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Abstract: (1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective
vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health,
or prior medical history. This article documents the importance of nasal microbiome profiles in
distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a
detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simu-
lations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer
protection against SARS-CoV-2 infections by expressing proteases that may interfere with the pro-
teolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella
fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., ado-
lescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines)
and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous
cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with
notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the
SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.

Keywords: TMPRSS2; protease–antiprotease balance; COVID-19; SARS-CoV-2; spike protein; Moraxella;
Pseudomonas; commensal bacteria; serine protease; Canis lupus familiaris

Key Contribution: Why did COVID-19 severely impact some individuals while leaving others largely
unaffected? Based on assimilation of multidisciplinary evidence, tied together with informatics and
molecular simulations, this manuscript argues for commensal bacterial protease having a significant
overlooked influence on host vulnerability to SARS-CoV-2 infections.

1. Introduction

For all its rigor, science is also a discipline of intuition and adventition. Since the days
of Friedrich Kekulé correctly perceiving the structure of benzene from his vision of a snake
eating its tail, scientists have benefited from unexpected analogies that have suddenly
emerged to explain odd observations. In an attempt to rationalize a disparate series of
counter-intuitive epidemiological trends emanating from the COVID-19 pandemic, this
manuscript develops a hypothesis that may help to resolve questions regarding idiosyn-
cratic variations in human infectious vulnerability based, originally, on our observations
on the varying microbiotic profiles of canines and felines.

Among the many ways in which COVID-19 has impacted humanity, the most profound
one may actually prove beneficial—a period of prodigious scientific discovery aimed
at advancing global health [1–13]. Adding to the disciplines influenced by pandemic-
related research, this hypothesis explores intriguing evidence of microbe–virus interplay,
combining verified epidemiological and biochemical reports with new preliminary analyses
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to argue for the role of microbial proteases in rationalizing coronavirus epidemiology trends,
to illuminate potential opportunities for novel therapeutic strategies.

As the first pandemic of the information age and post-genomic era, COVID-19 brought
tremendous investigative resources bearing on virology, immunology, and epidemiology,
producing a stunning array of new insight that should help to spark new research for years
to come. The greatest short-term technological impact of the COVID-19 response was likely
the remarkable success of anti-SARS-CoV-2 vaccine programs, but other critical advances
in viral testing and surveillance were also achieved with rapid effectiveness [1–4]. The
protocols by which each of these high-impact COVID-19-specific technologies was attained
were sophisticated and timely and offer excellent roadmaps for tackling future epidemics,
thus bettering the future of world health.

Beyond the aforementioned developments, one must also consider advances in risk-
profile analysis, producing important insight into why some subsets of the human popu-
lation have demonstrated elevated risk of suffering more severe COVID-19 outcomes.
Statistical support for many posited risk factors has declined through the pandemic,
but some, such as a link between severe COVID-19 and prior medical history of car-
diovascular and metabolic disorders (primarily diabetes, hypertension, and obesity) have
gained strength according to extensive sustained analysis [5]. Autoimmune risk factors
have also been determined to correlate with COVID-19 severity [6,7] and predispose pa-
tients to post-acute sequelae [8,9]. Other epidemiologically significant factors include
chronic exposure to air pollution [10,11], as well as one metric that assimilates numerous
subfactors—socioeconomic status [12,13].

Vaccination, testing, and risk profiling are of tremendous societal value and can sub-
stantially reduce overall caseloads and fatalities, but unfortunately, they offer marginal
relief to individuals who actually contract dangerous viruses like COVID-19. Further
development of safe and reliable treatment strategies for people who fall ill is thus re-
quired for full and concerted pandemic response. Much effort has been devoted to
designing [14–18] or repurposing [19,20] drugs for SARS-CoV-2 targets, but such pur-
suits have not yet produced breakthrough success. Such disappointment is not surprising,
given the historical challenges of developing antiviral therapeutics [21], but it is imperative
to persevere and to innovate. The terrible global toll through a few short years of pan-
demic, the continuing threat of new coronavirus variants and hitherto undiscovered viral
pathogens, and the rhetorical value of devising efficacious antiviral strategies all provide
powerful incentives. The most pressing existential threats of COVID-19 may be on the
wane, but our best chances to successfully mitigate the next pandemic may emerge from
the vast amount of quantitative and qualitative evidence collected during the current one.
Conceivably, this body of information may contain crucial mechanistic clues underlying
past pharmacological failures and the basis for finding ways to correct them.

One superficially logical strategy for antiviral drug development that rarely tends
to achieve lasting therapeutic benefits [22–25] entails applying standard rational small-
molecule design principles toward interfering with viral proteins tasked with host infection
or viral replication. One crucial limitation of this approach lies in ignoring long-standing
experience with viral resistance, wherein high-specificity targeting is generally overcome
by viral genetic evolution, via mutation rates substantially exceeding those of bacteria or
cancer cells [26–30]. Alternative host-targeting strategies (e.g., blocking entry-mediating
host–protein attachment sites) are less vulnerable to viral resistance, but the strategy has
yet to produce major drug candidates [31,32]. Still, these outcomes should be regarded not
as abject failures but rather as motivation to formulate new design paradigms. Every recent
antiviral disappointment, such as Remdesivir [15], Sofosbuvir [16], and Molnupiravir [17],
and controversies over hydroxychloroquine [19] and Ivermectin [20] add new insight into
the merits and consequences of modulating viral–host interactions. Such incremental
knowledge may eventually inform successful new strategies.

Valuable insights are also emerging from non-traditional hypotheses that may sup-
plant or augment prior pharmacological paradigms. For example, the aforementioned
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public health risk factor analysis can be cross-purposed to posit circumstances that promote
resistance to symptomatic infection or to more tangibly severe manifestations. Indeed,
while much of the world is now assumed to have been exposed to SARS-CoV-2, a persistent
sub-population exists that, despite not necessarily pursuing rigorous isolation, has experi-
enced few or no symptoms of infection [33–37]. This resistance suggests tangible factors,
likely independent of the virus itself, that may enable some individuals to avoid illness.
Identifying and characterizing these features might help to inspire novel therapeutic or
prophylactic paradigms, thus incentivizing resistivity/vulnerability analysis [33–37].

Genetic factors postulated to protect against COVID-19 infection have been reviewed
elsewhere [38], with much attention being paid to aspects of host physiology that may
enhance immune-driven clearance of the SARS-CoV-2 virus [38–40]. In particular, it is noted
that some people display T-cell activity that is measurably more effective in targeting highly
conserved features of the virion architecture, leading to rapid viral clearance, even without
elevated antibody production, which would normally be indicative of current or prior
exposure [37,41]. Other mechanistically vague trends have been noted, such as potential
risk reduction among people with pre-existing food allergies [42] and possibly also prior
long-term usage of endocrine-modulating drugs like Tamoxifen [43,44]. Ultimately, the
breadth and scatter of possible resistance factors has hindered novel drug development,
which might have coalesced around any consensus on promising host-related factors.

