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Abstract: Italy was one of the European countries most afflicted by the COVID-19 pandemic. From
2020 to 2022, Italy adopted strong containment measures against the COVID-19 epidemic and then
started an important vaccination campaign. Here, we extended previous work by applying the
COVID-19 Community Temporal Visualizer (CCTV) methodology to Italian COVID-19 data related
to 2020, 2021, and five months of 2022. The aim of this work was to evaluate how Italy reacted to
the pandemic in the first two waves of COVID-19, in which only containment measures such as the
lockdown had been adopted, in the months following the start of the vaccination campaign, the
months with the mildest weather, and the months affected by the new COVID-19 variants. This
assessment was conducted by observing the behavior of single regions. CCTV methodology allows
us to map the similarities in the behavior of Italian regions on a graph and use a community detection
algorithm to visualize and analyze the spatio-temporal evolution of data. The results depict that the
communities formed by Italian regions change with respect to the ten data measures and time.

Keywords: COVID-19; CCTV methodology; network analysis; community detection

1. Introduction

COVID-19 has represented the most important modern challenge for the healthcare
system. To fight against this global pandemic, different containment measures were im-
plemented, such as lockdowns, closures of borders by many countries, cancellations of
sporting and cultural events, and pharmaceutical measures given by vaccines [1]. Further-
more, statistics were declared daily by each country, and databases have been developed to
store this data. In Europe, Italy was the country most affected by the epidemic in 2020, with
high numbers of COVID-19-related infections and deaths. Furthermore, in 2021, Italy had a
high share of people fully vaccinated against COVID-19, with 90% of the population aged
over 12 years vaccinated in January 2022. The data on COVID-19 were released daily by
the Italian Civil Protection, including spatial information, such as the geographical regions
where data are recorded, and temporal information, i.e., the day of measurement.

In a previous work [2], we presented the COVID-19 Community Temporal Visualizer
(CCTV), a methodology for the network-based analysis and visualization of COVID-19 data.
In detail, the CCTV methodology comprises four steps: (i) The application of statistical tests
to identify the regions that present similar/dissimilar behavior with respect to COVID-19
measures; (ii) the building of similarity matrices; (iii) the mapping of each matrix of
similarity into a network where each node is an Italian region and each edge depicts
similarity connections; (iv) the identification of communities by applying community
detection algorithms.

In this work, we applied CCTV methodology to evaluate the impact of the clinical
evolution of the COVID-19 pandemic by integrating several types of clinical data with
geographical and temporal data by evaluating the evolution of community coherence in

BioTech 2022, 11, 33. https://doi.org/10.3390/biotech11030033 https://www.mdpi.com/journal/biotech

https://doi.org/10.3390/biotech11030033
https://doi.org/10.3390/biotech11030033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biotech
https://www.mdpi.com
https://orcid.org/0000-0003-1561-725X
https://orcid.org/0000-0003-2868-7732
https://orcid.org/0000-0003-1502-2387
https://doi.org/10.3390/biotech11030033
https://www.mdpi.com/journal/biotech
https://www.mdpi.com/article/10.3390/biotech11030033?type=check_update&version=1


BioTech 2022, 11, 33 2 of 22

relation to different data in the periods 24 February–26 April 2020 and 28 September–29
November 2020.

Afterward, in [3], we implemented a parallel version of CCTV, called Parallel Network
Analysis and Communities Detection (PANC), which we applied to analyze the impact of
the evolution of the COVID-19 pandemic by integrating clinical data with geographical
data in the period 24 February 2020–28 February 2021.

In this work, we wanted to examine the evolution of COVID-19 in Italy in 2020, 2021
and five months of 2022. In particular, we performed a comparative analysis by focusing
on five significant periods in which the presence of non-pharmaceutical or pharmaceutical
measures of control have alternated, i.e., the first COVID-19 wave (February–May 2020,
which, for convenience, we called the first period), the second COVID-19 wave (October
2020–January 2021, which, for convenience, we called the second period), the months
following the start of the vaccination (February–May 2021, which, for convenience, we
called the third period), the warmest months (June–October, 2021, which, for convenience,
we called the fourth period), and finally, the months in which the infections started to increase
again (November–May 2022, which, for convenience, we called the fifth period). The interest
of this work is to assess the changes and effects of the COVID-19 spread by analyzing the
periods with strong control measures and without vaccinations and the periods marked
by a vaccination campaign and containment measures. In particular, the goal of this
examination is to evaluate the impact of COVID-19 by taking into account the number of
COVID-19 patients in hospital, the number of COVID-19 patients in intensive care units, the
daily number of subjects in quarantine at home, the number of COVID-19-positive subjects,
the number of subjects healed or discharged from hospital, the daily number of deaths,
and the daily number of test swabs carried out in Italy. The results showed that the Italian
regions responded differently to the evolution of the COVID-19 epidemic in the different
observation periods. In fact, the communities extracted are different in the different periods
marked by the first and second COVID-19 waves, in the periods in which the containment
measures have been adopted and in the periods in which the containment measures have
been added to the vaccination campaign. The methodology and its implementation as an R
function are publicly available at https://github.com/mmilano87/analyzeC19D (accessed
on 1 August 2022).

The rest of the paper is organized as follows: Section 2 discusses the background of
community detection in networks and the background of the evolution of the COVID-19
epidemic in Italy. Section 3 presents the CCTV methodology and the application to Italian
COVID-19 data. Section 4 presents and discusses the results. Finally, Section 5 concludes
the paper.

2. Background

In this section, we present the background on community detection and the algorithms
for community discovery presented in the literature. Then, we present the background on
the evolution of COVID-19 in Italy in 2020–2022.

2.1. Background on Community Discovery

Community detection is one of the most popular research areas in a variety of complex
systems, such as biology, sociology, medicine, transportation systems, and the internet.
The reason is that the community structures, defined as groups of nodes that are more
densely connected than the rest of the network, represent significant characteristics for
understanding the functionalities and organizations of complex systems modeled as a
network [4]. In fact, it is expected that the communities play significant roles in the
structure–function relationship. For example, in biological networks such as Protein–
Protein Interaction (PPI) networks, the communities represent proteins involved in similar
functions; in neuroscience, the communities detected in brain networks indicate regions of
interest (ROI) that are active during tasks; in social networks, communities can be groups
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of friends or colleagues; in the world wide web, communities represent web pages sharing
the same topic [5].

