W.
Integrated analysis of patients samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid
leukemia. Nat. Cancer 2020, 1, 826-839. [CrossRef]

Stevens, B.M.; Jones, C.L.; Winters, A.; Gugan, J.; Abbott, D.; Savona, M.R.; Fesik, S.W.; Pollyea, D.A.; Jordan, C.T. PTPN11
mutations confer unique metabolic properties and increase resistance to venetoclax and azacytidine in acute myeloid leukemia.
Blood 2018, 132 (Suppl. S1), 909. [CrossRef]

Alfayez, M.; Issa, G.C.; Patel, K.P.; Wang, F; Wang, X.; Short, N.J.; Cortes, ].E.; Kadia, T.; Ravandi, F; Pierce, S.; et al. The clinical
impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia 2020, in press.

Pei, S.; Pollyea, D.A.; Gustafson, A.; Stevens, B.M.; Minhajuddin, M.; Fu, R.; Riemondy, K.A; Gillen, A E.; Sheridan, RM.; Kim, J.;
et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov.
2020, 10, 536-551. [CrossRef]

Spinner, M.A; Alishin, A.; Santaguida, M.T.; Schaffert, S.A.; Zehnder, J.L.; Patterson, A.S.; Gekas, C.; Heiser, D.; Greenberg, P.L.
Wx vivo drug screening defines novel drug sensitivity patterns informing personalized therapy in myeloid neoplasms. Blood Adv.
2020, 4, 2768-2778. [CrossRef]


http://doi.org/10.3324/haematol.2018.193441
http://doi.org/10.1016/j.bbmt.2020.08.003
http://doi.org/10.1038/s41467-017-02465-5
http://doi.org/10.1039/D0TB00061B
http://doi.org/10.1182/blood.V128.22.3520.3520
http://doi.org/10.1016/j.ebiom.2018.10.042
http://doi.org/10.1111/bjh.16360
http://doi.org/10.1038/nm.4389
http://doi.org/10.1038/s41586-018-0623-z
http://doi.org/10.1073/pnas.1703094114
http://www.ncbi.nlm.nih.gov/pubmed/28784769
http://doi.org/10.1002/JLB.5A0220-676RR
http://doi.org/10.1182/blood-2019-124332
http://doi.org/10.1016/j.leukres.2018.11.006
http://doi.org/10.1158/1078-0432.CCR-17-1259
http://www.ncbi.nlm.nih.gov/pubmed/28855357
http://doi.org/10.1182/blood-2018-99-111304
http://doi.org/10.1182/blood-2018-175
http://doi.org/10.1038/s43018-020-0103-x
http://doi.org/10.1182/blood-2018-99-119806
http://doi.org/10.1158/2159-8290.CD-19-0710
http://doi.org/10.1182/bloodadvances.2020001934

Hemato 2021, 2 151

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Snijder, B.; Vladimer, G.I.; Krall, N.; Miura, K.; Schmolke, A.S.; Kornauth, C.; de la Fuente, I.O.L.; Choi, H.S.; van der Kouwe, E;
Gultekin, S.; et al. Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: Interim results
from a single-arm, open-label, pilot study. Lancet Haematol. 2017, 4, e595-e606. [CrossRef]

Collignon, A.; Hospital, M.A.; Montersino, C.; Courtier, F.; Charbonnier, A.; Saillard, C.; D’Incan, E.; Mohty, B.; Guille, A.;
Adelaide, J.; et al. A chemogenomic approach to identify personalized therapy for patients with relapse or refractory acute
myeloid leukemia: Results of a prospective feasibility study. Blood Cancer J. 2020, 10, 64. [CrossRef]

Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, TW.; Dohner, K.; Marcucci,
G.; et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. ]. Med. 2017, 377, 454-464.
[CrossRef] [PubMed]

Voso, M.T,; Larson, R.A_; Jones, D.; Marcucci, G.; Prior, T.; Kraufer, J.; Heuser, M.; Lavorgna, S.; Nomdedeu, J.; Geyer, S.M.; et al.
Midostaurin in patients with acute myeloid leukemia and FLT3-TKD mutations: A subanalysis from the RATIFY trial. Blood Adv.
2020, 4, 4945-4954. [CrossRef]

