?.% BioTech

Article

Bio-Strings: A Relational Database Data-Type for Dealing with
Large Biosequences

Sergio Lifschitz 1*{9, Edward H. Haeusler {*, Marcos Catanho ?{”, Antonio B. de Miranda 2,

Elvismary Molina de Armas

check for
updates

Citation: Lifschitz, S.; Haeusler, E.H.;
Catanho, M.; de Miranda, A.B.;
Molina de Armas, E.; Heine, A.;
Moreira, S.G.M.P,; Tristao, C.
Bio-Strings: A Relational Database
Data-Type for Dealing with Large
Biosequences. BioTech 2022, 11, 31.
https:/ /doi.org/10.3390/
biotech11030031

Academic Editors: Pietro Pinoli and

Anna Bernasconi

Received: 18 June 2022
Accepted: 21 July 2022
Published: 30 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

10, Alexandre Heine !, Sergio G. M. P. Moreira ! and Cristian Tristao !

Departamento de Informatica, Pontificia Universidade Catoélica do Rio de Janeiro (PUC-Rio),

Rio de Janeiro 22451-900, Brazil; hermann@inf.puc-rio.br (E.H.H.); earmas@inf.puc-rio.br (EM.d.A.);
alexandreh@inf.puc-rio.br (A.H.); smoreira@inf.puc-rio.br (5.G.M.P.M.); ctristao@inf.puc-rio.br (C.T.)

2 Lab. Genética Molecular de Microrganismos, Fundagdo Oswaldo Cruz (FIOCRUZ),

Rio de Janeiro 21040-900, Brazil; marcos.catanho@fiocruz.br (M.C.); antonio.miranda@fiocruz.br (A.B.d.M.)
Correspondence: sergio@inf.puc-rio.br

Abstract: DNA sequencers output a large set of very long biological data strings that we should
persist in databases rather than basic text file systems. Many different data models and database
management systems (DBMS) may deal with both storage and efficiency issues regarding genomic
datasets. Specifically, there is a need for handling strings with variable sizes while keeping their
biological meaning. Relational database management systems (RDBMS) provide several data types
that could be further explored for the genomics context. Besides, they enforce integrity, consistency,
and enable good abstractions for more conventional data. We propose the relational text data type to
represent and manipulate biological sequences and their derivatives. We present a logical schema
for representing the core biological information, which may be inferred from a given biological
conceptual data schema and the corresponding function manipulations. We implement and evaluate
these stored functions into an actual RDBMS for both efficacy and efficiency. We show that it is
possible to enforce basic and complex requirements for the genomic domain. We claim that the
well-established relational text data type in RDBMS may appropriately handle the representation and
persistency of biological sequences. We base our approach on the idea of domain-specific abstract
data types that can store data with semantically defined functions while hiding those details from
non-technical end-users.

Keywords: biological sequences; relational databases; string type; stored functions

1. Background

There are many different approaches to storing and manipulating biological data.
Relevant information inherent to this domain, such as nucleotides and their derivatives
(proteins), are currently represented and interpreted as character string sets, with no explicit
semantics. Moreover, even the derived information, such as the relationship between
the sequences, which is part of molecular biology’s central dogma, is not appropriately
considered. Additionally, there is no specific data structure for the storage and manipulation
of biological data.

We represent all the genetic information of a living organism in its linear sequence
of the four bases of DNA. Therefore, a four-letter alphabet (A, T, C, G) must encode the
primary structure (i.e., the number and sequence of the 20 amino acids) of all proteins.
The great difficulty in representing and manipulating biological sequences is related to its
origin. Everything we know today about molecular biology is abstractions of how things
are. Second, a biological sequence, taken in isolation, has no meaning of its own. The
information is hidden in the set of letters that make up the sequence, requiring manipulation
to extract such information.

BioTech 2022, 11, 31. https:/ /doi.org/10.3390/biotech11030031

https:/ /www.mdpi.com/journal /biotech

https://doi.org/10.3390/biotech11030031
https://doi.org/10.3390/biotech11030031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biotech
https://www.mdpi.com
https://orcid.org/0000-0003-3073-3734
https://orcid.org/0000-0002-4999-7476
https://orcid.org/0000-0002-9184-4158
https://orcid.org/0000-0002-0606-5994
https://doi.org/10.3390/biotech11030031
https://www.mdpi.com/journal/biotech
https://www.mdpi.com/article/10.3390/biotech11030031?type=check_update&version=2

BioTech 2022, 11, 31

2 of 25

Most approaches still persist data in files in some standard text format, e.g., the BLAST
family [1] and SSEARCH [2]. Applications that use a Relational Database Management
System (RDBMS) persist sequences in structures of type string or BLOBs or CLOBs (Char-
acter/Binary Large Objects) in their original form. This practice facilitates the loading of
repositories from text files. However, a common solution still keeps very large character
sequences, representing genomes in external files out of a DBMS control.

The use of a DBMS is a straightforward solution to manage large volumes of data.
However, the available and usual data types are not ready for containing biological se-
quences adequately. The problem with treating a biological sequence as strings or BLOBs,
used to store any data and files in general, is the loss of semantic information.

A biosequence or biological string has well-defined interpretations, e.g., nucleotide
sequences, proteins, coding regions, etc. There are specific characteristics that differ from
just a sequence of single characters, e.g., comparisons and similarity search are not simple
pattern-matching programs. Neither are there appropriate mechanisms to answer queries
related to identifying evolutionary relationships between genes—for example, homology,
orthology, and paralogy, nor for functional (e.g., catalytic, regulatory) and structural (e.g.,
conserved regions, domains) relationships between genes.

Therefore, we might focus on the significant problem of representing and manipulat-
ing biological sequences directly on a DBMS. We will show that our data and functional
requirements can be modeled directly in a robust and well-known relational system. How-
ever, there is no direct correspondence from very long biological sequences to relational
data types. Moreover, those very long strings and sub-strings carry some semantics with
them, and ideally, this should be taken into account.

Concerning any possible ADT-like (Abstract Data Type) solution, we usually have two
alternatives: (i) the creation of a new data structure that addresses all requirements and
defines a new way of storing and manipulating the data, or (ii) the extension of an existing
data type, enforcing the list of requirements to match only the user needs.

If we think in terms of implementation, both alternatives have their pros and cons.
On the one hand, creating a new type has the advantage of thinking and generating an
appropriate structure and mechanisms for this new data type, which may have superior
performance compared to an extended type. On the other hand, the effort to generate
this new type is considerably higher: we need to create all the structures and mechanisms
involved for storage and manipulation, which must run within an existing system. For the
extended type, the scenario reverses. Depending on the data type used, the adaptation can
be simplified, using any base already defined and developed.

In this paper, we propose the idea of creating functions associated with current data
types available on a relational DBMS to obtain a more appropriate representation for very
large bio-sequences, enabling their manipulation while keeping a biological interpretation.
We will examine the string (or text) type and a set of biological-related functions that
may answer both simple and complex queries, hiding implementation details from non-
technical users.

Many existing relational and non-relational systems exist, e.g., GUS (https:/ /www.cbil
.upenn.edu/downloads/_local/sfischer/gus.html, accessed on 17 June 2022) and CHADO
(http://gmod.org/wiki/Chado_Tables, accessed on 17 June 2022) that may be considered
to deal with biosequences and many other genomic data types. Nevertheless, no details
are given concerning the way they actually implement very large sequences representing
biological information. It must be noted that we focus only on the biosequences type, not
on complete biological or genomic database systems.

This work brings new unpublished contributions to the work presented in [3], includ-
ing (i) a complete and extended conceptual model; (ii) explicit mappings for conceptual to
relational transformations; (iii) a set of new basic and complex functions; (iv) an updated
discussion on related works; and (v) results from a practical implementation within an
actual relational DBMS.

https://www.cbil.upenn.edu/downloads/_local/sfischer/gus.html
https://www.cbil.upenn.edu/downloads/_local/sfischer/gus.html
http://gmod.org/wiki/Chado_Tables

BioTech 2022, 11, 31

30f25

2. Methods

In order to achieve our goals, we need to follow a complete relational database design
path, starting from a conceptual data model and all the essential information that concerns
biosequences and the corresponding applications. We avoid all non-biological terms and
concepts to strengthen the existing semantics. Next, we give a closer look at the relational
data model and a possible logical schema that one may obtain from the previous conceptual
schema. At this point, we can propose a set of relational (stored) functions and procedures
based on our string-type structure for complex and straightforward domain-oriented
queries. We implement these functions using an actual relational DBMS (PostgreSQL) and
run experiments on real datasets to check efficacy and efficiency.