Given that COVID-19 infections remain difficult to treat [45], especially as new vari-
ants diverge from vaccine specificity [46], it is fortunate that the absence of consensus is
not a consensus of absence. Rather, if markers from host physiology or medical history
fail to support a simple relationship with COVID-19 vulnerability, the difference could
implicate other influences as a basis for the relative viral resistance of a given individual.
Thus, this hypothesis attains substantial novelty by distancing itself from the host–virus
relationship [47] and instead explores evidence that variations in host commensal bacte-
ria, potentially including gut, nasal, and lung microbiota, may differentially facilitate or
mitigate viral entry to an extent that affects vulnerability or resistance.

While substantial research has been devoted to co-pathology among various mi-
crobes and the SARS-CoV-2 virus [48–52], this hypothesis aims to assess knowledge of
the symbiotic host-protective capacity of some bacteria [50,53] while focusing on putative
mechanisms at molecular levels of detail, with potential application to therapeutic develop-
ment. In particular, a novel hypothesis is rationalized, tying key aspects of host protection
to the relative capacity of different bacterial serine proteases to interact with the SARS-
CoV-2 Spike protein (and other comparable viral Class I fusion proteins present in various
other coronaviruses and retroviruses) in a manner that may interfere with the pathological
TMPRSS2-mediated process of Spike cleavage and host-membrane permeation.

This hypothesis has emerged from confluent evidence drawn from disparate sources,
including the following:

• Contrast between high-risk versus low-risk segments of the human population;
• Differential nasal microbiotic profiles of COVID-19 patients versus non-infected people

with similar demographics and experiences [54–56];
• Comparative biological assessment of the relative virion-shedding propensity of fe-

lines [57] versus various canids [57,58], augmented by microbiotic profiling performed
specially for this study across a cohort of client-owned dogs;

• Genomic and structural biological rationalization through informatics and simulations
performed herein.

2. Viral Host Infection: TMPRSS2-Mediated vs. TMPRSS2-Independent Mechanisms

Human TMPRSS2 is a type II trypsin-like transmembrane serine protease that has
attracted substantial interest for apparent roles in facilitating host infection by various
forms of influenza and coronaviruses [59–63]. Setting aside a persistent lack of consensus
over whether TMPRSS2 is primarily expressed by endothelial or epithelial cells [64–67], it
is clear that the protein is abundant on many epithelial surfaces, especially including the
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lung, stomach, colon, and rectum [68–70], but also on the surfaces of sustentacular cells
in olfactory mucosa [71]. Although no firm opinion exists on the primary physiological
function of TMPRSS2 [72,73], it has gained a great deal of attention for a non-physiological
role in priming viral glycoproteins as a precursor to host infection. In particular, research
on SARS and MERS coronavirus epidemics spurred a growing recognition of the extent
to which TMPRSS2 helps to expedite host-cell fusion and clathrin-mediated endocytosis,
as is shown in Figure 1A,B. While various extracellular proteases (furin, ADAM17, and
others) are capable of cleaving the SARS-CoV-2 Spike protein along loop regions suitable
for infectiously priming the virion, only TMPRSS2 is known to remain associated with
both the viral Spike protein and the cellular ACE2 receptor after cleavage. TMPRSS2
thus accomplishes both primary cleavage of Spike and secondary integration with the
host-cell membrane, achieving such steps both for coronavirus infections [61,62,74,75] and
for various influenza variants [60–63].
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Figure 1. Host-cell infection, beginning with (A) virion binding to ACE2 receptor (blue) within a
clathrin pit. (B) In the presence of TMPRSS2 (purple), extracellular cleavage of Spike (red) by TM-
PRSS2 enables membrane fusion and direct release of viral RNA into the cell. Otherwise, (C) clathrin
(yellow cla) may mediate endocytosis, after which (D) various cathepsins (green) are able to release
RNA from the vesicle.

Amid extensive efforts to design COVID-19 therapeutics, attempts have been made
to disrupt TMPRSS2-related steps incumbent in SARS-CoV-2 infection [59,76,77]. Little
efficacy has been demonstrated to date in such strategies, prompting speculation that
TMPRSS2 may facilitate infection without being an absolute requirement for coronavirus
and influenza viruses. Indeed, mechanisms for host-cell entry by more recent SARS-CoV-2
variants (especially descendants of the omicron sequence) appear to have reduced reliance
on TMPRSS2 [78].

One factor that diminishes the role of TMPRSS2 in promulgating SARS-CoV-2 infec-
tions is the apparent capacity of other proteases, such as furin [79–82], ADAM-10, and
ADAM-17 [83,84], to cleave the Spike protein at junctures proximal to the canonical S2′

cleavage sites favored by TMPRSS2, thus achieving comparable release of viral RNA into
the host cell. An important advantage that TMPRSS2 offers the virus is a sustained associa-
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tion with ACE2 at the cell surface. This facilitates viral fusion directly with the host-cell
plasma membrane.

In the absence of TMPRSS2 (Figure 1C,D), a slower mode of entry may be utilized,
whereby host-cell endocytosis ports the virion into an intracellular vesicle, availing an
opportunity for subsequent cytosolic release by Cathepsin-B or Cathepsin-L [85–87]. The
diminished TMPRSS2 reliance of omicron-derived variants of SARS-CoV-2 seems to be
due largely to elevated exploitation of this endocytotic cathepsin infection route [78,88,89].
Reduced infectious efficiency of the cathepsin route may explain the altered symptomol-
ogy exhibited by omicron variants [90–92] compared with the TMPRSS2-mediated cell
fusion perpetrated by delta (and prior) variants [90]. In particular, the tradeoff for slower
individual infection by omicron variants appears to be greater communal transmission
enabled by viral preference for transmission-friendly (but TMPRSS2-poor) nasopharyngeal
tissue [93,94] while posing less threat to TMPRSS2-rich tissues, such as the deep lung [95,96]
and olfactory epithelium [97,98].

3. Role of Protease/Antiprotease Balance in Immunopathology

From a scientific perspective, the rapid, fundamental shift in pathological mecha-
nism achieved by the SARS-CoV-2 omicron variants begs the question of “how and why”.
What evolutionary pressure could have favored the rapid genetic shift [99] from an epi-
demiological successful delta variant to the functionally distinct omicron class, especially
when the latter has seemingly offered evolutionary tradeoffs rather than unequivocal
mechanistic superiority?