Rucker, EG.; Du, L,; Blatte, T.].; Benner, A.; Krzykalla, ].; Gathmann, I.; Voso, M.T.; Amadori, S.; Prior, TW.; Brandwein, ]. M.; et al.
Molecular landscape and prognostic impact of FLT3 internal tandem duplication insertion site in acute myeloid leukemia (AML):
Results from the Ratify study (Alliance 10603). Blood 2020, 136 (Suppl. S1), 391.

Cortes, J.E.; Tallamn, M.S.; Schiller, G.J.; Trone, D.; Gammon, G.; Goldberg, S.L.; Perl, A.E.; Marie, ].P.; Martinelli, G.; Kantarjian,
H.M.; et al. Phase 2b study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML.
Blood 2018, 132, 598-607. [CrossRef]

Cortes, J.E.; Khaled, S.; Martinelli, G.; Perl, A.E.; Ganguly, S.; Russell, N.; Kramer, A.; Dombret, H.; Hogge, D.; Jonas, B.A;
et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukemia (QuANTUM-R): A
multicenter, randomized, controlled, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 984-997. [CrossRef]

Perl, A.E.; Altman, ] K,; Cortes, J.; Smith, C.; Litzow, M.; Baer, M.R,; Claxton, D.; Erba, H.P; Gill, S.; Goldberg, S.; et al. Selective
inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukemia: A multicenter, first-in-human, open-label,
phase 1-2 study. Lancet Oncol. 2019, 381, 1728-1740.

Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.;
et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl. |. Med. 2019, 381, 1728-1740. [CrossRef]
Pandya, B.J.; Qi, C.Z.; Yang, H.; Garnham, A.; Shah, M.V.; Zeidan, A.M. Comparison of gilteritinib and salvage chemotherapy in
FLT3-mutated acute myeloid leukemia on the number needed to treat for various clinical outcomes: A secondary analysis of the
admiral trial. Blood 2020, 136 (Suppl. S1), 213. [CrossRef]

Perl, A.E.; Altman, J.K.; Hosono, N.; Monteisnos, P.; Podoltsev, N.A.; Martinelli, G.; Smith, C.C.; Levis, M.; Rollig, C.; Grob-
Langenhoff, M.; et al. Clinical outcomes in patients with relapsed /refractory acute myeloid leukemia treated with gilteritinib
who received prior midostaurin or sorafenib. Blood 2020, 136 (Suppl. S1), 334. [CrossRef]

Perl, AE.; Lu, Q.; Fan, A;; Hasabou, N.; Berrak, E.; Tiu, R.V. Clinical outcomes following treatment with gilteritinib or quizartinib
in patients with relapsed /refractory FLT3-ITD* acute myeloid leukemia. Blood 2020, 136 (Suppl. S1), 995. [CrossRef]

Abdelall, W.; Kantarjian, H.M.; Borthakur, G.; Garcia-Manero, G.; Patel, K.P.; Jabbour, E.J. The combination of quizartinib with
azacitidine or low dose cytarabine is highly active in patients (Pts) with FLT3-ITD mutated myeloid leukemias: Interim report of
a phase I/1I trial. Blood 2016, 128 (Suppl. 1), 1642. [CrossRef]

Wang, E.S.; Montesinos, P.; Minden, M.D.; Lee, ]. H.; Heuser, M.; Naoe, T.; Chou, W.C.; Liu, S.; Wu, R.; Philipose, N.; et al. Phase 3,
multicenter, open-label study of gilteritinib, gilteritinib plus azacitidine, or azacytidine alone in newly diagnosed FLT3 mutated
(FLT3™Mu) acute myeloid leukemia (AML) patients ineligible for intensive induction chemotherapy. Blood 2020, 136 (Suppl. 1), 27.
Daver, N.; Altman, ].K.; Maly, J.; Levis, M.; Ritchie, E.; Litzow, M.; McCloskey, ].K.; Smith, C.C.; Schiller, G.J.; Bradley, T; et al.
Efficacy and safety of venetoclax in combination with gilteritinib for relapsed /refractory FLT3-mutated acute myeloid leukemia
in the expansion cohort of a phase 1b study. Blood 2020, 136 (Suppl. 1), 333. [CrossRef]