2.1. Conceptual and Logical Modeling

We need to first discuss those basic and complex concepts that we represent in a pure
Conceptual Data Model, such as the Entity-relationship one. Eventually, these will become
relational database objects that we will take into account to detail and experiment our
research work.

In nature, there are two types of nucleic acids: DNA (deoxyribonucleic acid) and RNA
(ribonucleic acid). Analogously to a communication system, this information is kept inside
the cell under rules that we call the genetic code. We see both DNA and RNA as a linear
chain composed of simple chemical units called nucleotides in their primary structure. We
may either refer to a nucleotide or base pair. The bases are Adenine, Guanine, Cytosine,
Thymine, and Uracil, the first two are purines, and the last three are pyrimidines. In DNA,
we find bases A, G, C, and T. In RNA, base U is observed instead of base T.

DNA molecules are made up of two strands which bond together, forming a helical
structure, known as a double helix. The two tapes are merged by the stable connection
between their nucleotide bases. Base A always binds base T, and base G binds base C. Thus,
the nucleotide sequence in one strand ultimately determines the complete, double-stranded
DNA molecule. It is precisely this property that allows for DNA self-duplication. Each
strand of DNA has two ends, called 5 and 3/, in an allusion to how carbon atoms are
numbered in the sugar moiety that makes up each nucleotide and how they connect be-
tween nucleotides. The two tapes are antiparallel; that is, the tapes have a 5'-3' orientation
opposite each other. The convention adopted worldwide to represent DNA molecules is to
write only one of the strips in the 5'-3' direction.

2.2. Cds, ORFs and Proteins

A protein is generated from a gene, which is a region in a genomic sequence. A gene
that encodes a protein produces a primary transcript that, after some processing, generates
a mature transcript containing the protein-coding sequences (CDS). These sequences are
formed by concatenating substrings containing information for proteins (exons) and un-
translated regions (UTRs). ORFs may not be encoded in proteins. In this way, all coding
sequences (CDS) are ORFs, but not every ORF encodes a protein.

The protein entity (see Figure 1) represents the amino acid sequence of a protein with
the nucleotide sequence of a CDS and the genomic sequence containing only an external
reference to its transcription. Thus, the CDS is an entity whose primary property is to keep
the relationship between the protein, gene, and genomic sequence entities. This is done
by placing a given gene coding region (exons) in the coordinate system of the genomic
sequence that contains it. Each exon in a gene corresponds to a subsequence CDS, defined
by a starting and ending position mapped in a genomic sequence coordinate system.

2.3. Genes and Genomic Sequences

The nucleotide sequence of a gene that encodes a protein is part of a genomic sequence
that will first be transcribed generating a pre-mRNA. This pre-mRNA molecule will be
processed: the regions which will not be a part of the mature mRNA molecule (the introns)
will be removed by a process called splicing. The mature mRNA molecule is now composed

BioTech 2022, 11, 31

4 of 25

of exons; however, two of them (the 5’UTR and the 3’'UTR) are not translated. Translated
exons are composed of codons, which are nucleotide triplets that specify particular amino
acids or act as signals for the beginning and end of the translation process. The reading
and transcription of a gene generate the mRNA that eventually will be processed and
transcribed into an amino acid sequence, which occurs in a specific direction in vivo (5'-3').

JuUUod DO

(0

" ORF T T
<\wjo n/f/_ 0, n4| ORF_T }1,,-.7 T J'a ve
11 \'““V

33
GENOMIC 3 3.
1,1 5:‘ ®
SEQUENCE 23
5668 | dbbe 255
238
- 5335
O Oy T 3m® Qo=
53068 3352 HITs 000
Eg'sc | &Cr2 2
5223 238 TAXONOMY
=353 o = o,n
= o 0,1 0
= _S 01 g)ml 1 B) ,n
~garent —
O,n Ln
T~ o,n
01 _— ~_ 01 N~
-~ Protein ~ =
cDs =y /—{ PROTEIN I s

© 5660 g
) on source oo — a
region S2mFo a
T2ER 2 s g
£53%a 2 =g
SRty —.3 030
oo 1n oam3e
S
] il Q0O
= g3 [oowan|
w
On 35 B
GENE a o 3 2
o0
ggééééi : 3
region 555 &
& OS54 dm 23 % o CID ?
If‘)n.amm m3 5 h
wun'oR332 3 On 3 have 7,
oy §5%2 & OO o
T 3 =2 a5
tEe =
ad o ENZYME source
S =)
s ° 0,n — name
Op 0t ' ave version
s o |
~~_parent_- g on
~ 33
-
_.3 0o
am >
relationship == ‘ GENE_ONTOLOGY l—

type

Figure 1. A Conceptual Biological Data Schema.

The gene entity (Figure 1) has an identifier, and we will use the NCBI identifier (Entrez
Gene (https:/ /www.ncbi.nlm.nih.gov/Web/Search/entrezfs html))—the geneld. We may
define its corresponding region in the genomic sequence by a start and stop position, a
sense of reading, a transcription identifier (from RefSeq), and the GC content. An ORFr
amino acid sequence is analogous. It relates to the genomic nucleotide sequence through

https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html

BioTech 2022, 11, 31

50f 25

an ORFmgion delimited by a start and stops position within the genomic sequence, with the
RefSeq identifier of the genomic sequence, the reading direction, its position concerning its
neighbouring gene, and the sequence itself.

A genomic nucleotide sequence, derived from a RefSeq, refers to the genes containing
CDSs that code for the protein amino acid sequence. These genomic sequences have a status
that refers to the current stage of the sequencing research project. The possible values are:

e Complete, which typically means that each chromosome is represented by a single
scaffold of a very high-quality sequence;

* Assembly, which typically means that scaffolds have been built not at the chromosome
level or are of a low-quality sequencing project; and

e In Progress, indicating that both the sequencing project is in the pre-assembly or
the completed (assembled fragments) strings have not yet been submitted to public
databases such as the GenBank or EMBL.

The Genomic Sequence entity (Figure 1) has a RefSeq identifier, definition, and the
length of the sequence, the type of organic molecule (DNA or RNA), status, type of sequence
(chromosome, organelle, plasmid), an optional identifier of the respective genome project,
GC content, and an identifier of the original taxon.

2.4. ORFs, Proteins and Taxonomic Classification

The taxonomy of organisms is an essential organizing principle in the study of biologi-
cal systems. Inheritance, homology by common descent, and the sequence and structure
conservation are all central biological ideas directly related to any group of organisms’
evolutionary history. A taxonomic classification follows a tree hierarchical structure. We
call this path from the tree root node to any other particular taxon a lineage.

Regarding similarity information, there are three possible combinations of hits involv-
ing translated ORFs and proteins (Figure 1): (i) ORFs x ORFs; (ii) proteins x ORFs; and (iii)
proteins x proteins. The minimum cardinality for all relationships is zero if the comparison
does not generate significant hits. The maximum cardinality is n, as there may be several
significant hits between the comparisons.

The translated amino acid sequences (ORF) are represented by another entity—ORFr—
because they do not have a previous identifier. Information about these strings includes
the reference to the original organism, location, and size. There are also three distinct types
of relationships between hits, proteins, and translated ORFs:

* hit_OO—result of the comparison between translated ORFs;

e hit_OP—result of the comparison between ORFs translated with proteins derived
from SwissProt. Proteins derived from RefSeq were not used in the comparison
process with the translated ORFs;

* hit_PP—result of the comparison of RefSeq proteins with RefSeq and SwissProt proteins.

These relationships (Figure 1) have attributes that specify the comparison process’s
result, based on the information obtained using the Smith—-Waterman (SW) Alignment
algorithm [4]. These are query gi, subject gi, SW score (gross score of the comparison), bit
score (score normalized), e-value (alignment significance), % identity, alignment length
(alignment size), query start, query end, subject beginning, subject end, query gaps, and
subject gaps.