Some answers may tie to the elaborate reliance of various coronaviruses and in-
fluenza viruses on proteolytic function, which is regulated within host organisms by a
phenomenon known as protease/antiprotease balance (PAB). PAB entails interplay within
a superset of proteases, plus an adaptive array of stimulatory and inhibitory proteins and
peptides [100–103]. PAB plays a major role in immunoregulatory function and helps
to determine relative resistance or susceptibility to both influenza and COVID-19 infec-
tions [104,105], whereas imbalances are implicated in respiratory and gastrointestinal
autoimmune conditions [106–109].

While the relatively static human proteome itself might not have applied evolutionary
pressure to spur the complex mutations required to produce omicron, evidence that the
omicron variants might have emerged through cross-species rebound (from humans to
rodents and back to humans [110,111]) may embody an immunological jolt of intensity
sufficient to explain the profound adaptations manifest in the omicron variants. Notably,
genomic diversities in rodent proteases and antiproteases are substantially greater than
the diversities in those of humans [112,113]. Furthermore, across mammalian proteomes,
a disproportionate fraction of protease variations tend to occur in immune-related func-
tions, and in comparison with rodents and some simians, several human immune-relevant
protease genes are epigenetically suppressed [114]. However, species-level variations in
proteolysis are also not the final determinant, since host microbiomes add substantial diver-
sity to protease/antiprotease balance [108,115], with substantial variation in microbiome
constituency being apparent across mammalian species [116–119], for reasons that include
species-level traits and individual genetics, age, sex, diet, and environment.

This hypothesis offers possible insight into the questions raised at the beginning
of this section, suggesting further areas of practical inquiry. Relevant questions include
the following:

• Can we propose key players within the proteolytic machinery with major influences
on SARS-CoV-2 adaptation and the determination of host vulnerability or resistance
to the virus?

• What are the implications for future SARS-CoV-2 differentiation based on the assump-
tion of PAB as a key evolutionary factor?

• Can this information be exploited for future health benefits?
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4. Host Serpins and Proteases as Modulators of Virus Infection

Among a handful of surprising trends that have emerged regarding COVID-19 vul-
nerability is growing evidence that people with prior diagnoses for allergic asthma are
less likely to exhibit reduced risk of severe SARS-CoV-2 infections and hospitalizations
compared with the population as a whole [120–124]. There are various possible factors
that might underlie such an observation, but it is worth noting that the most widely con-
sidered non-pathocentric hypothesis—a protective role of regular corticosteroid use by
asthmatics—does not fare particularly well in view of a conflicted and generally unfavor-
able relationship between general corticosteroid usage and COVID-19 outcomes [125–128].
The answer, therefore, may hinge on fundamental facets in molecular physiology and in
proteolytic divergence in the pathology of the two disorders.

Protease/antiprotease imbalance is a hot topic in respiratory pathology research. While
COPD and bronchiectasis are more extensively studied as examples of respiratory prote-
olytic disorders [106,107,129,130], allergic asthma pathology is generally also considered in
this category [131,132]. To relate PAB knowledge to COVID-19 pathology, we may begin
by considering antiproteases, whose effects on respiratory disorders have been widely
studied [104]. The most widely reported antiprotease marker candidates for allergic asthma
are SERPINB10, SERPINE1, and SERPINA3. SERPINB10 appears to offer a straightfor-
ward, correlative asthmatic relationship, presenting substantial overexpression in epithelial
eosinophilia for various non-infectious respiratory pathologies [133–135]. In terms of
anti-correlators, people with SERPINA3 (also known as alpha-1 antichymotrysin/A1AC)
deficiencies tend to suffer disproportionately from non-bronchial allergic asthma [136,137].
Little is known about the manner in which SERPINA3/A1AC mitigates asthmatic re-
sponse, other than a general assumption that the protein has immunoregulatory and
anti-inflammatory effects, perhaps through regulation of neutrophil serine proteases [138].
The respiratory epithelial presence of specific isoforms of SERPINE1 (also called plasmino-
gen activator inhibitor-1/PAI-1) has been examined as a possible asthma correlator [139],
but the full body of literature yields a complex picture, with some research suggesting that
that SERPINE1/PAI-1 dysregulation is of primary interest in cases reporting very specific
polymorphisms of the protein (in particular the 4G/5G form) rather than as a general
factor [140,141], while other studies consign its relevance to simple prediction of adverse
corticosteroid side-effects [142,143].

In terms of relevance to COVID-19 vulnerability, SERPINB10, SERPINE1, and SER-
PINA3 paint very different pictures. There is minimal evidence that SERPINB10 plays
any differential role, whether exacerbatory or mitigative, in determining COVID-19 out-
comes [144]. Patient abundance of SERPINA3/A1AC, by contrast, is proposed to be
very important for COVID-19 outcomes, but the relationship is directly analogous to
trends for asthmatics, such that A1AC deficiency could be considered a major risk fac-
tor for both allergic asthma and severe viral infections [145–147]. Finally, as a converse
example, SERPINE1/PAI-1 overabundance seems to correlate strongly with both severe
non-infectious respiratory pathology [141,148–150] and a propensity to foster coagulo-
pathic outcomes in severe COVID-19 cases, including interrelated acute respiratory distress
syndrome (ARDS) and thrombotic manifestations [151–153], through apparent impairment
of fibrinolytic activity [151]. From this complexity, it may be reasonable to conclude that
some SERPINs have significant effects on both infectious and autoimmune respiratory
pathologies, but that the effects are independent of any net relationship between cases of
allergic asthma and trends of diminished COVID-19 severity.

Turning the attention to prospective protease markers, one finds multiple recent
studies reporting correlations between elevated levels of proteases and allergic asthmatic
response [107,154]. Of particular interest is Human Airway Trypsin-like Protease (HAT;
also called TMPRSS11D) having unusual abundance in samples associated with asthmatic
pathology [155,156]. From the perspective of a possible role in viral infections, it is notable
that although HAT/TMPRSS11D had been implicated as a possible facilitator for the origi-
nal SARS-CoV pathogen [155,157], its capacity to serve in a manner analogous to TMPRSS2
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in the cleavage of the SARS-CoV-2 Spike protein and subsequent host-cell induction is
measurably diminished by a factor of roughly 19-fold [158]. Thus, unlike antiprotease
markers shared between allergic asthma and COVID-19 analytics, HAT/TMPRSS11D
represents a unique example whereby relative abundance of the protein produces an op-
posite effect on pathological trends in allergic asthma versus COVID-19. This fact offers
a tantalizing prospect that HAT/TMPRSS11D, while behaving as an approximate analog
of TMPRSS2 and other proteases in exacerbating autoimmune conditions, may exhibit
functional inefficiency that kinetically interferes with the process of SARS-CoV-2 infection
and replication.