Maiti, A.; DiNardo, C.D.; Ravandi, F.; Pemmaraju, N.; Borthakur, G.; Bose, P.; Issa, G.C.; Kadia, T.M.; Short, N.J.; Yilmaz, M.; et al.
Venetoclax, FLT3 inhibitor and decitabine in FLT3™4t acute myeloid leukemia: Subgroup analysis of a phase II trial. Blood 2020,
136 (Suppl. S1), 1945. [CrossRef]

Yilmaz, M.; Kantarjian, H.M.; Muftuoglu, M.; Kadia, T.M.; Konopleva, M.; Borthakur, G.; DiNardo, C.D.; Pemmaraju, N.; Short,
N.J.; Alvarado, Y.; et al. Quizartinib with decitabine +/— venetoclax is highly active in patients (pts) with FLT3-ITD mutated
(mut) acute myeloid leukemia (AML): Clinical report and signaling cytof from a phase IB/II trial. Blood 2020, 136 (Suppl. S1), 26.
[CrossRef]

Pratz, K.W.; Cherry, M.; Altman, J.K.; Cooper, BW.,; Cruz, ].C.; Jurcic, ].G.; Levis, M,; Lin, T.; Perl, A.E.; Podoltsev, N.A.; et al. A
phase 1 study of gilteritinib in combination with induction and consolidation chemotherapy in patients with newly diagnosed
AML: Final report. Blood 2020, 136 (Suppl. S1), 24. [CrossRef]

Altman, J.K,; Foran, ].M.; Pratz, KW.; Trone, D.; Cortes, J.E.; Talmman, M.S. Phase 1 study of quizartinib in combination with
induction and consolidation chemotherapy in patients with newly diagnosed acute myeloid leukemia. Am. |. Hematol. 2018, 93,
213-221. [CrossRef]

Galanis, A.; Ma, H.; Rajkhowa, T.; Ramachandran, A.; Small, D.; Cortes, J.; Levis, M. Crenolanib is a potent inhibitor of FLT3 with
activity against resistance-conferring point mutatnts. Blood 2014, 123, 94-100. [CrossRef]


http://doi.org/10.1016/S2352-3026(17)30208-9
http://doi.org/10.1038/s41408-020-0330-5
http://doi.org/10.1056/NEJMoa1614359
http://www.ncbi.nlm.nih.gov/pubmed/28644114
http://doi.org/10.1182/bloodadvances.2020002904
http://doi.org/10.1182/blood-2018-01-821629
http://doi.org/10.1016/S1470-2045(19)30150-0
http://doi.org/10.1056/NEJMoa1902688
http://doi.org/10.1182/blood-2020-136184
http://doi.org/10.1182/blood-2020-136395
http://doi.org/10.1182/blood-2020-136118
http://doi.org/10.1182/blood.V128.22.1642.1642
http://doi.org/10.1182/blood-2020-139705
http://doi.org/10.1182/blood-2020-137822
http://doi.org/10.1182/blood-2020-142687
http://doi.org/10.1182/blood-2020-137685
http://doi.org/10.1002/ajh.24974
http://doi.org/10.1182/blood-2013-10-529313

Hemato 2021, 2 152

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Cortes, J.E.; Kantarzian, H.M.; Kadia, T.M.; Borthakur, G.; Konopleva, M.; Garcia-Manero, G.; Daver, N.G.; Pemmaraju, N.;
Jabbour, E.; Ramachandran, A.; et al. Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply
relapsed FLT3-ITD and D835 AML. J. Clin. Oncol. 2016, 14 (Suppl. 15), 7008. [CrossRef]