2.5. Biological Annotations

It should be noted that our biological conceptual scheme also includes information
related to protein annotations. These correspond to an annotation is a process of assigning
predicted biological functions, and structural characteristics, to raw data, e.g., to the
protein’s primary sequence [5].

It is noteworthy that the prediction of cellular functions (structural, enzymes, trans-
porters, signalers, etc.) is essentially hypothetical. Most of these possible functions are
attributed by in silico analysis, and only a small fraction of these predicted proteins had

BioTech 2022, 11, 31

6 of 25

their functions confirmed by laboratory experiments. This shows the importance of wet
labs validation combined with “dry” software simulations.

Our conceptual scheme (Figure 1) includes the following information regarding
the annotations:

Enzymes and Metabolic pathways: KEGG represents a group of organic substances of
nature, typically protein—there are also enzymes made up of RNA, ribozymes—with
intracellular or extracellular activity, which have catalytic functions [6].

Domain: Pfam is a family database and protein domain, represented by a collection of
multiple alignments of Markov sequences and models [7].

Ontology: Gene Ontology (GO) is a domain ontology, formed by three categories
of concepts, namely: Molecular Function, Biological Process, and Cell Component. It aims
to produce a controlled vocabulary that can be applied to all organisms, to represent
knowledge in describing genes and protein roles in cells [8].

2.6. A Logical Relational Model

Once one has a conceptual schema, we must think about a corresponding logical
schema looking forward to actual manipulations for biological applications and users. A
straightforward mapping from our conceptual schema may be quickly obtained considering
standard rules for transformations to the logical-relational model.

The set of Figures 2—4 illustrates the transformation process from a fraction of the
conceptual schema to the corresponding relational (tabular) logical schema.

Conceptual Scheme
RANK [¢ 2 TAXONOMY

o
=

:1) |

0000 3
— =)
29 Y233 =
5 %33 °S3
—~5
c % 117 32° 11 ofTch
c o 3 ;i"a c
=y 3
L o2 Uwo
1n @ 1n ?9999
1A 5
3
ORF_T = PROTEIN
Logical Scheme
& public.orf_t] public.protein
2 id: numeric(20,0) 2 id: numeric(20,0)
¢ length: numeric(5,0) ¢ gbkid: varchar(15)
-4 taxonomy_id: numeric(10,0) ¢ uniprotid: varchar(10)
| ¢ length: numeric(5,0)
| ¢ definition: text

| — -‘10 taxonomy_id: numeric(10,0)

| fJ public.taxonomy ‘

[public.synonimum & public.tax_rank

L[— -
» taxonomy_id: numeric(10,0)]o—-—"f ;aa’::f’\'::‘:::]da'r'(':'s";)”‘(m’“’ - r {2 e rank_id: umeric(100)
i - har(256) - 4 name: varchar(50
synonimum: varchar(256) ¢ father: numeric(10,0) | 50)

J % tax_rank_id: numeric(10,0) .—‘—
_____ J

Figure 2. Conceptual to Logical Mapping—part 1.

BioTech 2022, 11, 31

7 of 25

Based on our conceptual scheme, we observe that the relationship between proteins
and their annotations is of the “many-to-many” type. Therefore, the mapping for a logical-
relational scheme obtains by creating an intermediate table for each relationship. As the
primary key, we will have the composition of the primary keys of the other two tables
involved, originating from basic entities, and can also add the attributes that identify
that relationship.

As a result of the association of the protein entity (and corresponding relation) between
the domain, enzyme, and gene ontology entities, we get the domain-annotation, enzyme- annota-
tion, and go-annotation, respectively. Finally, the self-relationships of the entities enzyme and
gene ontology were mapped, generating the respective foreign keys in their tables.

Enzyme: as a “one-to-many” self-relationship, the same mapping used for the taxon-
omy is applied. The Enzyme table receives a new attribute called “father” (foreign key for
the enzyme), which can be null, by definition and also according to the cardinality present
in the conceptual scheme (“0,17).

Conceptual Scheme

PROTEIN

ORFT |

Protein
cDs

region C_2 01
strand c ! - =
index (0,1 8 region & S
GC_content &0,13 £ 3 s |© = 2
11 S8EL 1 2 Tt
-U-5|42-|£‘ah‘ | : k=] A% E: ‘g E g-
=<5 o | on | T aTx8 uh
o250 | c c S
s WE 2 & | $ g8 0 ?9
EH8E0)
| ’ QQ lo,n ’ (? (? (? o] c_l—_)regmn
s_tattllng {8'%) g GENOMIC 0,1 GENE ‘
projec ,
GC_content&[J, 1} O+ SEQUENCE

Logical Scheme

E public.orf_t

2 id: numeric(20,0) [I public. protein
< length: numeric(5,0) ~ id: numeric(20,0) Epublic.gene
<+ taxonomy_id: numeric(10,0) % gbkid: varchar(15) | — 5 geneid: numeric(10,0) |

¢ uniprotid: varchar(10)

% length: numeric(5,0)

7 public.orf_region % definition: text

2 id: numeric(20,0) | % taxonomy_id: numeric(10,0)

¢ transcriptid: varchar{10)

¢ reg_start: numeric(10,0)
< reg_stop: numeric(10,0)
< strand: char(1)

¢ index: numeric(10,0)

¢ gc_content: real

¢ reg_start: numeric(10,0)
¢ reg_stop: numeric(10,0)
% strand: char(1)

¢ index: numeric(6,0)

% gc_content: numeric{2,0)

ublic.genomicsequence
E-Ip g q & public.cds

% gbkid: varchar(20) #— — —| . gbkid: varchar(20)
< gbkdefinition: text
% length: numeric(10,0) — —C¢ id: numeric(20,0)
< mol_type: varchar(32) < region: varchar(255)
4 status: varchar(50) — — —C{¢ gbkid: varchar(20)
4 projectid: numeric(10,0) < geneid: numeric{10,0) o —

© seqtype: varchar(30)

< gc_content: numeric(2,0)

< taxonomy_id: numeric{10,0)
% gbkdivision: varchar{16)

% gi: numeric(20,0)

Figure 3. Conceptual to Logical Mapping—part 2.

Gene ontology: the self-relationship of gene ontology is of the “many-to-many” type.
For this reason, a specific table named relationship was created. The relationship type
attribute (relationship-type) and a sequential attribute called relationship-id (that plays
the primary key role) were added to the ontology table. The need to create this attribute
to identify the primary key and the non-use of the ontology reference attributes as a key
is because there are different correspondences for the same relationship. This situation is
illustrated in Figure 4.

BioTech 2022, 11, 31

8 of 25

Through proper mapping, we obtained a relational logical scheme from the conceptual
model (Figure 1), using the set of traditional transformation rules and specific adjustments
due to some performance issues. We may follow analogous steps to reach the complete
relational schema.

Conceptual Scheme

c
o O g
v
g v 5o <
c>'n 5 PROTEIN E.Q
o] 0
a s © E
source ? c >
c
o] 1,n 0,n
P source
g : -
[P [
(W) =i [o]

55 % 5 2% S
D co Py] E © E o=
9009 TR

c o S cg
’ 9 Q source ’99

GENE_ONTOLOGY

]

on” .01 on~ __ ~on

relationship

type O
Logical Scheme

o)
(@]
=
=
=

E’ public.relationship [£ public.domainannotation) public.domain
& relationship_id: numeric(5,0) ‘&‘ domain_id: numeric(7,0) |#|; domain_id: numeric(7,0)
_id: i
- R " - 2~ id: numeric(20,0) % name: varchar(30)
& relatlnnshlp_typ_e. numerl_c(].,l]) o son_name: varchar(20) + source: varchar(10)
—#|¢ gene_ontology_id: numeric(8,0) - - har(10
| < chi_gene_ontology_id: numeric(8,0) [g— ¢ sou___rer.smn. va_rc ar(10)
| ¢ position: num_erlc(S,l]) %puhlit.enzymeannntatinn
| %public.gene_untulngy | o score: numeric(5,0) 2 ec_id: varchar(10)
[2 gene_ontology_id: numeric(8,0) [£ id: numeric(20,0)
% name: varchar(100) %public.prutein ¢ sou_name: varchar(20)
& definition: varchar(255) 2 id: numeric[20,0) ¢ sou_version: varchar(10)
: s

¢ gbkid: varchar(15)

E public.goannotation < uniprotid: varchar(10) Epublic.enzyme

2 gene_ontology_id: numeric(8,0) ¢ length: numeric(5,0) |_ & ec_id: varchar(10)

2 id: nu_meric[zl] D_:I < definition: text < name: varchar(150)
- A

& sou_name: varchar(20) ¢ taxonomy_id: numeric(10,0) | + description: varchar(255)
% sou_version: varchar(10) ~C+|@ father: varchar(10)

Figure 4. Conceptual to Logical Mapping—part 3.
3. Results

We claim that it may not be a problem to manage biological sequences considering
the relational data model and an RDBMS. Instead, the lack of semantics in the existing
data structures is an issue. We propose and discuss in this paper the idea of a bio-string
type using an extension of the widely present text or string type. The main reason is the
complexity of storing and representing biological sequences in BLOB structures concerning
expressiveness. As BLOBs are designed to hold any possible data, there are no appropriate
access and manipulation mechanisms.