Thus, the discovery of communities in these systems has become an interesting ap-
proach to figuring out how network structure relates to system behaviors.

Furthermore, since in real-world systems, the complex system evolves over time, the
community structure is also affected by temporal modifications. In fact, the evolution
of community structure may relate to the growth of the structure when new members
join a group. On the other hand, a community structure can be reduced when several
members leave a group or because it can be split into two or more groups. Furthermore,
a new community can be formed from the merge of different groups, or it can be created
from groups of nodes initially disconnected. Finally, a community can end its existence
because all the nodes are disconnected, or it can maintain its structure during the temporal
evolution [6–8].

Over the years, researchers have proposed different algorithms for the detection of
communities.

Here, we reported the most used community detection algorithms in the literature.
For example, Fast Greedy [9] and Louvain [10] are two algorithms based on modularity
optimization for the identification of communities that differ in the way they optimize
the modularity score, where modularity measures how well a network decomposes into
modular communities.

Fast Greedy [9] starts by setting each node as a single community, and it joins pairs
of communities by applying a basic greedy approach. At each step, the communities are
added according to the increase in modularity [11]. Fast Greedy joins pairs of communities
until the merging of community pairs does not increase the modularity score.

Louvain [10] includes a community aggregation step to improve the community
detection process. The algorithm joins a node with each one of its neighboring communities
according to the increase in modularity; otherwise, the node remains in its initial community.
Louvain terminates the procedure when no improvement in modularity is obtained. After
that, a new network is built whose nodes represent the detected communities and inter and
intra-community edges are represented by weighted edges and self-loops, respectively.

The multilevel algorithm [10] uses a greedy approach for optimizing modularity. At
first, a community is assigned to each node. Then, according to the increase in modularity,
the multilevel algorithm inserts a node into a community formed by its neighbors.

WalkTrap [12] is a hierarchical clustering algorithm that applies a random walk dis-
tance measure. Initially, WalkTrap computes the distances between all adjacent nodes in the
network. Then, it starts with a node and randomly selects one of its neighbors; it merges
them in a community, and it updates the distances between communities. The assumption
is that short random walks remain in an equal community.

InfoMod [13] and InfoMap [14] represent the community as parts showing regularities
in topology. A community is considered better when it has high compactness and low
information loss.

The InfoMod and InfoMap algorithms represent the community structure in dif-
ferent ways. InfoMod represents the community structure as community matrices and
membership vectors associating each node to a community, whereas InfoMap depicts the
communities by considering two levels: the first one to categorize a community within the
network, and the second one to categorize nodes within the communities.

The edge betweenness algorithm [15] is based on edge betweenness, which is a
generalization of Freeman’s betweenness centrality measure [16]. The assumption is that
the edges that connect communities show a high value of edge betweenness measure. Thus,
by deleting the edges with high edge betweenness, the community topology is detected.
The Spinglass [17] algorithm is based on physical spin glass models (i.e., the model that
describes a magnetic state characterized by randomness, besides cooperative behavior in
freezing of spins at a temperature). The algorithm aims to discover the ground state of a
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spin glass model on the basis that the edges should link nodes with an equal spin state, i.e.,
equal community. Otherwise, the nodes with different spin states should be disconnected.

The label propagation algorithm [18] detects the communities, considering how the
information is transmitted in the network. The assumption is that the nodes of the same
community are characterized by high efficiency in the exchange of information. The
algorithm initializes a diverse label, i.e., community, for each node. Afterward, it randomly
lists the nodes according to a consecutive order. Then, by considering the list, the node
is labeled as most of its neighbors. The process ends when all neighbors nodes have the
same label. An extended version of the label propagation algorithm is the Community
Overlap Propagation Algorithm (COPRA) [19], which enables the detection of communities
in weighted and bipartite networks in addition to unweighted ones.

MarkovCluster algorithm [20] works by simulating a stochastic (Markov) flow in a
weighted network, where the nodes are data points while the adjacency matrix stores the
edge weights. When the algorithm converges, it produces the new edge weights that define
the new connected components of the graph (i.e., the clusters).

The leading eigenvector algorithm [21] computes the eigenvectors of the modularity
matrix for the optimization of the modularity score. The algorithm computes the leading
eigenvector and then splits the network in order to maximize the modularity based on the
leading eigenvector.

The algorithms discussed so far are usually applied to static networks for community
detection. In literature, there exist different methods for community detection with respect
to time. These approaches can be summarized in three categories. The first one regards
traditional static community detection [6,22] methods. In this method, the network evolu-
tion is divided into different timeframes, and the extraction of communities is obtained
by traditional static community detection methods. The second class is the evolutionary
clustering method [23], which aims to find the best community topology that depicts the
network at a specific time and to evaluate the similarity of a current community with the
structure of a previous time by adding a cost related to temporal smoothness. Finally, the
incremental clustering method [24] applies the community topology of the first temporal
interval to conform to the community property of incremental nodes for the rest of the
temporal intervals.

2.2. COVID-19 Spread in Italy

At the outbreak of the pandemic, Italy was one of the countries in the world to have
suffered the impact of COVID-19 on the number of deaths and the number of infected. To
face the epidemic crisis in 2020, the Italian government has adopted non-pharmaceutical
measures of control and strong containment policies, such as full lockdown; then in 2021,
Italy supported the national COVID-19 prevention planning based on the execution of the
vaccination campaign [25]. The impact of vaccination has been noticeable in preventing
infections, hospitalizations and deaths. From February 2020 to May 2022 there are five peaks
of coronavirus infections, five periods in which the number of new positives has risen and
then thanks to the lockdown restrictions, or to the warm season and/or to anti-COVID-19
vaccines it has dropped. An emerging picture shows that vaccines have lowered the number
of hospitalized and deceased but the spread of the COVID-19 variants has contributed to a
new increase in the number of positive subjects and in the number of hospitalized.

Analyzing the history of the pandemic in Italy from 2020 to May 2022, it is possible to
identify 5 significant periods.