Randhawa, ] K.; Kantarjian, H.M.; Borthakur, G.; Thompson, P.A.; Konopleva, M.; Daver, N.; Pemmaraju, N.; Jabbour, E.; Kadia,
T.M.; Estrov, Z.; et al. Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with
activating FLT3 mutations. Blood 2014, 124 (Suppl. 1), 389. [CrossRef]

Goldberg, A.D.; Coombs, C.; Wang, E.S.; Walter, R.B.; Karanes, C.; Vigil, C.E.; Messahel, B.; Stone, R.M.; Collins, R.H. Younger
patients with newly diagnosed FLT3-mutant AML treated with crenolanib plus chemotherapy achieve adequate free crenolanib
levels and durable remissions. Blood 2019, 134 (Suppl. 1), 1326. [CrossRef]

Wang, E.S,; Griffiths, E.A.; Walter, R.B.; Tallman, M.S.; Goldberg, A.D.; Messahek], B. Tolerability and efficacy of crenolanib and
cytarabine/Anthracycline chemotherapy in older patients (aged 61 to 75) with newly diagnosed FLT3-mutated acute myeloid
leukemia (AML). Blood 2019, 134 (Suppl. 1), 134. [CrossRef]

Tarlock, K.; Meshinchi, S.; Rubnitz, J.E.; Karol, S.E.; Spitzer, B.; Sabnis, A.J.; Pathan, A.; Messahel, B. Clinical benefit and tolerability
in children with relapsed acute myeloid leukemia harboring treatment resistant FLT3-ITD and variant FLT3-TKD mutations
treated on compassionate access. Blood 2020, 136 (Suppl. 1), 1973. [CrossRef]

Goldberg, A.D.; Geyer, M.D,; Kell, ].; Di Bona, E.; Pardee, T.S.; Bhave, R.; Grumwald, M.R.; Marconi, G.; Wang, Y.; Pathan, A;
et al. Clinical benefit of crenolanib, with or without salvage chemotherapy, in multiply relapsed, FLT3 mutant AML patients after
prior treatment with gilteritinib. Blood 2020, 136 (Suppl. 1), 1057. [CrossRef]

Di Nardo, C.D; Stein, E.M.; De Botton, S.; Roboz, G.J.; Altman, ] K.; Mims, A.S.; Swords, R.; Collins, R.A.; Mamis, G.N.; Pollyea,
D.A,; et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. ]. Med. 2018, 378, 2386—2398.
[CrossRef]

Stein, E.M.; Di Nardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, ].K.; Stone, R.M.; De Angelo, D.J.; Levine, R.L.; Finn,
J.W,; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722-731. [CrossRef]
[PubMed]

Stein, E.M.; Di Nardo, G.D.; Faithi, A.T.; Pollyea, D.A.; Stone, R.M.; Altman, J.K.; Roboz, G.J.; Patel, M.R.; Collins, R.; Flinn, LW.;
et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib.
Blood 2019, 133, 676-687. [CrossRef] [PubMed]

Roboz, G.J.; Di Nardo, C.D.; Stein, E.M.; De Botton, S.; Mims, A.S.; Prince, G.T.; Altman, ].K.; Arellano, M.L.; Donellan, W.; Erba,
H.P; et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia.
Blood 2020, 135, 463—471. [CrossRef]

Pollyea, D.A.; Tallman, M.S.; De Botton, S.; Komborjian, A.M.; Collins, R.; Stein, A.S.; Frattini, M.G.; Xu, Q.; Tosolini, A.; See, W.L.;
et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute
myeloid leukemia. Leukemia 2019, 33, 2575-2584. [CrossRef]

Paschka, P; Dombret, H.; Thomas, X.; Recher, C.; Chantepie, S.; Fernandez, PM.; Acuna-Cruz, E.; Vyas, P; Kreuzer, K.A.; Heuser,
M.; et al. Ivosidenib improves overall survival relative to standard therapies in relapsed or refractory mutant IDH1: Results from
matched comparisons to historical controls. Blood 2020, 136 (Suppl. S1), 625. [CrossRef]