The string type structure has a well-defined storage pattern and mechanisms for
accessing and manipulating data. Common string functions such as lower, upper, and
convert do not make any sense for a biological applications. Nevertheless, if we use the
string storage structure for biological sequences, we must create or rewrite functions or
operators specific to the molecular biology domain.

BioTech 2022, 11, 31

9 of 25

3.1. Bio-Strings in Action

We present a straightforward case study with the PostgreSQL (https:/ /www.postgres
ql.org/, accessed on 17 June 2022) relational DBMS for prototyping the idea proposed in
this paper.

More than representing and relating the concepts involved in the domain, the relational
(logical) scheme must answer conceptual and theoretical questions about the represented
objects. We present some analysis queries concerning our biological (conceptual and logical)
scheme categorized into two groups: basic and complex.

To check if the schema can provide the information to the suggested analysis, we
can make queries using standard Structured Query Language (SQL) considering our
relational database implemented with the PostgreSQL relational DBMS. It is worth noting
that without using the proposed modeling solution, even the queries considered more
straightforward would not be easily answered.

3.2. Basic Queries

7

This group refers to analysis where the information concerns only one or more objects
statistical data—for example, accounting for occurrences or tuples of a given object, or
between objects that are related to each other. From a biological point of view, these are
fundamental issues that provide valuable information.

Although the base composition varies from one species to another, the Adenine
amount is always equal to that of Thymine (A = T). The number of Guanine and Cytosine
bases is also the same (G = C). Consequently, the total amount of purines is equivalent to
pyrimidine (i.e., A + G = C + T). On the other hand, the AT /GC ratio varies considerably
between species.

Knowledge about the GC content of a DNA sequence is vital for determining the
physical properties of DNA. The function for obtaining the GC content returns the number
of bases G and C of a given input sequence. Unlike the other functions, which had to
go through the nucleotide sequence to obtain the desired information, the getGCcontent
function (Figure 5) had its implementation simplified using predefined functions in the
relational TEXT type, such as the replace function.

- Name: getGCcontent

- Input: sequence — nucleotide sequence

- Output: integer — amount of GC content

- Description: returns the amount of GC content of DNA sequence

CREATE OR REPLACE FUNCTION getGCcontent (TEXT) RETURNS INTEGER AS
55
DECLARE
original ALIAS FOR $1;
modify TEXT ::= "';
length INTEGER:;
BEGIN
SELECT REPLACE (original,'A',"'') INTC modify;
SELECT REPLACE (modify,'T','") INTO modify;
SELECT LENGTH (modify)} INTO length;
RETURN length;
END
Sl
LANGUAGE plpgsgl IMMUTABLE RETURNS NULL ON NULL INPBUT;

Figure 5. GC Content Relational Function.

For the construction of the getGCcontent function, we use the replace function to
return the occurrences of bases A and T with an empty character (“ ”), eliminating the

https://www.postgresql.org/
https://www.postgresql.org/

BioTech 2022, 11, 31

10 of 25

sequence’s bases. Subsequently, to obtain the GC content from the biological sequence, we
must only get the resulting sequence’s size, which now has only bases G and C.

In the DNA nucleotide chain, a set of three nucleotides corresponds to a triplet.
Through the transcription process, as mentioned before, some of these DNA triplets are
converted into codons in the mature mRNA, and now they specify amino acids. The
function that transforms a DNA sequence into an mRNA sequence is the transcript function.
Its implementation is based on the getGCcontent function, requiring minor changes. It then
migrates to the cell’s cytoplasm, where it binds to a ribosome and a carrier RNA molecule.
The ribosome connects free amino acids to form the proteins through the translation process,
using the genetic information of the individual’s DNA with the RNA molecule.

To carry out the translation function, we must go through the nucleotide sequence of
an mRNA molecule and convert them into amino acids at each sequence of three bases. The
translation function depends on a translation table of the genetic code. Two approaches are
possible: (1) storing the translation table information in an auxiliary storage structure, or
(2) inserting the mapping of nucleotide sequences into amino acids directly into the function
body. As a matter of simplification, we have used the first alternative (see Figure 6).

- Name: Translation
- Imput: position - integer
sequence — nucleotide sequence (RNA)
Output: sequence - amino acid seguence (Protein)
Description: transforms a nucleotide sequence (RNA)
in an amino acid sequence (Protein).

CREATE OR REPLACE FUNCTION translation (INTEGER,TEXT)
RETUENS TEXT AS 535
DECLARE
pos ALIAS FOR S$1;
seq ALIAS FOR 52;
tam INTEGER:
subconvert RECORLD;
sub character varying(3);
aminocacid TEXT := '';
BEGIN
SELECT TRANSCRIPT (seq) INTO sed;
SELECT LENGTH (seq) INTO tam;
LOOP
EXIT WHEN pos+2 > tam;
SELECT substring(seq FROM pos FOR 3) INTO sub;
SELECT INTO subconvert * FROM code WHERE triplet = sub;
aminoacid := aminoacid || subconvert.aa;
pos := pos +3;
END LOOE;
RETURN aminoacid;
END
53
LANGUAGE plpgsql IMMUTABLE RETURNS NULL ON NULL INPUT;

Figure 6. Translation Function.

An ORF (Open Reading Frame) is a nucleotide sequence in a DNA molecule that can
encode a peptide or a protein. Every protein originates from an ORF, but not every ORF
originates a protein. An ORF is bounded by the AUG initiation codon, which encodes the
amino acid Methionine (Met), indicating where the protein’s amino acid sequence encoding
begins. The termination codons (UAA, UGA, and UAG) act as signals, indicating that the
amino acid sequence destined for that protein ends there. In this way, all proteins begin

BioTech 2022, 11, 31 11 of 25

with the Met amino acid. An ORF that does not have the identified protein product is called
UREF (unidentified reading frame).

As with the translation function, we must inform the reading frame (1, 2, or 3) to
correctly identify codons. Another parameter is the minimum size of the ORF. Like trans-
lation, the search for ORFs is performed on an RNA sequence. To avoid user errors (e.g.,
use a DNA sequence instead of RNA), the function transcribes the input sequence before
performing the search. Figure 7 illustrates this function.

- Name: searchORF
- Input: position — integer
seqguence — nucleotide sequence (RNA)
length - minimum size of ORF
- Output: sequence Collection — amino acid sequence (Protein)

- Description: search ORFs in a nucleotide sequence (RNA).

CREATE OR EREFLACE FUNCTION searchORF (INTEGEER, TEXT, INTEGER])
EETUENES SETCFEF TEXT A3
55
DECLARE
pos ALIAS FOR 51;
seq LLIRS FOR 52;
size ALIAS FOR 53;
tam INTEGER;
tamORF INTEGER;
sub character varying(3);
orf TEXT := '';
found BOCLEAN := false;
BEGIN
SELECT TEANSCEIET (seq) INTO =seq;
SELECT LENGTH (seq) INTO tam;
LOOP
EXIT WHEN pos+2 > tam;
SELECT substring (seqg FROM pos FOR 3) INTO sub;
IF (sub = 'AUG') THEN
found := true;
END IF;
IF (found) THEN
orf := orf || sub;
END IF;
IF (sub = 'UAZA' OR sub = '"UEA' CR sub = '"UAG') THEN
found := false;
SELECT LENGTH {orf} INTS tamORF;
IF (tamORF >10) THEN
RETURN QUERY SELECT orf;
END IF;
orf :=
END IF;
pos := pes +3;
END LOOE;
END
55
LANGUAGE plpgsgl IMMUTABLE REETUENS NULL CON NULL INPUT;

T
r

Figure 7. Search ORF Function.