The first period begins in February 2020 and ends in May 2020 that corresponds to the
first wave of COVID-19. Over these months, the cases rise by reaching the peak of infections
(#6557 cases) on 21 March 2020. The hospitals fill up with peak admissions (#29,010) on 4
April 2020 and intensive care peak (#4068) on 3 April 2020. On 27 March 2020, the peak
of deaths (#969) is reached, whereas the processed swabs are still very few (#73,254 on 11
March 2020). From May to autumn, the effect of the first lockdown, the warm season and
the lack of more contagious variants make Italy live relatively peaceful months.
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The second period begins in October 2020 and ends in January 2021 that corresponds to
the second wave of COVID-19. This second period lasts until the start of the vaccination
campaign. Over these months, the peak of infections is reached 13 November 2020 with
40,896 positive subjects The hospitals fill up with peak admissions (#29,010) on 23 November
2020 and intensive care peak (#3848) on 25 November 2020. On 3 December 2020, the peak
of deaths (#994)is reached and On 30 January 2021, the number of carried out was 298,010.
The beginning of the anti-COVID-19 vaccination campaign marks a moment of great hope
but at the same time the first stages of vaccinations in Italy are slow and infections and
deaths continue to remain at very high numbers.

The third period begins in February and in May 2021. This period leads to the warm
season and the first re-openings at the end of April after a winter practically in lockdown.
The number of positives decreases and, at the same time, the processed swabs increase.
Total hospitalizations also decreased in this third period. This period is characterized by a:
infection peak (#26,793) recorded on 2 March 2021, a peak admissions (#29,337) on 6 April
2021, an intensive care peak (#572) on 6 April 2021, a peak of deaths (#630) on 7 April 2021
and a peak swabs of #378,463 on 5 March 2021. The summer season arrives, the infections
between June and July almost disappear, but then the variants arise and the infections start
to rise again. However, the results of the vaccination campaign are beginning to be seen.

The fourth period begins in June and in May October 2021. Over these months, the
variants are worrying but the warm season and vaccination coverage seem to have an effect.
The restrictions are loosening a lot. This period is characterized by a: peak of infections
(#7824) recorded on 27 August 2021, a peak in admissions (#430) on 7 September 2021, an a
intensive care peak (#572) on 5 September 2021, a peak (#75) deaths on 31 August 2021 and
a peak swabs of #357,491 on 5 September 2021.

The fifth period begins in November 2021 to May 2022. Over these months, especially
from mid-November, the cases begin to rise considerably, but the situation in hospitals, a
real parameter to be taken into consideration, seems to be under control. The arrival of
the COVID-19 variant brings the new infections to unprecedented peaks. The vaccination
obligation is triggered for different categories of workers, the swabs processed increase,
reaching almost one million per day.

This period is characterized by a: peak of infections (#50,599) recorded on 24 December
2021, a peak in admissions (#8812) on 24 December 2021, an intensive care peak (#1038) on
24 December 2021, a peak (#168) deaths on 24 December 2021and a peak swabs of 929,775
on 24 December 2021.

3. CCTV Methodology

CCTV (COVID-19 Community Temporal Visualizer) methodology ensures the network-
based analysis and visualization of generic input dataset organized as collection of homo-
geneous measures (e.g., COVID-19 data in similar regions).

CCTV methodology design is general and for this reasons it can be applied for the analysis
disparate types of data. We implement our methodology using R software [26]. The CCTV
methodology as R function is available at https://github.com/mmilano87/analyzeC19D
(accessed on 1 August 2022). CCTV function requires the upload igraph libraries [27].

CCTV methodology comprises four steps:

1. Building of the similarity matrix: CCTV function takes as input the datasets consisting
of the collected data for all regions. Then, the user can select: (i) the kind of aggregate
data on which analysis will perform, i.e., Hospitalised with Symptom data, and (ii) the
observation period on which he/she want to focus the analysis. After that, CCTV
function applies the Wilcoxon test to compute the pair-wise similarity among the
regions regarding the selected kind data, i.e., Hospitalised with Symptom data related
to Abruzzo vs. Hospitalised with Symptom data related to Basilicata. Then, CCTV
builds a similarity matrix that records the p-value resulting of the Wilcoxon test for
each (i,j) region. At the end of this step, CCTV enable to save as output the built
similarity matrix in a text format.

https://github.com/mmilano87/analyzeC19D
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2. Mapping similarity matrices to networks-Network building: Starting from the simi-
larity matrix, the CCTV function builds a network related the selected data.

3. Network analysis over time: CCTV function builds the networks related to the selected
aggregate data in different time intervals. At the end of this step, CCTV function plots
the built network. At the end of this step, CCTV enable to save as output the network
in image format.

4. Community detection: CCTV applied a community detection algorithm to mine
the communities on the network built in the previous step. At the end of this step,
CCTV function plots the detected communities and it enables to save as output the
comunities in image format.

Figure 1 shows the pipeline of methodology and Algorithm 1 shows these steps.

Figure 1. CCTV Methodology pipeline.

Algorithm 1: CCTV Methodology Pseudocode
Data: D // Dataset
Data: w // Similarity Measure
Result: C (Network Communities )

M← SimilarityMatrix (D,w);
N ← SimilarityNetwork (M);
C ← CommunityDetection (N)
Return (C);

In the following, we treat in detail the CCTV steps by showing the application of our
methodology to analyze the Italian COVID-19 dataset.

3.1. Dataset

We applied CCTV methodology on the COVID-19 dataset released daily by the Italian
Civil Protection at https://github.com/pcm-dpc/COVID-19 (accessed on 16 May 2022).
The overall database contains a dataset for each day, starting from 24 February 2020 and
for each Italian region. The Italin regions are: Abruzzo, Basilicata, Calabria, Campania,
Emilia, Friuli, Lazio, Liguria, Lombardy, Marche, Molise, Piedmont, Puglia, Sardinia, Sicily,
Toscana, Umbria, Valle d’Aosta, Veneto, plus the autonomous provinces of Bolzano and
Trento, for a total of 21 regions. The dataset of Regions in a time point (day) contains the
following 10 data measurements:

• Hospitalised with Symptoms, as regards the daily the number of COVID-19 patients
in the hospital;

• Intensive Care, as regards the daily number of COVID-19 patients in Intensive Care Units;
• Total Hospitalised, as regards the daily sum of Hospitalised with Symptoms and

Intensive Care measured;
• Home Isolation, as regards the daily number of subjects in quarantine at home;
• Total Currently Positive, relating to the daily number of COVID-19 positive subjects;
• New Currently Positive, as regards the daily number of COVID-19 positive subjects;

https://github.com/pcm-dpc/COVID-19
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• Discharged/Healed, relating to the daily number healed or discharged from hospital
subjects;

• Deceased, as regards the daily number of deaths;
• Total Cases, as regards the daily number of subjects affected by COVID-19;
• Swabs, as regards the daily number of test swab carried on COVID-19 positive subjects

and on suspected COVID-19 positivity.