Quek, L.; David, M.D.; Kennedy, A.; Metzner, M.; Amatangelo, M.; Shih, A.; Stoilova, B.; Quivoron, C.; Heiblig, M.; Willekens, C.;
et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat. Med. 2018, 14, 1167-1177.
[CrossRef]

Harding, J.J.; Lowery, M.A.; Shih, A.H.; Schvartzman, ].M.; Hou, S.; Famulare, C.; Patel, M.; Roshal, M.; Do, R.K.; Zehir, A.
Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition. Cancer Discov. 2018, 8,
1540-1547. [CrossRef]

Intlekofer, A.M.; Shih, A.H.; Wang, B.; Nazer, A.; Rustenbug, A.S.; Albanese, S.K.; Patel, M.; Famulare, C.; Correa, FM.; Takamoto,
N.; et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 2018, 559, 125-129.
[CrossRef]

Di Nardo, C.D.; Schuh, A.C.; Stein, E.M.; Montesinos Fernandez, P.; Wei, A.H.; De Botton, S.; Zeidan, A.M.; Fathi, A.T.; Quek, L.;
Kantarjian, H.M.; et al. Enasidenib plus azacitidine significantly improves complete remission and overall response compared
with azacytidine alone in patients with newly diagnosed acute myeloid leukemia (AML) with isocitrate dehydrogenase (IDH2)
mutations: Interim phase II results from an ongoing, randomized study. Blood 2019, 134 (Suppl. S1), 643.

DiNardo, C.D,; Stein, A.S.; Stein, E.M.; Fathi, A.T.; Frankfurt, O.; Schuh, A.C.; Dohner, H.; Martinelli, G.; Patel, P.A.; Raffoux, E.;
et al. Mutant isocitrate dehydrogenase 1 inhibitor ivosidenib in combination with azacytidine for newly diagnosed acute myeloid
leukemia. J. Clin. Oncol. 2021, 39, 57-65. [CrossRef] [PubMed]

Di Nardo, C.D.; Schuh, A.C.; Stein, E.M.; Montesinos Fernandez, P.; Wei, A.H.; De Botton, S.; Zeidan, A.M.; Fathi, A.T.; Quek, L.;
Kantarjian, H.M.; et al. Effect of enasidenib (ENA) plus azacytidine monotherapy in mutant-IDH2 (mIDH?2) newly diagnosed
acute myeloid leukemia (ND-AML). J. Clin. Oncol. 2020, 38 (Suppl. S1), 7501.

Ok, C.Y,; Loghavi, S.; Sui, D.; Wei, P; Kanagal-Shamanna, R.; Yin, C.C.; Zuo, Z.; Routbort, M.].; Tang, G.; Tang, Z.; et al. Persistent
IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica 2019, 104, 305-311.
[CrossRef] [PubMed]


http://doi.org/10.1200/JCO.2016.34.15_suppl.7008
http://doi.org/10.1182/blood.V124.21.389.389
http://doi.org/10.1182/blood-2019-130863
http://doi.org/10.1182/blood-2019-130536
http://doi.org/10.1182/blood-2020-140399
http://doi.org/10.1182/blood-2020-139898
http://doi.org/10.1056/NEJMoa1716984
http://doi.org/10.1182/blood-2017-04-779405
http://www.ncbi.nlm.nih.gov/pubmed/28588020
http://doi.org/10.1182/blood-2018-08-869008
http://www.ncbi.nlm.nih.gov/pubmed/30510081
http://doi.org/10.1182/blood.2019002140
http://doi.org/10.1038/s41375-019-0472-2
http://doi.org/10.1182/blood-2020-136957
http://doi.org/10.1038/s41591-018-0115-6
http://doi.org/10.1158/2159-8290.CD-18-0877
http://doi.org/10.1038/s41586-018-0251-7
http://doi.org/10.1200/JCO.20.01632
http://www.ncbi.nlm.nih.gov/pubmed/33119479
http://doi.org/10.3324/haematol.2018.191148
http://www.ncbi.nlm.nih.gov/pubmed/30171025

Hemato 2021, 2 153

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.
119.

120.

121.