BioTech 2022, 11, 31 12 of 25

To obtain the number of genomes that belong to a taxonomic group, we must first
know the particular taxonomic group’s identifier. Next, we must obtain all taxonomy
identifiers (taxonomy-id) included in the chosen taxonomic group.

Obtaining this type of information requires a process similar to searching tree data
structures. In relational DBMSs, we can perform this query by applying recursion, with the
“WITH” clause and the so-called Common Table Expressions (CTE).

Now that we can obtain the child nodes of a tree data structure, we may create
a function to facilitate the search process for the descendants of any node in the tree
(Figure 8).

- Name: getTaxonomyldChildren

- Input: integer - taxonomy_Id

- Qutput: numeric collection - taxonomy _Id

- Description: get taxonomy _Id children of a specific taxonomy _Id.

CEEATE OR REPLACE FUNCTION getTaxonomyldChildren (INTEGER)
EETUENE SETOF NUMEERIC AS
£5
WITH RECURSIVE path(id, parent id) As |
SELECT taxonomy id, father
FROM taxonomy t
WHERE taxonomy id = $1
UNION
SELECT t.taxonomy id, t.father
FROM taxonomy t, path as parentpath
WHERE t.father = parentpath.id)
SELECT id FROM path;
g5
LANGUAGE "=ql" IMMUTAELE;

Figure 8. Function: GetTaxonomylIdChildren.

In the case of PostgreSQL and its PLPGSQL language environment, we have to deal
with some incompatibility problems, as is the case with the output type of the stored
function in Figure 8 with the data types handled by a PLPGSQL function. In this way, we
had to implement a new auxiliary function. It works as a type cast converter to be reused
by other PLPGSQL functions (Figure 9).

- Name: getTaxonomyldChildrenSet

- Input: integer - taxonomy _Id

- Qutput: numeric collection - taxoenomy_Id

- Description: get taxonomy _ld children of a specific taxonomy _Id.

CREATE OFR REPLACE EFUNCTION getTaxonomyIdChildrenSet{INTEGER]
EETURNS SETCF NUMERIC AS
55
BEGIN
RETURN QUERY select * from gettaxonomyidchildren ($1);
END
55
LANGUAGE plpgsgl IMMUTABLE RETURNS NULL ON NULL INPUT;

Figure 9. Function: GetTaxonomyldChildrenSet.

BioTech 2022, 11, 31

13 of 25

3.3. Taxonomies

Next, we count the number of species belonging to this group with original genomic
sequences (of the compared proteins) in the Genomic Sequence entity. The result may be
obtained by comparing the genomic sequences’ taxonomy-id with the corresponding id for
the species belonging to the desired taxonomic group.

Reiterating the focus on ADTs to facilitate non-specialized end-users interested in
these searches, the query that returns the number of genomes belonging to a taxonomic
group can also be made available as a function (Figure 10).

- Name: getCountGenome Taxonomy

- Input: integer - taxonomy_Ild

- Qutput: bigint - amount of ghkid

- Description: get the amount of gbkid belonging to a specific taxonomy _ld.

CREATE OR REPLACE FUNCTION getCountGencmeTaxconcmy (INTEGER)
RETURNE BIGINT AS

55

SELECT count (*)

FROM (SELECT gs.gbkid

FROM gencmic segquence gs
WHERE gbkid likes 'AC %'
AND gs.taxonomy id IN

(SELECT * FROM gettaxonomyidchildrenset (51))
UNION
SELECT gs.gbkid
FROM genomic_sequence gs
WHERE gbkid likes 'NC %'
AND gs.taxonomy id IN
(SELECT * FROM gettaxonomyidchildrenset (51))
) as T
Cis
LANGUAGE "sgl" IMMUTAELE;

Figure 10. Function: GetCountGenomeTaxonomy.

Taking a closer look at the function that returns the number of genomes of a given
taxonomy, we realize that the query filters the genomic sequences (gbkid—genbank identifi-
cation). We may justify this filtering action because the genomes are represented by:

AC_: Prefix used for genomic molecules that reflect an alternative annotation or
assembly. Mainly used for prokaryotic and virus records.

NC_: Represents complete genomic molecules, including genomes, chromosomes,
organelles, and plasmids.

NG_: Incomplete genomic region, which supports the NCBI genome annotation
pipeline. It represents non-transcribed pseudogenes, or larger regions representing a
grouping of genes that are difficult to annotate using automatic methods.

NT_ and NW_: assemblies of intermediate BAC genomes and (or) complete genome.

NZ_: a collection of complete genome sequence data in a research project. Member-
ships are not tracked between releases. The first four characters that follow the underscore
(e.g., “ABCD’) identify the project.

NS_: Genome records representing an assembly that does not reflect the structure of a
concrete biological molecule.

Therefore, we are only interested in the practice with the genomic sequences with
particular identifiers, precisely, “AC_" and “NC_", as we see in Figure 10.

BioTech 2022, 11, 31

14 of 25

3.4. Proteins and Taxonomic Groups

Like the previous query discussed, we only have to count all proteins originating from
the genomes belonging to a given taxonomic group. However, we facilitate this process since
our biological design modelling (conceptual and logical) enables some exciting abstractions.

In our proposal, the conceptual scheme and, consequently, the relational scheme
derived from it, tries to be as faithful as possible to the concepts used in molecular biology
theory. However, to satisfy some practical needs, the scheme needed some adaptations. For
example, in theory, every protein originates from a genome. However, proteins are often
sequenced without knowing the source genome. In this way, the Protein object (table or
entity) has the taxonomy-id information as an attribute because, even though it does not
know the genome, the sequenced species are known.

Figure 11 shows the function that returns the number of proteins that belong to a
taxonomic group.

- Name: getCountProtein Taxonomy

- Input: integer - taxonomy_Id

- Output: bigint - amount of biold

- Description: get the amount of biold belonging to a specific taxonomy _Id.

CREATE OR REPLACE FUNCTION getCountProteinTaxonomy (INTEGER)
BEETURNS BIGINT AS
S5
SELECT COUNT (p.bicId)
FROM protein p
WHERE p.taxonomy id IN
(select * FROM gettaxonomyidchildrenset ($1)):

55
LANGUAGE "sgl" IMMUTABLE;

Figure 11. Function: GetCountProteinTaxonomy.

This type of information is beneficial for the analysis and discovery of new proteins.
The number of hits a protein obtains in the alignment process can be obtained by the
number of occurrences of this protein in the table called hit-pp. Note that an occurrence can
be either in query-id or subject-id. Besides, we should only consider hits that are below
a certain e-value function parameter. This procedure can be implemented as a relational
DBMS stored function (Figure 12).

With minor modifications we can obtain a broader range of information. If it is of
interest to the user, we could check the number of hits of a protein, taking into account
only ORFs (proteins and ORFs). In the first case, instead of searching the hit-pp table, we
would use the hit-op table and compare only the subject-id that represents the protein. In
the second case, we should add the search performed in both hit-pp and hit-op relations.

Another way to extend this query would be to use, as a filter criterion, not only the
e-value but also all the attributes resulting from the comparison process, existing in the hit
tables: SW score (Smith-Waterman score), the bit score, the percentage of identity), just to
mention a few.

3.5. Complex Queries and Functions

This group of queries involve more profound concepts and knowledge of molecular
biology. Taking into account the conceptual scheme of Figure 1, which was structured
exclusively based on the concepts of molecular biology, without mentioning technological
issues, we also facilitated the process of obtaining this type of information within our
logical schema.

BioTech 2022, 11, 31 15 of 25

- Name: getCountHitsProtein
- Input: numeric - taxonomy_Id
numeric - evalue
- Qutput: integer - amount of hits
- Description: gels the amount of hits in a profein given an e-value.