5. Microbiotic Mimicry and Amplification of Protease/Antiprotease Dynamics

While the host PAB machinery alone provides factors that may influence trends in
COVID-19 vulnerability and resistance, it is important to recall that human genetics are
only one determinant of our pathophysiologically relevant proteome. A crucial component
of human biochemical complexity and diversity emerges from microbial complementarity,
with distinct microbiomes in upper respiratory [159–163], lower respiratory [115,164–167],
and gastrointestinal tracts [166–170] all having tangibly different effects on viral outcomes.
Among the various biochemical effects associated with microbial proteases are known
modulations of the innate immune system including IFNγ, several interleukins, and oth-
ers [171], plus proteolytic stabilization of viral capsids in a manner that may bolster virion
persistence outside of hosts in moist environments [172].

A detailed survey of viral modulation by microbial proteases and antiproteases, al-
though potentially impactful, would be a huge undertaking, far in excess of this modest
hypothesis article. It is, nonetheless, interesting to identify bacterial homologs to in-
teresting proteases, such as HAT, A1AC, and PAI-1, within the proteomes of bacterial
species classes that appear to exert influence on SAR-CoV-2 infectivity. These bacterial
classes include both potential exacerbators of COVID-19 (e.g., Staphylococcus [173] and
Pseudomonas [174,175]) and proposed mitigators (e.g., Dolosigranulum [173], Corynebac-
terium [173], and Moraxella [52,176]). Relevant proteases and antiproteases from these
species families are reported in Table 1, according to homology (% identity) and alignment
coverage (% coverage) relative to HAT, A1Ac, and PAI-1.

Table 1. Selected bacterial proteases and antiproteases of potential relevance to microbial modulation
of SARS-CoV-2, as prioritized by sequence homology and alignment coverage relative to human
proteins PAI-1, A1AC, and HAT. Microbes are listed by species family name. Microbial proteins are
referenced in parentheses with GenBank accession numbers.

PAI-1/SERPINe1 A1AC/SERPINa3 HAT/TMPRSS11D

% Identity % Coverage % Identity % Coverage % Identity % Coverage

Staphylococcus 28.76% 90% 25.87% 87% 30.30% 31%
(MCM1356220.1) (MCM1356220.1) (PAL08087.1)

Pseudomonas 27.34% 93% 32.86% 16% 36.21% 54%
(MAK72596.1) (PNB35482.1) (MCL6711730.1)

Dolosigranulum n/a n/a n/a n/a n/a n/a
(none) (none) (none)

Corynebacterium 32.27% 60% 29.27% 57% 27.73% 51%
(EEG25322.1) (WP_232022389.1) (WP_003858612.1)

Moraxella 28.41% 85% 28.17% 97% 37.82% 56%
(MBC7753780.1) (WP_219332546.1) (MBC7754020.1)

In this table, a trivial observation is that Dolosigranulum bacteria do not seem to
produce close homologs to the COVID-19-relevant SERPINs or to the TMPRSS family of
serine proteases. This would suggest that if Dolosigranulum bacteria do help to mitigate
the threats posed by SARS-CoV-2, the mechanism is not analogous to prominent host
proteolytic biochemistry and may actually not involve PAB at all. Beyond this simple
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observation, it may be helpful to establish context for the reported numbers. In general,
larger values for sequence alignment coverage are indicative of conservation of multiple
functional domains, which increases the likelihood that one protein shares not only similar
primary function but possibly also comparable secondary (or even tertiary) functions
and may also exhibit preferences for similar subcellular milieu. This would thus imply,
for example, substantial analogies between Staphylococcus and Pseudomonas homologs to
human PAI-1 and an even greater analogy for the Moraxella homolog to SERPINa3. The
fraction of aligned sequences in the various other pairings suggests effective conservation
of at least one functional domain in all cases, except for the case of Pseudomonas, which
likely has no functional homolog to human SERPINa3 (i.e., the 16% sequence coverage and
no overlap with the characteristic SERPIN center inhibitory loop imply poor candidacy).

By comparison, sequence identity is a stronger guarantee of the conservation of local
structural and functional attributes. While high sequence identities offer proportionally
higher probability of structural and functional conservation, there is an empirically very
useful lower bound of 30% identity, above which a pair of proteins may be considered
homologous. This boundary, while semi-arbitrary, has withstood decades of practical
application, with the assessment that roughly 90% of all protein pairs with at least 30%
sequence identity across known functional domains exhibit similar three dimensional
structures and comparable functions for those domains [177]. This assumption amplifies
the prospective significance of the Corynebacterium homolog relative to human SERPINe1;
the Pseudomonas homolog versus human SERPINa3; and the Staphylococcus, Pseudomonas,
and Moraxella homologs to human HAT. It should also be mentioned that functional
analogies frequently exist between protein pairs with sequence identities slightly less than
30% [178], thus implying that tangible homology is possible among all putative pairings in
Table 1, other than SERPINa3/PNB35482.1 (Pseudomonas).

From weighing levels of both sequence coverage and identity, it is the opinion of the
authors that the most interesting proteins listed in Table 1 are the Staphylococcus and Pseu-
domonas homologs to SERPINe1, the Staphylococcus and Moraxella homologs to SERPINa3,
and the Pseudomonas and Moraxella homologs to HAT. All of these bacterial homologs to
human SERPINs are known to have protease inhibitory function, while both of the bacterial
HAT homologs are known proteases. Admittedly, the marginal sequence homologies
cannot be used to definitively argue that the antiprotease specificities of bacterial SERPIN
homologs closely mirror those of the asthma-relevant and COVID-19-relevant SERPINe1
and SERPINa3, or whether the bacterial proteases might hasten or hinder the SARS-CoV-2
spike mechanism of host-cell entry. Nonetheless, the levels of sequence identity and struc-
tural conservation of functionally crucial domains (i.e., the catalytic domain on proteases
and the inhibitory domain on SERPINs) imply that these bacterial homologs should pro-
duce a functional shift in PAB, quite possibly in a manner that influences the host response
to invading viruses.