For each time point, the dataset of a region is a vector containing 10 integer values,
e.g., at time t = 1, D1

1 = D1
Lombardia=[x, y, ...]. The data occupies 2 Gbytes of memory.

For all analysis we focus on five periods: February–26 May 2020 (that for convenience
we called first period), October 2020–January 2021 (that for convenience we called second
period), February–May 2021 (that for convenience we called third period), June–October 2021
(that for convenience we called fourth period), November–May 2022 (that for convenience
we called fifth period), and then we compared these periods.

We decided to focus the analyzes on these five observation periods because in Italy
from February 2020 until May 2022 there are five peaks of coronavirus infections in which
the number of new positives has risen and then thanks to the lockdown restrictions, or to
the warm season and/or to anti COVID-19 vaccines it is dropped.

3.2. Building of Similarity Matrices

The first step of CCTV methodology consists of the build of similarity matrix. Before
this, the needs to identify of similarity measure arises. First of all, we decided to use a
non-parametric test for the similarity matrix building, after that we have evaluated the
distribution of each type of data by applying Pearson’s chi-square test (p-value resulted
less than 0.05).

In particular, we chose and applied of the Wilcoxon Sum Rank test [28] test to compare
the Italian regions with the aim to evidence statistically similar distributions among them.
The Wilcoxon test enables to assess the difference among conditions when the samples are
correlated.

Once similarity measure (Wilcoxon test) is applied to dataset D, a similarity matrix M
is built. Let’s matrix M for dataset D over a time period T, each (i, j) element represents a
value obtained by performing a similarity measure. A typical in input dataset D1 . . . Dn
is a collection of measured data varying a long time. Usually, a generic Di refers to data
collected in location i (i.e., region or geographical position).

So, the dataset i means the dataset collected at Region i.
So, we applied a statistical test, the Wilcoxon test, to input dataset Di in order to

build a similarity matrix. In detail, the (i, j) value of the similarity matrix, related to data
Di (for example deceased data), describes the p-value of the Wilcoxon test achieved by
applying the test on a given measure (e.g., the number of deceased) of the region i versus
the region j in a given time interval. In this work, we considered the p-value as a measure
of similarity, i.e., we considered the conventional significance threshold of 0.05 with the
goal to build similarity matrices reporting the statistical significance among the COVID-19
data for each region.

So, a lower p-value implies that two regions are different according to that measure.
Otherwise, a higher p-value implies that regions show a similarity according to that measure.
We considered the conventional significance threshold of 0.05, and for this reason, we built
similarity matrices that contain only p-values ≥ 0.05. We mapped the p-values < 0.05 equal
to zero. An example of the similarity matrix definition is reported in Figure 2.

Thus, we constructed ten similarity matrices for all COVID-19 data and for each time
interval, that report the statistical comparison among a couple of regions.

Table 1 reports an example of similarity matrix related to Deceased data in the second
period (October 2020–January 2021). All similarity tables related to Italian COVID-19 data
are computed for all five observation periods are reported in Supplementary file, for the
lack of space.
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Table 1. Similarity Matrix of Deceased in the second period.

Abruzzo Basilicata Bolzano Calabria Campania Emilia Friuli Lazio Liguria Lombardia Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trento Umbria ValleAosta Veneto

Abruzzo 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
Basilicata 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bolzano 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Calabria 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0
Campania 0 0 0 0 1 0 0 0 0 0 0.39 0 0 0.73 0 0 0 0 0 0 0
Emilia 0 0 0 0 0 1 0 0 0 0 0 0 0.32 0 0 0 0 0 0 0 0
Friuli 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.94 0 0 0
Lazio 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Liguria 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.27 0 0 0 0
Lombardia 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Marche 0 0 0 0 0.39 0 0 0 0 0 1 0 0 0.19 0 0.17 0 0 0 0 0
Molise 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Piemonte 0 0 0 0 0 0.32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Puglia 0 0 0 0 0.73 0 0 0 0 0 0.19 0 0 1 0 0 0 0 0 0 0

Sardegna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Sicilia 0.1 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 1 0 0 0 0 0

Toscana 0 0 0 0 0 0 0 0 0.27 0 0 0 0 0 0 0 1 0 0 0 0
Trento 0 0 0 0 0 0 0.94 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Umbria 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.6 0
ValleAosta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 1 0
Veneto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Figure 2. Definition of the similarity matrix.

3.3. Converting Similarity Matrix to Network

The second step consists of the mapping the similarity matrix into network, i.e., the
building of similarity network . So, each similarity matrix M(i, j) is mapped to a network
N, whose nodes are the Italian regions and the edges connect them when the similarity
value among two regions (i, j), resulting in the matrix, exceeds the similarity threshold, i.e.,
p-value > 0.05 The weights of the edges result inversely proportional to similarity values.
Thus, we mapped each similarity matrix M(i, j) into a network N [29]. The nodes are the
Italian regions, and the edges link two regions (i, j) when the p-value is greater than the
threshold, otherwise (p-value < 0.05) no edge is added. Each edge is weighted according
to p-value resulting from the Wilcoxon test. In this way, the edge length in the network
corresponds to weight and it results inversely proportional to similarity.

3.4. Network Analysis over Time

The third step consists of the building of the network at different observation period.
Starting from the consideration that the COVID-19 data present a temporal evolution, for
each one, the corresponding networks at diverse observation period are built.