CREATE OE REFPLACE
FUNCTION getCountHitsProtein (NUMERIC, DOUBLE PRECISION)
RETURNS BIGINT AS

55
SELECT COUNT (*)
FROM |
SELECT hg.guery kiold
FROM hit pp hg
WHERE hg.guery bioId = 51 AND hg.e wvalue <= 52
UNION ALL
SELECT hg.subject bicId
FROM hit pp hqg
WHERE hg.subject bicId = $1 AND hg.e walue <= 52
) as t;
55

LANGUAGE "=gl" IMMUTAELE;
Figure 12. Function: GetCountHitsProtein.

The following are some examples of functions that represent slightly more complex
queries for obtaining biological information, such as discovering unique genes and homol-
ogous genes (orthologous and similar).

3.6. Unique Genes

Unique genes are genes found exclusively in certain groups of organisms. Different
groups of organisms have different genes that we have not found in other groups. The
discovery of unique genes is significant for investigating diseases and specific characteristics
of individuals. In the process of searching for unique genes, we must find proteins from
a complete proteome of a given species, which are not similar to any of the proteins of
another proteome of a different species. For example, we must identify proteins belonging
to complete proteomes of different species concerning this genus at the genus level, which
may be similar within the taxonomic group, but with no biological similarity with proteins
outside the corresponding genus.

Figure 13 illustrates, using operations from set theory, what the expected result should
be. A step by step procedure to achieve the desired goal is as follows:

1. Define the selected organism’s taxonomy-Id;

2. Search for the genomic sequences in the GenomicSequence object that belong to the
selected taxon. As a result, we will have a set of genomic sequences;

3. For each element of the set of genomic sequences we must find the set of related proteins;

4. Finally, among this set of proteins, we must select those that do not hit with proteins
from another group.

Once again, we can take advantage of the abstractions present in our conceptual
scheme and reflected in the relational scheme. As we have taxonomy-id in proteins, we can
directly search for proteins without consulting the genomic sequences beforehand, thus
avoiding step 2 above.

BioTech 2022, 11, 31

16 of 25

(Group 1 Group 2 Single Genes (G1’)

k Single Genes = no hits m hits /

Figure 13. Set Theory: Identifying unique genes.

First, we need to find the set of proteins related to the organism in question (group 1).
For this, we will use a function similar to getCountProteinTaxonomy. Instead of returning
the number of proteins related to a taxonomy-Id, the only difference is that the function
must return a list of the proteins with their respective identifiers. Figure 14 represents
this function.

- Name: getProteinTaxonomy

- Input: integer - taxonomy_Id

- Qutput: numeric collection - biold

- Description: gef the biold collection belonging to a specific faxonomy Id.

CREATE OFR REFLACE FUMNCTION getProteinTaxonomy (INTEGER)
EETURNE SETOF NUMERIC AS
55

SELECT (p.bioId)

FROM protein p

WHERE p.taxonomy id IN

(SELECT * from gettaxonomyidchildrenset($1));

55
LANGUAGE "sgl" IMMUTAELE;

Figure 14. Function: GetProteinTaxonomy:.

The next step is to find the set of proteins related to the other organism (group 2), using
the getProteinTaxonomy function and passing the taxonomy-Id of this other organism as
a parameter.

Then, we need to identify whether any proteins of the research organism (group 1) are
similar with the proteins of the other organisms (group 2), thus generating a third group
(group 3). For this, we must analyze the query-id and subject-id attributes of the protein
similarity table (hit-pp) to find occurrences of records involving the relationship between
these two groups. Figure 15 shows this function definition, responsible for this protein
similarity procedure.

Finally, we must verify which proteins did not align with any other protein in the
neighbouring group. For this, we need to eliminate from the set of proteins of the source
organism (group 1) the proteins that have similarity with the other organism (group 3). In
Figure 16 we give the PLPGSQL code for the function that represents the identification of
unique genes based on our biosequence text-type.

BioTech 2022, 11, 31 17 of 25

It must be noted that this GetSingleGene function, as well as those auxiliary ones, can
be extended using the desired e-value information, or some other hit-pp attribute, as an
input parameter, to restrict the search and obtain more accurate and precise results.

- Name: getSimilarProtein
- Input: integer - taxonomy _Id
integer - taxonomy_Id
- Output: humeric collection - biold
- Description: get the similar biold collection belonging to a specific taxonomy_Ild
compared with other organism.

CREATE OR REPLACE FUNCTION getSimilarProtein (INTEGER, INTEGER)
EETURNES SETOF NUMERIC AS
B8
DECLAERE
orgl ALIAS FOR S51;
org2 ALIAS FOR 52;
BEGIN
EETURN QUERY
(SELECT query_bioId
FROM hit pp
WHERE query bioId IN (
SELECT * FROM explode array (ARRAY (SELECT * FROM
getproteintaxonomy (orgl)))) AND
subject bioId IN (SELECT * FROM
explode_array (ARRAY (SELECT * FRCM
getproteintaxonomy (org2)))))
UNION
(SELECT subject bioId
FROM hit pp
WHERE query bioId IN (
SELECT * FROM explode array (ARRAY (SELECT * FROM
getproteintaxonomy (org2)))) AND
Subject_biDId IN (SELECT * FROM
explode array (ARRAY (SELECT * FROM
getproteintaxonomy (crgl)))));
END
55
ILANGUAGE plpgsgl IMMUTABLE RETURNS NULL ON NULL INPUT;

Figure 15. Function: GetSimilarProtein.

3.7. Orthologs and Paralogs
Homology is the biological study of the similarities between different organisms’
structures with the same ontogenetic and phylogenetic origin. Such structures may or may
not have the same biological function. All genes, in one way or another, can be considered
homologous. We can trace the evolutionary history of all organisms down to the common
ancestor of any living beings.
The homology of genes can be of two forms:
* Orthologs: genes found in different taxa that, when compared, are traceable to the
events that led to speciation;
* Paralogs: genes in the same or different taxa, related to occurrences of gene duplication.
Orthology and paralogy are key concepts in evolutionary genomics [9]. Figure 17
shows an example of homology.

BioTech 2022, 11, 31 18 of 25

- Name: getSingleGene

- Input: integer - taxonomy_Id

- Qutput: numeric collection - biold

- Description: gets single genes in a taxonomic group.

CREATE OR REPLACE FUNCTION getSingleGene (INTEGER, INTEGER)
BEETURNE SETOF NUMERIC AS
55
DECLARE
orgl ALIAS FOR 51;
org2 ALIAS FOR 52;
BEGIN
RETUEN QUERY
(SELECT getproteintaxonomy (orgl))
EXCEPT
(SELECT getsimilarprotein(ocrgl,org2)};
END

55
LANGUAGE plpgsgl IMMUTZBLE RETURMNS NULL CN NULL INPUT;

Figure 16. Function: GetSingleGene.

X | paralogous copies \Y¥

i A Rl L

¥ B ¥

\ orthologous copies of their ancestors _/

Figure 17. Homology Example.

o

Let it be a gene “x” that, from a gene duplication event, starts to present two copies,
“x” and “y”. These are called paralogs, copies of the same x gene. Assuming that, over time,
this population goes through a speciation event, the two copies will evolve independently
in the two species, accumulating unique substitutions and, thus, differentiating. Therefore,
the resulting copies x’, X" and y’, y” will be orthologous copies. All copies, either orthologs
or paralogs, are considered homologs, and they usually share a high degree of similarity
between their sequences.

In homology studies, the objective is to identify proteins from a complete proteome of
a given organism that are evolutionarily related to other proteins of different proteomes.
The identification of homologous genes follows the same logic as single genes. The goal
is to find those proteins with no similarity in single genes, unlike in homology studies
where searches for evolutionarily related proteins use biological similarity search as a
defining criterion.

BioTech 2022, 11, 31

19 of 25

The function that returns orthologous genes is similar to the getSimilarProtein function.
The difference is related to the type of returned information. In Figure 18 the function that
returns orthologous genes of a certain species, concerning the other species, is presented,
simply informing each species’ taxonomy-id.

We can also extend this function by adding input parameters to restrict the universe
of selected data, such as hit-pp parameters, and reduce the search to a subset of genes.
Likewise, we can enrich the output data with information about orthologous genes.