Given the exceptional proteomic diversity present within the pan-species protease/
antiprotease spectrum, the best actionable evidence might emerge from a confluence of
corroborating evidence, such as exacerbatory or inhibitory roles of bacterial species that
also encode proteases or antiproteases similar to COVID-19-related host proteins. As
evidence of this, it should be noted that experimental mutagenetic manipulation of human
SERPINb3 transformed an antiprotease with minimal capacity for TMPRSS2 inhibition
into a TMPRSS2 blocker more potent than SERPINa3 [179]. Since evolutionary pressures
can foster rapid bacterial mutations, it is possible that some forms of bacteria may have
adapted their proteolytic capacity for the purpose of modifying human TMPRSS2 activity,
as suggested in studies relating to the synergistic interplay among TMPRSS2, androgen
control, and microbiome composition [180–183].

6. Vulnerability Trends in Comparative Biology and Human Population

Throughout the COVID-19 pandemic, valuable research was conducted on viral
transmission among animal vectors, including common companion animals such as dogs
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and cats. Notably, although both cats and dogs proved susceptible to contracting the
SARS-COV-2 pathogen and produced antibodies, feline infections often progressed to
contagious levels of viral shedding, whereas dogs, although vulnerable to acquiring a
viral load, rarely displayed tangible shedding and spread [54]. There are comparably
stark variations in SARS-COV-2 transmission within the broader canid families, such that
coyotes are found to resemble dogs (i.e., largely impervious to SARS-CoV-2 shedding and
COVID-19 symptoms), while foxes exhibit SARS-CoV-2 susceptibility comparable to that
of house cats [55]. The boundaries of COVID-19 vulnerabilities among these animals thus
do not clearly respect either genetics (i.e., canids versus felids) or domestication status
(companion animals versus closely related wild species). A more plausible delineation
may emerge from dietary considerations—dogs and coyotes are omnivorous, whereas
house cats and foxes are classified as carnivores (cats are strict meat eaters; foxes are
also primarily carnivorous, although food insecurity may prompt their consumption of
berries and other carbohydrates). This putative factor aligns with corroborative evidence
of relationships between dietary diversity and human COVID-19 vulnerability, whereby
plant-predominant diets with higher consumption of vegetables, whole grains, nuts, and
pulses confer statistically significant protection against moderate or severe SARS-CoV-2
infections relative to a standard western diet with more red meat, simple carbohydrates,
and processed foods [184–187].

Unsurprisingly, other COVID-19 trends appear to be independent of obvious dietary
influences. In particular, infected children tend to be statistically less likely to produce
communicable levels of virus compared with adults, as per a 2021 study that found that
children fostered contagion at a rate of about 63% that of adults [188]. Interestingly,
adolescents (ages 14–17) were found, statistically, to have the lowest rates of shedding [189].

While immunological arguments may be devised to independently frame each such
vulnerability trend as a distinct theme, there is evidence that the vulnerabilities may, at
least in part, share common origins. Namely, it is our hypothesis that vulnerability to
SARS-CoV-2 is influenced by PAB shifts due to variations in the nasopharyngeal mucosal
microbiome. To further specify this hypothesis, our analysis points to evidence that
some species within the genus Moraxellaceae may express specific proteases that interfere
with the infectious capacity of SARS-CoV-2, to the point where gross symptoms and
shedding may be significantly affected. In terms of the age-related fluctuations in COVID-19
vulnerability, it is noted that the genetic diversity of human respiratory microbiota increases
throughout childhood, reaching a peak in late adolescence or early adulthood, before
declining through the adult years [190]. It may be further noted that children tend to
have a substantial fraction of Moraxella catarrhalis in their respiratory microbiomes, while
adults have greater Streptococcal fractions [51,191]. Separate from the simple age-dependent
microbiome argument, there is a pronounced relationship between a healthy, diversified
human diet and the immunological benefits of commensal bacteria [166,192–194]. Namely,
strong evidence suggests that greater dietary diversity tends to correspond to greater
diversity in host commensal bacterial populations [195–199].

Regardless of the circumstances under which microbiotic variations emerge, numerous
links may be drawn between host commensal bacterial profiles and resistance to severe or
symptomatic COVID-19 infections, including a simple but statistically significant correla-
tion between COVID-19 vulnerability and pre-existing autoimmune conditions associated
with microbiotic deficiencies [200]. The microbiotic argument is substantially strengthened
by clinical observations of elevated abundance of nasal Moraxella catarrhalis in children who
have resisted COVID-19 infection relative to those with symptomatic cases [52,201]. These
trends are further augmented by comparative pathology arguments, such as recognition
that the relative resistance of domesticated dogs to symptomatic or shedding manifestations
of COVID-19 may correspond to the widely elevated prevalence of Moraxella species in
the nasal microbiome of individual members of the Canis lupus familiaris species. Given
the importance of nasal mucosa in both contracting and potentially treating COVID-19 (in
particular as a target for active vaccine RNA antigens [202]), we quantitatively profiled the
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nasal microbiome of a cohort of forty client-owned domesticated dogs (see Table 2), across
which Moraxella sp. was the only bacterial class to be universally detected. Furthermore,
Moraxella fractions dominated the nasal microbiome in most individual dogs, leading to an
overall mean abundance roughly four times greater than the second most prevalent class
(Pseudomonas aeruginosa).

Table 2. Abundance statistics for the five most prevalent bacterial phyla or families in nasal mucosa
swabs from our microbiotic profiling of 40 client-owned companion dogs.

Phylum Family Mean (St. Dev.) Count Maximum Minimum

Moraxella sp. 63.52 (25.97) 40 97.18 13.47

Gammaproteobacteria sp. 4.02 (10.48) 13 61.38 0.00

Pseudomonas aeruginosa 15.89 (22.05) 29 81.37 0.00

Microbacteriacae sp. 2.28 (4.45) 15 21.30 0.00

Candidatus Gracilibacteria 1.70 (4.69) 10 26.13 0.00

Despite the overall disparity between Moraxella and Pseudomonas abundances within
dog nasal microbiomes, it is interesting to compare the host viral effects arising from the
two bacterial genera. In particular, various Pseudomonas species seem to influence the
capacity of respiratory viruses to infect airway epithelial cells, but the net effect may be
opposite to that by Moraxella. Specifically, P. aeruginosa was observed to suppress normal
airway epithelial antiviral response in a manner that exacerbates the rate and spread of
viral infections [203]. Furthermore, of particular relevance to COVID-19, one notes that P.
aeruginosa may facilitate SARS-CoV-2 entry into airway epithelial cells by amplifying local
abundance of the COVID-19-promoting host protease TMPRSS2 [175,204–206].