We performed a temporal analysis by building ten networks related to the data
measures (Hospitalised with Symptoms, Intensive Care data, Total Hospitalised, Home
Isolation, Total Currently Positive, New Currently Positive, Discharged/Healed, Deceased,
Total Cases, Swab) by considering each observation period discussed above. The data for
each considered period resulting by the aggregation of single day, for example the sum of
day number of Hospitalised with Symptoms from 24 February to 26 May 2020.

3.5. Community Detection and Temporal Evolution

In the last step the extraction of the communities on the built networks is performed.
In this step, an algorithm for community detection is applied to identify communities,
i.e., groups of regions sharing similarity, on the networks built and for each observation
period. The use of an appropriate community detection algorithm is important to achieve
the best results. For this aim, we used the Walktrap community finding algorithm [12].
Walktrap is able to identify subgraphs with high density, i.e., communities, in a network
through random walks. We selected the Walktrap community detection algorithm because
it outperforms other methods as discussed in [30]. Thus, for each network related to
different time intervals, we identify of regions that construct a community according to
their similarity.

Figures 3–12 show the identified communities related to Italian COVID-19 data for all
observation periods.
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(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 3. Evolution of Hospitalised with Symptoms Network Communities in the observation periods.

(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 4. Evolution of Intensive Care Network Communities in the observation periods.
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(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 5. Evolution of Total Hospitalised Network Communities in the observation periods.

(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 6. Evolution of Home Isolation Network Communities in the observation periods.



BioTech 2022, 11, 33 12 of 22

(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 7. Evolution of Total Currently Positive Network Communities in the observation periods.

(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 8. Evolution of New Currently Positive Network Communities in the observation periods.
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(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 9. Evolution of Discharged or Healed Network Communities in the observation periods.

(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 10. Evolution of Deceased Network Communities in the observation periods.
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(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 11. Evolution of Total Cases Communities in the observation periods.

(a) First Period (b) Second Period (c) Third Period

(d) Fourth Period (e) Fifth Period

Figure 12. Evolution of Swabs Network Communities in the observation periods.
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4. Results and Discussion

In this section, we analyze the temporal evolution of the detected communities over
the five observation periods with the goal to highlight if the communities may be diverse
according to different data analyzed and to different observation period when considering
the same data. A central question in COVID-19 outbreak is the analysis of the dynamic
of COVID-19 evolution and the comparison of the significant of containment measures
non-pharmaceutical such as, lockdowns and/or pharmaceutical measures i.e., vaccines in
Italy. So, our aim is assessing the effects of lockdown and COVID-19 vaccines on the Italian
regions by evaluating the evolution of the communities and the similarity of dissimilarity
of the community according to COVID-19 measure.

4.1. Trend of Hospitalised with Symptoms Network Communities

We analyze Figure 3 that shows the development of Hospitalised with Symptoms
Network Communities. In the first period, 6 communities are identified (Figure 3a):
(1) Lazio and Veneto, (2) Trento, Friuli, Bolzano, (3) Campania and Puglia, (4) Calabria,
Sardegna, Umbria, Valle d’Aosta, (5) Emilia and Piemonte, (6) Marche, Toscana and Liguria
and 6 communtiy formed by a single region (b): (1) Lombardia, (2) Abruzzo, (3) Molise,
(4) Basilicata, (5) Sicilia.

In the second period, the regions leave the previous communities, and they move to
other ones. For example, 5 communities are identified (Figure 3b): (1) Puglia, Toscana and
Sicilia, (2) Trento, Calabria, Bolzano, Umbria (3) Campania and Veneto, (4) Basilica and Valle
d’Aosta, (5) Sardegna, Marche, Friuli and Abruzzo, and 7 communtiy formed by a single
region: (1) Lombardia, (2) Emilia, (3) Molise, (4) Lazio, (5) Piemonte, (6) Liguria. In Figure 3c
all identified communities after three weeks are reported: (1) Friuli, Abruzzo, (2) Emilia,
Lazio and Piemonte, (3) Calabria, Umbria and Sardegna, (4) Toscana and Sicilia, (5) Liguria
and Marche, (6) Molise, (7), Veneto, (8) Valle d’Aosta, (9) Lombardia, (10) Bolzano, Trento,
Basilicata.

In the fourth period, 10 communities are extracted as Figure 3d depicts. (1) Campania
and Emilia, (2) Umbria and Basilicata, (3)Piemonte and Puglia, (4) Lombardia, Sicilia, Lazio,
(5) Bolzano, Trento and Friuli,(6) Marche, Abruzzo, Liguria, (7) Toscana, (8) Molise, (9) Valle
d’Aosta, (10) Calabria, Sardegna and Veneto.

Figure 3e shows the development of the communities in the fifth period. (1) Veneto,
(2) Molise, (3) Marche, (4) Valle d’ Aosta, (5) Toscana, (6) Calabria, Friuli, Sardegna, Abruzzo
(7) Puglia and Liguria, (8) Lombardia, Lazio, Piemonte, Emilia, (9) Puglia and Liguria,
(10) Umbria, Trento, Bolzano, (11) Campania and Toscana. Therefore it is possible to note
that: in the first two waves, the Lombardia forms a single community, which is consistent
as it was the region most affected by the epidemic; Molise forms a single community in all
periods of observation and Emilia and Piedmont exhibit similar behavior in the first, third
and fifth periods.

4.2. Trend of Intensive Care Network Communities

In Figure 4 the evolution of Intensive Care Network Communities is reported. In the
first period (Figure 4a), 8 communties are detected: (1) Calabria, Valle d’Aosta, Molise, Ba-
sicilata (2) Piemonte and Emilia, (3) Friuli, Sardegna, Bolzano, umbria (4) Trento, Abruzzo,
Sicilia, (5) Campania and Puglia (6) Marche and Liguria, (7) Veneto, Toscana and Lazio
(8) Lombardia.

In the second period (Figure 4b), some region leaves the communty to form a single
community such as Sicilia, Valle d’ Aosta, Liguria, Molise, Marche and Basilicata. Lom-
bardy continues to represent a single community, whereas other regions move to different
communities.

In the third period (Figure 4c), the structure of network becomes sparse. In fact almost
all regions that form a single community.