In paralogy, the objective is to identify proteins from a complete proteome of a given
organism that is similar to other proteins of the same proteome. In this case, the search
must start from the “root” of the taxonomic node, receiving the taxonomy-id in the same
way that we did for single genes. Again, for this taxonomy-id we must consider all genomic
sequences from the Genomic Sequence entity that corresponds to the origins of proteins
compared to the research project to obtain the proteins.

- Name: getOrthologousGene
- Input: integer - taxonomy _Id
integer - taxonomy_Id
- Output: numeric collection - biold
- Description: get the orthologous genes to a specific taxonomy_Id.

CREATE OR REPLACE FUNCTION getCrthologousGene (INTEGER, INTEGER)
RETUENS SETCOF NUMERIC AS
55
DECLARE
orgl ALIAS FOR 51;
org2 ALIAS FOR 52;
EBEGIN
BRETUEN QUERY
(SELECT subject bioId FRCM hit pp
WHERE gquery bioId IN (
SELECT * FROM explode array (ARRAY (SELECT * FROM
getproteintaxonomy (orgl)))) AND
subject_biold IN (SELECT * FRCM
explode array (ARRAY (SELECT * FRCOM
getproteintaxonomy (org2)))))
UNION
(SELECT subject bioId, query bioId FROM hit pp
WHERE gquery bioId IN (
SELECT * FROM explode array (ARRAY (SELECT * FROM
getproteintaxonomy (org2)))) AND
Subject_biold IN (SELECT * FRCOM
explode array (ARRAY (SELECT * FRCM
getproteintaxonomy (orgl)))}) :
END
55
LANGUAGE plpgsgl IMMUTAELE RETURNS NULL ON NULL INPUT;

Figure 18. Function: GetOrthologousGene.

Due to the abstraction present in our modelling, which presents the taxonomy-id
in proteins, we can obtain the set of proteins without having to go through the genomic
sequences. Finally, we must look in the hit-pp table for the existence of similarity between
the proteins in this proteome. Figure 19 shows the function for obtaining similar genes.

Similarly, as for orthologous genes, the function of parallel genes can be extended by
adding input parameters to restrict the universe of selected data, such as hit-pp parameters.

BioTech 2022, 11, 31

20 of 25

- Name: getParalogousGene

- Input: integer - taxonomy_Id

- Output: numeric collection - biold

- Description: get the paralogous genes to a specific taxonomy_Id.

CEREATE CF REPLACE FUNCTICN getParalogousGene (INTEZER])
RETURNS SETOF NUMERIC AS

55
DECLARE
org ALIAS FOR 51;
BEGIN
REETUEN QUERY
(SELECT subject bioId
FROM hit pp
WHEEE query_bioId IN (SELECT * FROM
explode array (ARRAY (SELECT * FROM
getprotelintaxonomy (org))))
AND
subject bioId IN (SELECT * FROM
explode array (ARRAY (SELECT * FROM
getproteintaxonomy (org)))))
END
55

LEANGUAGE plpgsgl IMMUTABELE RETURNS NULL ON NULL INEUT;

Figure 19. Function: GetParalogousGene.

4. Discussion

We may find in the literature a larger interest in conceptual models, rather than logical
or even physical models, for genomics and the related data. The authors in [10] suggest
the idea of a genome data model and propose a representation for biological sequences
based on arrays of sequence (strings) compositions, or even trees of partial sub-sequences.
It is a quite complex way to represent sequences with no proper functions. Many other
authors focus on the conceptual modeling issues, e.g., [11-13] that do not have a direct
correspondance with logical and implemented data representations.

The authors in [14] discuss if complex data structures and data types concerning the
biological domain are not well supported in most database systems. They mention the idea
of user-defined data types in relational database systems. However, the implementation of
sequences is based on BLOBs referred by generic tables. One of our previous works [15]
deals with conceptual modeling with a focus on UML constructs and next-prior types for
building complex data structures. Semantics were left exclusively for GeneOntology search.

The idea of a sequence-centric database schema is discussed in [16]. The authors
discuss an approach that focuses on implementing strings but with no associated semantics.
A similar strategy was adopted in [17], where the authors consider relational databases for
persisting short-reads. Even if they show good performances for experimental results, no
biological interpretation is present.

We may also cite a relatively old but still interesting research work [18] that wanted
to make some comparisons with the technology then available for relational and object-
oriented database systems. One of the main problems was related to table normalization
issues. They use a single column, called sequence, to store short-reads. No further details
are given concerning space limitations and string interpretation. More recently, the authors
in [19] discuss the relational database approach and SQL queries for genomic datasets. An
ad-hoc data format is considered, but the main goal refers to query distributed process-
ing. The authors even explain that their idea was to separate genomic information from
its underlying representation. Therefore, there is very little consideration on the actual
sequence implementation.

BioTech 2022, 11, 31

21 of 25

Considering that a relational database system is available, some index structures
for manipulating sequences have been proposed, especially the suffix tree [20,21]. Itis a
versatile and very efficient data structure built in linear time if it can be stored in main
memory [22]. The authors in [23] are mainly concerned with the evaluation of relational and
non-relational (NoSQL) implementations for genomic data. However, data representation
and semantic associations are neither presented nor discussed.

4.1. Experimental Results

Besides efficacy and expressiveness with our bio-string ADT, we have implemented
the related functions to study performance and space issues regarding our proposal. Even
if our main goal here is to advocate in favor of modeling very large biological sequences as
an adapted text (string) data type, it is crucial to evaluate the behavior in practice.

We have considered the following software and hardware configurations: a Linux
(Debian distribution) operating system and PostgreSQL DBMS version 11; a virtual machine
inside our Academic Laboratory internal cloud with four vCPUs i7-based and 32 GB RAM,
besides 4TB of non-redundant storage.

To carry out some experimental tests related to the stored functions proposed and devel-
oped in this paper, we had to deal with importing relevant data from different external sources:

¢ Comparison data (hits) from the genome comparison project in partnership with
World Community Grid [24];

* NCBI Taxonomy;

* Central Dogma information from the NCBI Reference Sequence (RefSeq);

* Annotations from the following sources:

— the domain (Pfam);
- enzymes (KEGG);
- ontologies (Gene Ontology).

We developed scripts in Perl language to help with the ETL procedure into the re-
lational database. After loading the data about proteins, genomic sequence, CDS, and
taxonomy, our hits were loaded, summing up into the relational physical storage space
about 360 GB (compressed data). These data are organized initially into over 900 files in
TAR (packaged) format. Each file is a list of 2000 files in *.tar.gz format.

For this case study, we considered only a subset of the similarity data. This subset
includes only similarity data whose e-value is less than or equal to 1.0 x 10~3. We used
this cut-off value because this is the assumed base similarity value between those proteins
in the Protein World Database (PWD) research project [24]. Using this filter, the amount of
data in the hit_pp table reduced from 900 GB to approximately 300 GB. Observe that data
that refers to ORFs and ontology annotations were not loaded. We have focused our search
domain on proteins and the set of annotations to domains and enzymes.

Next, Table 1 presents the physical space occupied by some of the most relevant
relations in our biological database.

Table 1. PWD relations.

Table Size
CDS 617 MB
Domain 936 KB
Domain Annotation 1.2 MB
Enzyme Annotation 9.1 MB
Gene 512 MB
Genomic Sequence 413 MB
Hit_pp 288 GB
Protein 1.3 MB

Taxonomy 60 MB

BioTech 2022, 11, 31

22 of 25

We can observe at Table 1 that, in terms of physical space occupied, the largest table is
Hit_pp, and then we have medium-sized relations like CDS, Gene, and Genomic_sequence.

4.2. Database Tuning

After loading the data, the implementation of some queries was started, as previously
presented. For this initial set of tests, the relational database contained indexes for query
optimization and processing and keys for referential integrity.

The use of indexes and keys (primary and foreign) are of great importance to help
improve query performance and referential integrity of data, respectively. For this and
other characteristics, many defend using DBMS to store and manage biological data since
there are already consolidated mechanisms for data storage and management. However,
the discussion ends up turning to the expressiveness of the existing types of data when
used for the biological domain.