In addition to this possible effect relating to TMPRSS2 function, it is worth mentioning
that other studies have proposed bacterial down-regulation of ACE2 receptors as a means
for diminishing the extent of viral host-cell compromise. ACE2 expression is modulated
by exposure to various antigens [207,208], as well as part of the interferon response to
viral [209,210] and oncological [211,212] pathogens; thus, a microbiotic capacity for modify-
ing or obfuscating the pathogenic up-regulatory influence may affect the host’s vulnerability
to viral invasion. Indeed, host levels of P. aeruginosa do appear to influence ACE2 abun-
dance, with measurable impact on ACE2-related pathological mechanisms [205,213,214].

These proposed mechanisms for an apparent capacity of Pseudomonas bacteria to ex-
acerbate SARS-CoV-2 infection, in concert with evidence that composition of the nasal
microbiome may play a role in determining COVID-19 vulnerability in certain subsets
of the human (and broader mammalian) populations, prompt the question of whether
Pseudomonas bacteria directly or indirectly influence viral infection of airway epithelial mu-
cosa. Such insight may provide contra-indicative insight into how commensal microbiota
might protect the host. Moraxella, whose presence in epithelial mucosa tends to correspond
with significantly diminished COVID-19 vulnerability [53,215,216], seems like a natural
point of comparison, especially given the close genetic similarity between the Pseudomonas
and Moraxella genera.

7. Prospective Biochemical Rationalizations

Among the two prospective mechanisms for comparing Pseudomonas and Moraxella
influence, the ACE2 model may explain why a greater Pseudomonas fraction may pro-
mote SARS-CoV-2 infections [205,213,214] but does not provide a clear rationale for why
Moraxella might have the opposite effect, as current evidence is lacking for comparable
Moraxella-triggered ACE2 flux. TMPRSS2, on the other hand, does provide a basis to
rationalize a Moraxella effect. Specifically, there is substantial evidence that Moraxella coun-
teracts the capacity of TMPRSS2 proteins to achieve the viral priming required for cell
invasion [53,216]. Unlike the Pseudomonas/ACE2 case, however, it seems unlikely that
the capacity of Moraxella bacteria to modulate TMPRSS2 action arises from direct influ-
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ence on expression. Rather, the most readily measurable TMPRSS2-mediated influence of
commensal bacteria seems to entail suppression of the enzyme’s activity, not abundance,
as evinced by changes in TMPRSS2-triggered pathways, including the immunological
interferon antiviral response [175,217], and downstream androgen-mediated angiogenic
effects [181,182,218,219]. This implies that any prospective TMPRSS2-related benefit arising
from an elevated Moraxella fraction may be attributed to effects that diminish the rate of
viral Spike protein cleavage relative to basal TMPRSS2 action. This further suggests a
competitive dynamic, perhaps achieved through interactions between Spike and some
Moraxella protein that mimics and interferes with a key aspect of TMPRSS2-mediated Spike
cleavage or membrane induction inherent in SARS-CoV-2 infection.

The BLAST-P analysis (Table 1) indicated the Moraxella Serine Protease (MSP) protein
(GenBank ID MBC7754020.1; 37.82% identical to TMPRSS2, covering 56% of the sequence
alignment) as a possible candidate for TMPRSS2 interference. In comparison, the analogous
enzyme from Pseudomonas sp. (GenBank ID WP_082643865.1; PSP for short) is slightly more
phylogenetically distant from TMPRSS2 (36.21% sequence conservation; 54% coverage),
but we see, in Figure 2, that PSP may exhibit a tertiary structure that is more analogous to
the human protein. Specifically, MSP and PSP both show substantial sequence conservation
relative to TMPRSS2 within the active catalytic triad (marked by the rose-colored “C” boxes
in Figure 2), but MSP has a pair of proximal sequence deletions that are not observed
for PSP.
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Figure 2. Sequence alignment for human TMPRSS2 (sp|015393), Moraxella serine protease
(MBC7754020.1), and Pseudomonas serine protease (MCL6711730.1), showing catalytic triad residues
(rose-colored “C”), an important channel-altering deletion (cyan-colored “del”), and a loop conferring
differential protein interactions (green “P”). For sequence positions, “*” represents full conservation,
“:” is partial, and “.” is weakly conserved.

The largest deletion (TMPRSS2 residues 353-364; marked with a green “P” in Figure 2)
lies in a peripheral loop where MSP sequence diverges from TMPRSS2 and PSP. The authors
have not found clear literature evidence assigning a specific function to this loop, but it is
notable that one of the MSP deletion positions in the sequence alignment corresponds to a
TMPRSS2 residue (V361) within a tetrad (N358-D359-L360-V361) that has been resolved
in the 7MEQ crystal structure of TMPRSS2 [220] as a distinct, H-bond-stabilized β-turn,
independent of any larger β-sheet tertiary structure. Definitive evidence does not exist
for whether this β-turn (present in TMPRSS2 and PSP but absent in MSP) plays a key
role in determining functions and behaviors of these proteins, but it should be noted that
many surface β-turns serve as recognition motifs for protein–protein interactions [221],
with the most prevalent class of β-turn-binding proteins being GPCRs [221,222]. Again,
acknowledging that the absence of experimental confirmation of specific binding renders
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any etiological assertion largely speculative, it is worth noting prior reports of TMPRSS2
activating a variety of GCPRs [223,224]. Furthermore, various COVID-19 symptoms (e.g.,
anosmia, congestion, neurological effects, etc.) are believed to involve GPCR dysregula-
tion [225–227]. The speculative conclusion one might draw from the β-turn deletion in
MSP, therefore, is that TMPRSS2 and PSP might support a pathologically important GCPR
interaction on the host-cell surface, while the Moraxella homolog, MSP, lacks this attribute.

A smaller but more intuitively impactful deletion, marked “del” in Figure 2, is in close
proximity to the proteolytic active site, corresponding to TMPRSS2 residues W306 and
H307. This deletion dictates a sterically smaller MSP active site (see protruding feature
marked with “B1” in Figure 3B). In combination with a steric pucker (MSP residues E229
and K236 form a protruding salt bridge marked with “B2” in Figure 3B), this may alter the
MSP enzymatic selectivity relative to PSP and TMPRSS2, both of which likely have broader
catalytic channels.
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Figure 3. Two bound models of the SARS-CoV-2 Spike S2′ cleavable hairpin. (A) shows Confor-
mation 1, bound to human TMPRSS2 (green), while (B) implies an alternative binding mode to the
homologous Moraxella serine protease (blue). In (C), conformation 1 achieves a stable pre-reactive
distance of 4.6 A relative to the TMPRSS2 catalytic serine (S441) for cleavage at R815 but does not sup-
port close approach to MSP. In (D), however, we see that conformation 2 supports close pre-reactive
approach of cleavable K814 to MSP/S206, which is unavailable for approach to TMPRSS2/S441.