In the fourth period (Figure 4d), some regions form a single new community, whereas
other ones joint with previous communities. The extracted communities are: (1) Calabria,
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(2) Valle d’Aosta, (3) Sicilia, (4) Basilicata, Molise (5) Lazio and Lombardia (6) Puglia,
Piemonte, Veneto, Campania (7) Sardegna, Liguria, Marche (8) Umbria, Bolzano, Abruzzo,
Friuli, Trento.

The fifth period (Figure 4e) reports 10 mined communities (1) Valle d’Aosta, Basilicata,
(2) Lombardia, (3) Molise, (4) Lazio, (5) Lazio, (6) Umbria, (7) Toscana, Piemonte, (8) Cam-
pania, Puglia, Marche, (9) Liguria, Friuli, Sardegna, Calabria, Trento, (10) Bolzano, Abruzzo.
Therefore, it is possible to infer that in each period the regions formed among themselves
different communities.

4.3. Trend of Total Hospitalised Network Communities

Figure 5a depicts the development of Total Hospitalised Network Communities in
the first period. The first community comprises Basilicata; the second one is represented
by Lombardia; the third one is represented by Molise; Abruzzo and Sicilia form the forth
community; Trento, Friuli, Bolzano form the fifth community; the sixth one is formed
by Marche , Toscana and Liguria; the seventh is composed of Puglia and Campania; the
eighth community group Piemonte and Emilia; the ninth one comprises Valle d’Aosta,
Umbira, Calabria e Sardegna, tenth community is composed by Veneto and Lazio. In the
second period, the detected communities are different respect to the firs ones, as reported
in Figure 5b. The first communuty comprises Valle d’Aosta and Basilicata; the second one
is represented by Emilia, Veneto, Campagnia; the third one groups Toscana, Puglia, Sicilia;
the fourth one comprises Calabria, Bolzano, Trento, Umbria; the fifth is formed by Marche,
Abruzzo, Sardegna, Friuli; finally Lombardia, Piemonte, Liguria, Molise and Lazio form
single community.

In the third period, the number of communities further grow, as reported in Figure 5c.
Basilicata, Lombardia, Molise, Valle d’ Aosta, Bolzano, Trento, Veneto and Puglia form
single community. Sicilia and Toscana form a sixth community. The tenth communtity is
formed by Liguria and Marche, the eleventh community is composed by Piemonte, Emilia
and Lazio; the twelfth community community is formed by Calabria, Sardegna and Umbria.
Friuli and Abruzzo form the last community.

In the fouth period, the number of communities further decline, as reported in
Figure 5d: (1) Toscana, (2) Valle d’Aosta, (3) Molise (4) Umbria, (5) Basilicata, (6) Veneto,
Sardegna, Calabria, (7) Liguria, Abruzzo, Marche, (8) Friuli, Bolzano, Trento, (9) Puglia,
Piemonte, (10) Lazio, Lombardi, Sicilia, (11) Emilia, Campania.

The fifth period (Figure 5e) reports 12 mined communities as previous period, but
formed by different regions: (1) Valle d’Aosta, (2) Valle d’Aosta, (3) Puglia, (4) Molise,
(5) Liguria, (6) Marche, (7) Sicilia, (8) Veneto, Toscana, Campania (9) Friuli, Sardegna,
(10) Umbria, Trento, Bolzano, Abruzzo, (11) Piemonte and Emilia, (12) Lazio and Lombardia.

It is possible to notice that in all periods Molise forms a single community, where as,
the communities mined in fourth and fifth periods are similar.

4.4. Trend of Home Isolation Network Communities

Figure 6a presents the mined communities of the Home Isolation Network. In the
first period, 8 communties are detected: (1) Veneto, Emilia, Piemonte, (2) Abruzzo, Trento,
Friuli, (3) Lazio and Marche, (4) Toscana, (5) Calabria, Sardegna and Bolzano, (6) Sicilia,
Puglia, Campania, Liguria, (7) Umbria, Valle d’Aosta, Molise, Basilicata, (8) Lombardia.

In the second period (Figure 6b), some region leaves the prevous communty to form a
single community such as Campania, Valle d’ Aosta and Basilicata. Lombardy continues to
represent a single community, whereas other regions move to different communities.

In the third period (Figure 6c), the structure of network becomes sparse. In fact there
are different regions that form a single community, such us (1) Marche, (2) Campania,
(3) Lombardia, (4) Valle d’Aosta , (5) Molise, (6) Veneto, (7) Sicilia, (8) Bolzano, (9) Trento
and also (10) Basilicata, Liguria and Umbria, (11) Lazio, Puglia, Emilia, (12) Abruzzo,
Calabria, Friuli.
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In the fourth period (Figure 6d), some regions form a single new community, whereas
other ones joint with previous communities. The extracted communities are: (1) Trento,
(2) Bolzano, (3) Umbria, (4) Molise, (5) Valle d’Aosta, (6) Abruzzo, (7) Piemonte, (8) Marche,
(9) Sardegna and Toscana, (10) Lombardia, Sicilia and Campania, (11) Lazio, Veneto, Emila,
(12) Puglia and Calabria, (13) Basilicata, Liguria, Friuli.

The fifth period (Figure 6e) reports 8 mined communities (1) Valle d’Aosta, (2) Lom-
bardia and Lazio, (3) Bolzano, (4) Puglia, (5) Liguria and Marche, (6) Basilica and Molise,
(7) Toscana, Piemonte, Emilia, Veneto, Campania, Sicilia, (8) Calabria, Sardegna, Abruzzo,
Trento, Umbria, Friuli.

4.5. Trend of Total Currently Positive Network Communities

Figure 7 shows the development of Total Currently Positive Communities. Figure 7a
depicts the detected community in the first period. The first one comprises Lazio and
Toscana; the second community is represented by Piemonte and Emilia; the third one
is represented by Abruzzo, Bolzano, Friuli, Trento; Umbria, Valle d’Aosta, Molise and
Basilicata form the forth community; Lombardia forms the fifth community; the sixth
one is formed by Veneto; the seventh is composed of Calabria, Sardegna; the eighth is
formed by Sicilia, Camania and Puglia; the ninth is formed by Marche and Liguria. In the
second period, the detected communities are different respect to the firs ones, as reported in
Figure 7b. The first communuty comprises Marche, Liguria, Fiuli, Bolzano; the second one
is represented by Abruzzo and Sardegna; the third one groups Lazio and Veneto; the fourth
one comprises Toscana, Puglia, Sicilia; the fifth is formed by Emilia and Piemonte; finally
Basilicata, Lombardia, Trento, Campania, Molise, Valle d’Aosta form single communiy.