Stein, E.M.; DiNardo, C.; Fathi, A.T.; Mims, A.S.; Pritz, KW.; Savona, M.R.; Stein, A.S.; Stone, R.M.; Winer, E.S.; Seet, C.S.; et al.
Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: A phase 1 study. Blood
2020, in press. [CrossRef]

Stein, E.M.; DiNardo, C.; Fathi, A.T.; Mims, A.S.; Pratz, KW.; Savona, M.R,; Stein, A.S.; Stone, R.M.; Winer, E.S.; Seet, C.S.; et al.
Ivosidenib or enasidenib with induction and consolidation chemotherapy in patients with newly diagnosed AML with an IDH1
or IDH2 mutation is safe, effective, and leads to MRD-negative complete remissions. Blood 2018, 132 (Suppl. 1), 560. [CrossRef]
Di Nardo, C.D.; Pratz, KW.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic,
R.; et al. Safety and preliminary efficacy of venetoclax with decitabine or azacytidine in elderly patients with previously untreated
acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018, 19, 216-228. [CrossRef]

Wei, A.H.; Strickland, S.A.; Hou, ].Z.; Fiedler, W.; Lin, T.L.; Walter, R.B.; Enjeti, A.; Tiong, L.S.; Savona, M.; Lee, S.; et al. Venetoclax
combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: Results from a phase Ib/II
study. J. Clin. Oncol. 2019, 37, 1277-1284. [CrossRef] [PubMed]

Di Nardo, C.D.; Jonas, B.A.; Pullarkat, M.].; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Dohner, H.; Letai, A.; Fenaux, P;
et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. ]. Med. 2020, 383, 617-629. [CrossRef]
DiNardo, C.D.; Tiong, L.S.; Quaglieri, A.; MacRaild, S.; Loghavi, S.; Brown, EC.; Thijssen, R.; Pomilio, G.; Ivey, A.; Salmon, ].M.;
et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML.
Blood 2020, 135, 791-803. [CrossRef] [PubMed]

Pollyea, D.A.; DiNardo, C.D.; Arellano, M.L.; Pigneux, A.; Fiedler, W.; Konopleva, M.; Rizzieri, D.A.; Smith, D.; Shinagawa, A.;
Lemoli, R.M.; et al. Results of venetoclax and azacytidine combination in chemotherapy ineligible untreated patients with acute
myeloid leukemia with IDH1/2 mutations. Blood 2020, 136 (Suppl. S1), 5-7. [CrossRef]

Maiti, A.; Rausch, C.R.; Cortes, ].E.; Pemmaraju, N.; Daver, N.G.; Ravandi, F.; Garcia-Manero, G.; Borthakur, G.M.; Naqvi, K.;
Ohanian, M.; et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent with
venetoclax regimens. Blood 2019, 134 (Suppl. S1), 738. [CrossRef]

DiNardo, C.D.; Maiti, A.; Rausch, C.R.; Pemmanaiu, N.; Naqvi, K.; Daver, N.G.; Kadia, T.M.; Borthakur, G.; Gohaninan, N.;
Alvarado, Y.; et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or
refractory acute myeloid leukemia: A single-centre, phase 2 trial. Lancet Hematol. 2020, 7, €724—e736. [CrossRef]

Hammond, D.; Loghavi, S.; Konopleva, M.; Kadia, T.M.; Daver, N.; Ohanina, M.; Issa, G.C.; Alavarado, Y.; Montalban-Bravo, G.;
Garcia-Manero, G.; et al. Response patterns and MRD by flow cytometry and NGS in patients with mutant-IDH acute myeloid
leukemia treated with venetoclax in combination with hypomethylating agents. Blood 2020, 136 (Suppl. S), 35-36. [CrossRef]
Wei, A.H.; Montesinos, P; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al.
Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled
trial. Blood 2020, 135, 2137-2146. [CrossRef]