To simulate how altered catalytic site topology might impact possible cleavage of the
SARS-CoV-2 Spike protein, we performed rigorous Gaussian accelerated molecular dynam-
ics (GAMD) calculations (see Supplementary Information) to predict the relative binding
free energies and enzymatic viability of TMPRSS2, MSP, and PSP toward a 27 amino acid
peptide (P809-K835) spanning the S2′ cleavage site (R815-S816). From a representative set of
different initial ligand approach modes, the simulations tended to preferentially converge
to one of two possible bound conformations, where the first is depicted in Figure 3A,C
(mode 1: quadrant A shows conformation; quadrant C shows relevant interatomic dis-
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tances), while the second is shown in Figure 3B,D (mode 2: conformation and interatomic
distances). These two binding modes are accommodated by a conformational shift in the
catalytic serine, as can be noted by comparing quadrants Figure 3C vs. Figure 3D, as well
as the Figure S1 schematic in Supplementary Information.

To assess these prospects, binding-free-energy predictions were performed (see Table 3)
to evaluate hypothetical trends associated with prospective proteolytic cleavage of Spike.
The collective evidence from Figure 2 and Table 3 suggests a key distinction between the
binding of Spike S2′ to TMPRSS2 versus MSP. TMPRSS2 is predicted to favor mode 1, which
places the target R815 carbonyl carbon in plausibly reactive proximity to catalytic serine
S401 (the separation is 4.6 Å in the instantaneous structure in Figure 3A,C but averages
4.94 ± 0.04 Å over the duration of the simulation), whereas in the context of the MSP
cavity, an analogous Spike conformation encounters steric hindrance, preventing a close
R815 approach to the catalytic S206 serine. Conversely, mode 2 supports a theoretically
viable catalytic approach for S2′ binding to MSP, but the close approach is for K184 (4.9 Å
instantaneous approach in Figure 3B,D, time-averaged to 5.11 ± 0.06 Å). PSP, meanwhile,
presents yet a third scenario, whereby Table 3 reflects a preference for Spike complexation
via mode 1 but places K814 (not R815) in possibly reactive proximity (time-averaged
separation of 4.93 ± 0.04 Å).

Table 3. Quantitative assessment of prospective modes for SARS-CoV-2 Spike S2’ binding to TM-
PRSS2, Moraxella serine protease (MSP), and Pseudomonas serine protease (PSP). Binding free energies
from our molecular dynamics simulations are given in kcal/mol. Pre-catalytic distances correspond
to mean and minimum approaches between the protease active serine and a proteolytically cleavable
carbonyl, as identified in Figure 3C (for TMPRSS2) or Figure 3D (MSP).

TMPRSS2 MSP PSP
Conf. 1 Conf. 2 Conf. 1 Conf. 2 Conf. 1 Conf. 2

Binding energy −77.45 −30.98 5.33 −19.25 −55.5 28.78

Std. err. 4.38 4.77 4.46 4.36 3.26 3.42

Catalytic approach 4.94 Å
to R815 (conf. 1)

5.11 Å
to K814 (conf. 2)

4.93 Å
to K814 (conf. 1)

Std. err. 0.04 Å 0.06 Å 0.04 Å

Minimum distance 4.42 Å 4.43 Å 4.39 Å

The binding-free-energy predictions in Table 3 add further insight into hypotheti-
cal trends associated with prospective proteolytic cleavage of Spike. Considering that
TMPRSS2, MSP, and PSP all favor trypsin-like cleavage between a cationic amino acid
and an adjacent polar residue, it is not surprising that those binding modes predicted to
be most energetically favorable (mode 1 for TMPRSS2 and PSP; mode 2 for MSP) also
correspond to those that place cationic targets in the closest proximity to the reactive serine.
The magnitudes of their predicted binding energies are also instructive. Discounting the
unfavorable complexes (MSP conformation 1 and PSP conformation 2), we are left with
at least one conformation for each protease whose associative free energy significantly
exceeds the predicted activation barrier for TMPRSS2 proteolytic cleavage, which ranges
from 15.8 to 17.1 kcal/mol for a variety of cleavable peptides [228].

From these energy predictions, it is reasonable to infer that the exothermic energy
gained from Spike binding to TMPRSS2, MSP, and PSP may, in all three cases, provide
ample energetic impetus for the enzyme to overcome the reactive barrier and cleave
the peptide. While the precise reaction kinetics have not been reported for proteolytic
cleavage by MSP and PSP, it is worth noting that widespread conservation of protease
catalytic triad structures imposes homogeneity on reactive proficiency across the broad
manifold of serine proteases [229–231]. Known proteolysis barriers for HIV protease
(15.1–17.9 kcal/mol) [232,233], for example, bear a strong resemblance to TMPRSS2 reactive
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barriers. Such functional similarity across otherwise rather different enzymes implies a
reasonable expectation that MSP and PSP could also support cleavage reactions within this
approximate range.

There is, however, one additional enzymological factor that may help to rationalize
distinctions in how TMPRSS2, MSP, and PSP may comport toward a cleavable viral Spike
protein—the capacity of each enzyme to release its products. For this, very stark differences
can be observed in 5 ns GAMD simulations (see Supplementary Information for compu-
tational details) of the egress of Spike N-terminal (Figure 4A) and C-terminal (Figure 4B)
fragments from our three enzymes of interest. TMPRSS2 achieves rapid release of both frag-
ments, whereas both of the bacterial enzymes tend to persistently sustain complexes with
post-cleavage Spike fragments. Interestingly, differences manifest between PSP and MSP
in adhering to the N-terminal fragment that connects to the Spike ACE2-binding domain
(i.e., PSP is predicted to sustain strong binding without release, while MSP is predicted to
potentially loosen the complex but then permit the rebinding of the fragment in a slightly
altered conformation), but both PSP and MSP hold onto the C-terminal fragment with
comparable consistency. Since free cleavage of the C-terminal portion of the SARS-CoV-2
spike protein is crucial for host infection, given its role as a molecular switch in the process
of syncytia formation [234,235], our preliminary analysis suggests varied TMPRSS2, MSP,
and PSP proteolytic dynamics that could translate to significantly different influences on
the molecular kinetics underlying viral infection. Although neither MSP nor PSP is likely
to achieve the enzymatic processing of SARS-CoV-2 with the efficiency of the TMPRSS2
interaction, this inefficiency may actually be the source of a tangible host-protective effect,
such that sustained complexation with the pathologically critical Spike C-terminal cleavage
product may impair the capacity of SARS-CoV-2 virions to inflict infection and compromise
host lymphocyte response [235].
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Figure 4. Simulated leaving group clearance for SARS-CoV-2 Spike N-terminal (A) and C-terminal
(B) fragments from the proteolytic active sites of human TMPRSS2 (blue), Moraxella serine protease
(red), and Pseudomonas M6 peptidase (yellow). Lines reflect the distance from proteolytic serine to
the N-terminal carbonyl (A) or the C-terminal amine (B), as derived from a 5 nanosecond molecular
dynamics simulation.