In the third period (Figure 7c), many regions exhibit different behavior which is
mirrored by the fact that they form individual communities. In fact, only 4 communities
that are extracted are made up of three regions. A similar trend is also found in the
fourth period (Figure 7d). Figure 7e shows the extracted communities in the fifth period:
(1) Bolzano, (2) Valle d’Aosta, (3) Puglia, (4) Molise and Basilicata, (5) Lazio and Lombarida
(6) Trento, Friuli, Umbria, Sardegna, Calabria, Abruzzo, (7) Toscana, Emilia, Piemonte,
Veneto, Sicilia, Campania.

Therefore it is possible to note that: in the first two waves and in the month after
vaccination campaign the Lombardia forms a single community, and Emilia and Piedmont
exhibit similar behavior as well as Calabria and Bolzano.

4.6. Trend of New Currently Positive Network Communities

Figure 8a depicts the development of New Currently Positive Communities in the
first period. The first one comprises Basilicata and Molise; the second community is
represented by Piemonte and Emilia; the third one is represented by Abruzzo, Sicilia,
Friuli, Trento, Puglia, Campania; Ligria, Toscana, Lazio, Marche form the forth community;
Lombardia forms the fifth community; the sixth one is formed by Veneto; the seventh is
composed of Calabria, Umbria, Sardegna, Valle d’Aosta, Bolzano. In the second period,
the detected communities are different respect to the firs ones, as reported in Figure 8b.
The first communuty comprises Marche, Abruzzo, Sardegna, Umbria, Bolzano, Calabria;
the second one is represented by Emilia, Lazio, Campagnia and Piedmont; the third one
groups Toscana, Puglia, Sicilia; the fourth one comprises Valle D’Aosta; the fifth is formed
by Liguria and Friuli; finally Basilicata, Lombardia, Trento, Veneto form single community.

In the third period, the number of communities further grow, as reported in Figure 8c.
Basilicata, Lombardia, Molise, Lazio, Valle d’ Aosta form single community. Sicilia and
Toscana form a sixth community. The seventh communtity is formed by Emilia and Marche,
the eighth community is composed by Piemonte, Veneto and Puglia; the ninth community
is formed by Trento, Sardegna, Bolzano and Ubria. Calabria, Liguria and Abruzzo form the
last community.

In the fouth period, the number of communities further decline, as reported in
Figure 8d: (1) Sicilia, (2) Molise and Valle d’Aosta, (3) Marche, Liguria, Abruzzo, Um-
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bria, Friuli (4) Campania, Emilia, Toscana, Lazio, Veneto, Lombardia, (5) Trento, Basilicata,
Bolzano and Marche, (6) Piemonte, Puglia, Sardegna, Calabria.

The fifth period (Figure 8e) reports 6 mined communities as previous period, but
formed by different regions: (1) Valle d’Aosta, (2) Lombardia and Lazio, (3) Bolzano,
(4) Molise and Basilicata, (5) Liguria, Marche, Toscana, sicilia, Puglia, Veneto, Emilia,
Campania, Piemonte (6) Trento, Friuli, Umbria, Sardegna, Calabria, Abruzzo.

By comparing the communities extracted in the fifth period on New Currently Positive
Network and Total Currently Positive Network is possible to notice a similar trend.

4.7. Trend of Discarded or Healed Network Communities

The evolution of Discarded or Healed Network Communities is reported in Figure 9.
The communities extracted in first period are reported in Figure 9a. Thus, it is possible to
notice that only Lombardy shows a different behavior respect other Italian regions that
form community among them. Furthermore, it is possible to notice that over the periods
the structure of the network goes from dense to sparse, in this way each region forms a
single community (Figure 9b–e).

4.8. Trend of Deceased Network Communities

Figure 10 presents the mined communities of the Deceased Network. By analyzing
the different periods it is possible to note that apart from some communities formed by few
regions in the first and second wave, almost all the regions showed a different behavior
forming individual communities.

4.9. Trend of Total Cases Network Communities

Figure 11 shows the detected communities Total Cases Network. The first (Figure 11a),
second (Figure 11b) and third period (Figure 11c) are characterized by different communi-
ties. For example in the first period 6 communities are detected: (1) Abruzzo, Sicilia, Friuli;
(2) Marche and Lazio, (3) Calabria and Valle d’Aosta, (4) Emilia and Piemonte (5) Puglia
and Trento, (6) Molise and Basilicata and other 8 single communties formed by: Venento,
Sardegna, Liguria, Toscana, Lombardia, Umbria, Campania, Bolzano.

In the second period (Figure 11b) the number of communities is reduced because
some regions that formed single communities have joined previously formed communities,
whereas in the third period (Figure 11d) the previous framework is re-proposed in which
different regions form single communities.

Finally, in the fourth (Figure 11d) and fifth period (Figure 11e), all regions form a single
community except for (1) Marche and Liguria and (2) Piemonte and Lazio in the fourth
period; and (1) Emilia and Piemonte and (2) Campania and Veneto in the fifth period.

4.10. Trend of Swab Network Communities

Last Figure 12 reports the evolution of Swab Network Community. As in Total
Case Network and Discarded or Healed Network also in Swab Network Community
the structure evolves from dense to sparse. So, if in first and second waves Figure 12a,b
different regions show a similar behavior according the total number of swabs collected
per day, with the introduction of containment measures and vaccines, the Italian regions
respond differently to form individual communities in the fourth and fifth periods.