Chua, C.C.; Roberts, A.W.; Reynolds, J.; Fong, C.Y.; Ting, S.B.; Salmon, J.B.; MacRaild, S.; Ivey, A.; Tiong, L.S.; Fleming, S.; et al.
Chemotherapy and venetoclax in elderly acute myeloid leukemia trial (CAVEAT): A phase Ib dose-escalation study of venetoclax
combined with modified intensive chemotherapy. J. Clin. Oncol. 2020, 38, 3506-3517. [CrossRef]

Lachowiez, C.A.; Borthakur, G.; Loghavi, S.; Zhihong, Z.; Kadia, T.M.; Masarova, L. Phase Ib/II study of the IDH1-mutant
inhibitor ivosidenib with the BCL2 inhibitor venetoclax + azacytidine in IDH1-mutated hematologic malignancies. J. Clin. Oncol.
2020, 38, 7500. [CrossRef]

Richard-Charpentier, G.; Di Nardo, C.D. Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients
who are ineligible for intensive chemotherapy. Ther. Adv. Hematol. 2019, 10, 1-14. [CrossRef]

Collins, ES.; Varmus, H. A new initiative on precision medicine. N. Engl. . Med. 2015, 372, 793-795. [CrossRef] [PubMed]
Hunter, D.J. Uncertainty in the era of precision medicine. N. Engl. |. Med. 2016, 375, 711-713. [CrossRef]

Bertoli, S.; Bérard, E.; Huguet, F; Huynh, A.; Tavitan, S.; Vergez, F.; Dobbelstein, S.; Dastugue, N.; Mansat-De Mas, V.; Delabesse,
E.; et al. Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute
myeloid leukemia. Blood 2013, 121, 2618-2624. [CrossRef]

Burd, A.; Levine, R.L.; Shoben, A.; Mims, A.S.; Borate, U.; Stein, E.M.; Patel, P.A.; Baer, M.R.; Stock, W.; Deininger, M.W.;
et al. Initial report of the Beat AML umbrella study for previously untreated AML: Evidence of feasibility and early success in
molecularly driven phase 1 and 2 studies. Blood 2018, 132 (Suppl. S1), 559. [CrossRef]

Burd, A.; Levine, R.L.; Ruppert, A.S.; Mims, A.S.; Borate, U.; Stein, E.M.; Patel, P.; Baer, M.R.; Stock, W.; Deininger, M.; et al.
Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: Feasibility and preliminary efficacy
of the Beat AML Master Trial. Nat. Med. 2020, 26, 1852-1858. [CrossRef]


http://doi.org/10.1182/blood.2020007233
http://doi.org/10.1182/blood-2018-99-110449
http://doi.org/10.1016/S1470-2045(18)30010-X
http://doi.org/10.1200/JCO.18.01600
http://www.ncbi.nlm.nih.gov/pubmed/30892988
http://doi.org/10.1056/NEJMoa2012971
http://doi.org/10.1182/blood.2019003988
http://www.ncbi.nlm.nih.gov/pubmed/31932844
http://doi.org/10.1182/blood-2020-134736
http://doi.org/10.1182/blood-2019-128909
http://doi.org/10.1016/S2352-3026(20)30210-6
http://doi.org/10.1182/blood-2020-141380
http://doi.org/10.1182/blood.2020004856
http://doi.org/10.1200/JCO.20.00572
http://doi.org/10.1200/JCO.2020.38.15_suppl.7500
http://doi.org/10.1177/2040620719882822
http://doi.org/10.1056/NEJMp1500523
http://www.ncbi.nlm.nih.gov/pubmed/25635347
http://doi.org/10.1056/NEJMp1608282
http://doi.org/10.1182/blood-2012-09-454553
http://doi.org/10.1182/blood-2018-99-118494
http://doi.org/10.1038/s41591-020-1089-8

	Introduction 
	The Fundamental Contribution of Precision Medicine to a More Rational and Predictive Risk Stratification of AML Patients 
	The Contribution of the Machine Learning Approach to Improve the Assessment of AML Diagnosis and Prognosis 
	An Integrated Approach Is Required for the Development of Personalized Medicine in AML 
	Challenges in Clinical Development of Targeted Therapies for AML 
	Personalized Therapy for AML Patients Is Feasible 
	Conclusions 
	References