Ultimately, the preliminary GAMD simulations were pursued for the purposes of ratio-
nalizing a prospective role of Moraxella and/or Pseudomonas in altering the PAB dynamics
required for SARS-CoV-2 proteolytic virion priming. Our results suggest that the MSP
(from Moraxella) and PSP (Pseudomonas) proteases may persistently bind the viral Spike
protein and perhaps achieve a form of proteolytic cleavage, but with a product clearance
rate substantially lower than that for human TMPRSS2. This scenario may, via inefficiency,
imply a tangible host-protective effect. Based on this prediction, combined with empirical
evidence arising from a diverse set of previously published observations and trends, this
hypothesis hypothesizes that given sufficient expression of Moraxella serine protease within
the host mucosal epithelia, such catalytically inefficient MSP–spike complexes may compete
with the normal pathological virion invasion of host cells to an extent that impairs the
capacity of the virus to infect the host at a rate that compromises lymphocyte response [235],
thus rationalizing the apparent antiviral effects of Moraxella commensal bacteria.
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8. Future Directions

Even when accounting for distinct pathological trends associated with different vi-
ral variants, the outcomes of COVID-19 cases vary in ways that are difficult to explain
comprehensively using host attributes alone and should be further examined. Among
humans, statistical divergence manifests with varying social geography, sex, and age.
Racial heritage seems to play a role, but fine-grained analysis suggests that sex, age, and
socioeconomic status are stronger predictors within a given racial community [236], though
no single host metric confers strong predictivity. From the perspective of comparative
biology, the relative vulnerabilities of companion animals, in particular cats versus dogs,
suggest that dietary diversity may be an important factor—an argument that strengthens
when one explores the relative vulnerabilities of other canids, such as foxes and coyotes,
whereby dogs and coyotes (both omnivorous) display reduced vulnerability to symptomatic
SARS-CoV-2 infection, whereas house cats and foxes (primarily carnivores) have markedly
higher susceptibility, despite foxes being genetically much closer to dogs and coyotes.

Numerous superficially plausible hypotheses may be formulated to seek unification
across the many different vulnerability markers, but diet and social geography (in particular
as it relates to diet and exposure to pollution and pathogens) have documented effects
on host microbiome profiles, which, in turn, have attracted growing attention as possible
influences on COVID-19 vulnerabilities [50,52,160–162,165,170,173,183,190–193,200,217].
Reasonable interpretations for how such microbe–virus interplay may arise must recognize
not only the observations that bacteria use proteases to modulate host physiology in
ways that benefit bacterial persistence and replication [171,237–239] and inter-bacterial
competition [239–241] but also the evidence that bacterial proteolytic action can tangibly
modulate viral efficacy [172].

The diversity of host, viral, and bacterial proteases, and their associated substrate
specificities could support numerous theoretical models to account for bacterial influences
on COVID-19 vulnerability. To prioritize models, there is value in finding independent ob-
servations that point toward an internally consistent paradigm. For example, a combination
of prior published COVID-19 vulnerability studies (on humans and other mammals, plus
our own studies on dogs) suggest that the presence of Moraxella in host nasal microbiomes
may coincide with reduced rates of severe COVID-19 infection, in concert with documented
presence of a TMPRSS2-like protease in the Moraxella proteome. This confluence of factors
motivates the primary hypothesis of this article, which is that commensal Moraxella may
afford a degree of host protection against SARS-CoV-2 by supplying a competitive binder
for the S2′ motif on the SARS-CoV-2 Spike protein. Molecular simulations predict that
while TMPRSS2 should have far greater capacity to process S2′ as a cleavage substrate,
Moraxella serine protease (MSP) may be capable of exothermically complexing with S2′ and
MSP may persistently bind the resulting cleaved fragments in a manner that could delay or
abrogate subsequent viral infection steps, such as syncytia formation.

As a caveat to these observations, it should be noted that a comparably homologous
protein, the serine protease from Pseudomonas bacteria, may exhibit similarly competi-
tive prospects for circumventing TMPRSS2 action on SARS-CoV-2 Spike proteins, even
though there is little evidence for Pseudomonas strains exerting a net protective effect
against COVID-19. It is possible that unlike Moraxella, Pseudomonas may exert multiple
opposing influences, including the fact that Pseudomonas presence in human nasal micro-
biomes is far more widely considered to have pathological effects [242–244], and such
microbial infections may perturb host immunity in a manner that incites co-infections with
SARS-CoV-2 [174,245,246]. Nonetheless, the relative prospects for viral modulation by both
Moraxella and Pseudomonas strains should merit careful consideration in further exploration
of this hypothesis, leading to directly testable assertions, including our suggestion that
co-incubation of Vero E6 cells with (a) Moraxella and with (b) Pseudomonas should lead to
diminished SARS-CoV-2 infectivity relative to sterile controls, while more immuno-realistic
models will show divergence, such that Moraxella proves to be a more effective mitigator.
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9. Synopsis

It is finally worth reiterating a key motivation for pursuing the evaluation of such
hypotheses. Despite remarkable advances in medical and pharmaceutical technologies,
viruses continue to largely evade our therapeutic arsenals. Bacteria and viruses, however,
have interacted with each other for hundreds of millions of years, often attaining a degree
of detente that may benefit the health of host organisms. Theoretically, such viral–bacterial
dynamics may support development of an in vitro environment within which therapeu-
tically practicable commensal microbes might be trained as adjuvant allies in our battles
with known or emerging viral threats. More broadly, it is reasonable to believe that identifi-
cation and characterization of microbial/viral balances might help to explain how some
individuals attain tangible protection against dangerous viral pathogens, thus providing
a basis for acquiring molecular mechanistic insight that could inform new strategies to
mitigate future pandemics. While much of these prospects remain distinctly hypothetical,
however, humanity should expect to confront other deadly viruses. In order to persevere
and thrive, we must continue to mine data and anomalies in order to intuit, analyze, and
potentially exploit new tools for the challenges ahead.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biotech12040061/s1, Figure S1: FigS1.tif (Orientations of S2’ Coil
Bound to TMPRSS-like Proteases), Protocol: BioTech_supplement_TM.pdf. References [220,247–258]
have been cited in Supplementary Materials.
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