4.11. Impact of Containment Measures and Vaccination Campaign

The results evidence the dynamics of the communities varies according to the dynam-
ics of COVID-19. First of all the communities are different both considering the diverse
COVID-19 measures and considering the different observation periods. Moreover, the
structure of the communities evolves. For example, the communities grow due to joining
of regions or the communities reduces due to leaving of regions. This allows to evaluate
the changes of community coherence in relation to different data and along different ob-
servation period. This aspect is reflected in the community detection analysis in which
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those regions formed a single community or a community among them. Furthermore, by
comparing the communities extracted from the networks in the first observation period and
those discovered in the third period, it is possible to notice a substantial diversity among
them. In fact the fist period correspond to the fist COVID-19 wave i.e., February–May
2020, whereas the third period i.e., February–May 2021, that are the months marked by
containment measures and vaccination campaign. The mined communities are different
for each kind of COVID-19 measure and for each two periods and this reflects the different
impact that the spread of the virus has had on the Italian regions. In addition, this work
also allows to highlight that regions geographically distant may show similar behaviors
and form community, for example Calabria and Bolzano in different COVID-19 measures.
In conclusion, the rapid spread of COVID-19 has focused attention on the temporal dynam-
ics and effects of the COVID-19 pandemic over time. The CCTV methodology is able to
provide a picture of COVID-19 measurements in a given time interval or to represent the
temporal evolution both at a regional level and extensible to entire states of a country (e.g.,
Europe). The results obtained allow to identify the driving factors to control, with adequate
health planning, the transmission and impact of the new viral agent and its variants in the
environment and society, by analyzing, for example, which events led a region to moving
from an initial community, or what events caused a region to move to a more similar
community, or what events that caused a region to move to one. For example, these events
could be related to pharmaceutical measures, such as vaccinations, that have the potential
to keep baseline reproduction numbers low, to relax non-pharmaceutical interventions,
and to support the recovery of socioeconomic systems where possible. Therefore, our
methodology could be of benefit to design effective health capacity planning strategies
to address and/or prevent future waves of COVID-19 and/or similar infectious disease
epidemics/pandemics.

4.12. Comparison with State-of-Art COVID-19 Research

Over two year, the scientific community focused on the study of virus spread by con-
sidering both medical and data Analysis aspects. So, several studies were proposed in the
literature. Here, we reported the main works that recurred to network-based representation
in order to perform the statistical analysis on COVID-19 data, performed a community
detection analysis, and analized COVID-19 pandemic in Italy.

For example, Wang et al. [31] recurred to statistical and network analysis to evaluate an
infected cluster of people in different hospitals. The data were represented as heterogeneous
network where the nodes represented patients and hospitals and relationships between
relatives, friends or colleagues as edges. Network analysis enabled to obtain important
information about patients, hospitals and their relationships and to give a guidance for the
distribution of epidemic prevention materials. Renardy et al. [32] apply a model based on
discrete and stochastic network in a case study of Washtenaw County in Michigan (USA)
to forecast the second wave of the COVID-19 pandemic. Kuzdeuov et al. [33] developeds a
network-based stochastic epidemic simulator to models the diffusion of a disease through
the SEIR states of a population. Kumar [34] used a network-based model to predict the
spread of COVID-19, incorporating human mobility through knowledge of migration
and air transport. Herrmann et al. [35] modeled as network the human interaction to
demonstrate that network topology could improve the predictive power of SIR model
of COVID-19 by providing novel insights into the potential strategies and policies for
mitigating and suppressing the spread of the virus.

Reich et al. [36] modeled the COVID-19 spread by using a SEIR agent-based model on a
graph, by taking into account the following COVID-19 attributes: super-spreaders, realistic
epidemiological parameters of the disease, testing, and quarantine policies. Chaudhary
et al. [37] analysed the trend, countries affected regionally and the variation of cases
at the country level on COVID-19 dataset by applying Principal component analysis on
the COVID-19 dataset variables and then, on these ones they applied the unsupervised
clustering approach, K-means to find the hidden community structure of countries.
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Gibbs et al. [38] apply community detection techniques to human interaction move-
ments network of to identify geographically-explicit movement communities and measure
the evolution of these community structures through time. Coccia [39] performed a compar-
ative analysis of the first and second wave of the Coronavirus disease 2019 (COVID-19) to
assess the impact on health of people for designing effective policy responses to constrain
negative effects of future pandemic waves of COVID-19 and similar infectious diseases
in society.

In summary, the work of Chaudhary et al. is the unique work that recur to the
community detection method in ored to help in unveiling the patterns of countries and
regions where the COVID-19 has impacted in a similar pattern.

CCTV methodology differed from the other previous works because it applied the
graph formalism to map the homogeneous data, i.e., COVID-19 data relating to different
Italian regions and in different time intervals, into network. In fact, CCTV methodology
enables to depict COVID-19 data as networks where each node represents an Italian region
and each edge connects statistically similar regions. Furthermore, CCTV methodology
enables to conduct community detection task to extract clusters of regions with similar
behavior along time. To the best of our knowledge, our work is the first study that provides
a network-based representation and visualization of COVID-19 data at the regional level
and applies network-based analysis to discover communities of regions that show similar
behavior. This makes it difficult to compare CCTV results with other works in literature.

5. Conclusions and Future Work

In this work, we applied CCTV methodology to analyze the impact of clinical evolution
of COVID-19 pandemic form 2020 to May 2022 in Italy. The results has evidenced that
the evolution of the epidemic analyzed considering the containment measures and the
diffusion of the vaccination campaign has an impact on the behavior of the various Italian
regions. So, CCTV is able to extract different communities in different observation periods
that reflect the different policies adopted by the Italian government to fight the epidemic in
the 2020, 2021 and mid 2022 years. The present methodology is general and can be applied
for the network analysis of different data varying over time. The main limitations of this
research concern the data analysis typology. In fact, CCTV is able to provide a graph-based
representation of the behavior of the Italian regions that could be extended to different
zooms, i.e., by considering the behavior of the individual cities of the Italian regions or by
moving the analysis to a wider view, i.e., considering the different European states have
faced the pandemic. Thus, the methodology analyzes the homogeneous datasets only by
applying a statistical test to find similar/dissimilar datasets. Thus, the researcher that want
to extract a deep knowledge from the data, i.e., which event did not cause a region to move
from an initial community, or which event that caused a region to move to a more supportive
community, for example where fewer were recorded cases or which interventions may
improve the behavior of critical regions, should perform a post-processing analysis by
applying different metrics.

As future work, we plan to extend the implementation of CCTV, by developing a
graphical user interface offering a visualization dashboard that may be used by domain
experts and decision makers to analyze the impact of containment measures on a geograph-
ical scale.
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