It is worth highlighting the process carried out to create indexes on the hit_pp table.
Those queries involving similarity data always reference the identification attributes so, it
was pretty straightforward to suggest indexes for these attributes, in addition to the fact
of referencing the protein table. Another common tuning technique was the clustering of
the hit_pp table based on these indexes. Summarizing the actions taken to build this case
study testbed:

e database containing a subset of the hit_pp table;

* secondary indexes to speed up the performance on the hit_pp relation;

* hit_pp table clustered based on its indexes;

e all other tables only with primary keys (PK) indexes and unique constraints.

4.3. Data and Experiments

To carry out the tests, we used two organisms, both of the genus Xanthomonas (Taxon-
omy id: 338), which are (i) Xanthomonas axonopodis pv. citri str. 306 chromosome, complete
genome, with gbkid = NC_003919.1; taxonomy id = 190486; GI = 21240774; and Refseq Pro-
tein = 4427 and (ii) Xanthomonas campestris pv. campestris str. ATCC 33913, complete genome;
gbkid = NC_003902.1; Taxonomy id = 190485; GI = 21229478; and Refseq Protein = 4179.

First, the so-called basic queries were executed on our input data, as they are only
related to statistical data. Then we ran the complex queries. Table 2 presents a summary of
the results obtained.

Analyzing the results shown in Table 2, we can see that we have observed an excellent
performance. Even queries that reference the hit_pp table—about 300 GB—had satisfac-
tory results. Indeed, there are no issues concerning the actual execution involving the
implemented function based on our bio-string type. As we do for conventional relational
applications, simple tuning techniques are enough to speed up the running queries, even
the most complex ones.

Table 2. Experimental Results.

Query Results Time (ms)

Number of Compared Proteins 1,947,724 985.29
Proteins from Genomic Sequence 8,744,479 2359.13
Genomes belonging to a Taxonomic Group (id: 338) 22 19,888
Proteins belonging to a Taxonomic Group (id: 338) 42,923 39,116
Number of hits for Protein X cut-off e-value 1.0 x10~> 3 3637

Unique Genes (taxonomy ID: 190485 190486) 585 5761.09
Orthologs Genes (taxonomy ID: 190485 190486) 3806 5862.71

Paralogs Genes (taxonomy ID: 190486) 12,655 3450.37

BioTech 2022, 11, 31

23 of 25

5. Conclusions

We have proposed in this paper to explore the relational text type already present
in relational DBMS, and to model and implement extensive biological sequences. With
the help of a set of domain-oriented functions, we may manipulate and extract biological
information based on a given relational data schema. Available solutions either in the
literature or included in specific software (i) do not explicitly explain the way they deal
with sequences, (ii) do not make those extensions that add biological semantics to regular
text strings or included in specific software, (i) do not explicitly explain the way they deal
with sequences, and (ii) do not make those extensions that add biological semantics to
regular text strings.

We have also discussed a generic biological conceptual schema that helps reinforce
some biological concepts, regardless of specific research projects. We have shown that an
actual implementation of sequence-oriented functions on bio-strings type is feasible and
effective. The set of proposed rules and functions maps the intrinsic semantic information
from the very long character sequence representing biological concepts.

Our implementation also shows that it is quite feasible to deal with biological data
within a relational database system. The relational model is not a problem but, rather, the
lack of semantics in existing data structures and types.

Our next steps include the idea of exploring other possible Abstract Data Type for
the biological domain. We look forward to enabling this extension as a PostgreSQL DBMS
contrib publicly available. We invite the reader to check and evaluate our current implemen-
tation and PostgreSQL PLPGSQL code at https:/ /github.com/sergiolif /BioBD_SGBDBio,
accessed on 17 June 2022. For relational DBMSs other than PostgreSQL, those particular
SQL plus host language programming codes may be slightly different.

Author Contributions: C.T. original work was presented as his PhD thesis manuscript, with S.L. as
the advisor, A.B.d.M. and E.H.H. members of the PhD jury. S.L., A.B.d.M. and E.H.H. wrote most
part of the manuscript, S.L. finished the extended version. M.C., EM.d.A. and A.H. helped with the
revision of the text. A.-H. and S.G.M.P.M. focused on the implementation for the approach validation
tests. C.T. prepared all the included figures. All authors read and approved of the current version of
the manuscript.

Funding: S.L. and E.H.H. are partially funded by CAPES (Brazilian Ministry of Education) institu-
tional research grants and by CNPq (Brazilian Ministry of Science and Technology) R&D individual
scholarships. EM.d.A. is partially funded by INCA (Brazilian National Cancer Institute).

Data Availability Statement: https://github.com/sergiolif/BioBD_SGBDBio, accessed on 17 June 2022.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DNA deoxyribonucleic acid

DBMS database management system
RDBMS relational database management system
ADT abstract data types

BLOB binary large objects

A adenine

T thymine

C cytosine

G guanine

RNA ribonucleic acid

U uracil

ORF open reading frame

Met methionine

URF unidentified reading frame

CDS coding sequence

https://github.com/sergiolif/BioBD_SGBDBio
https://github.com/sergiolif/BioBD_SGBDBio

BioTech 2022, 11, 31 24 of 25

GC content guanine and cytosine content

RefSeq reference sequence database of NCBI

SW score Smith&Waterman score

KEGG Kyoto Encyclopedia of Genes and Genomes
Pfam Protein Family Database

GO Gene Ontology Resource

PLPGSQL Programming Language PostgreSQL

CPU Central Processing Unit

RAM Random Access Memory

B Terabytes

GB Gigabytes

NCBI National Center for Biotechnological Information
ETL Extract, Transform and Load

PWD Protein World Database

PK Primary Key

References

1. Altschul, S.; Gish, W.; Miller, W.; Myers, E.; Lipman, D. Basic Local Alignment Search Tool. . Mol. Biol. 1990, 215, 403-410.
[CrossRef]

2. Pearson, W. SSearch. Genomics 1991, 11, 635-650. [CrossRef]

3. Tristdo, C.; de Miranda, A.B.; Haeusler, E.H.; Lifschitz, S. Relational Text-Type for Biological Sequences. In Lecture Notes in
Computer Science, Proceedings of the Advances in Conceptual Modeling—ER 2020 CMLS Workshop, Vienna, Austria, 3-6 November 2020;
Springer: Cham, Switzerland, 2020; Volume 12584, pp. 102-112.

4. Smith, T.; Waterman, M. Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 195-197. [CrossRef]

5. O’Leary, N.A.; Wright, M.W.,; Brister,].R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.;
Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional
annotation. Nucleic Acids Res. 2016, 44, 733-745. [CrossRef] [PubMed]

6. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Res. 2017, 45, D353-D361. [CrossRef] [PubMed]

7. El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.; Salazar, G.A.; Smart, A.;
et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427-D432. [CrossRef] [PubMed]

8. Consortium, T.G.O. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330-D338.

9. Koonin, E.V. Orthologs, Paralogs, and Evolutionary Genomics 1. Annu. Rev. Genet. 2005, 39, 309-338. [CrossRef] [PubMed]

10. Chen, J.Y;; Carlis, J.V. Genomic data modeling. Inf. Syst. 2003, 28, 287-310. [CrossRef]

11. Paton, N.W.; Khan, S.A.; Hayes, A.; Moussouni, E; Brass, A.; Eilbeck, K.; Goble, C.A.; Hubbard, S.J.; Oliver, S.G. Conceptual
modelling of genomic information. Bioinformatics 2000, 16, 548-557. [CrossRef] [PubMed]

12. Bornberg-Bauer, E.; Paton, N.W. Conceptual data modelling for bioinformatics. Brief. Bioinform. 2002, 3, 166-180. [CrossRef]
[PubMed]

13. Bernasconi, A.; Ceri, S.; Campi, A.; Masseroli, M. Conceptual Modeling for Genomics: Building an Integrated Repository of Open
Data. In Lecture Notes in Computer Science, Proceedings of the Conceptual Modeling—36th International Conference, ER 2017, Valencia,
Spain, 6-9 November 2017; Springer: Cham, Switzerland, 2017; Volume 10650, pp. 325-339.

14. Rohm, U.; Blakeley,].A. Data Management for High-Throughput Genomics. In Proceedings of the CIDR 2009, Fourth Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, 4-7 January 2009. Available online: www.cidrdb.org
(accessed on 17 June 2022).

15. de Macédo,].A.E; Porto, F; Lifschitz, S.; Picouet, P. Dealing with Some Conceptual Data Model Requirements for Biological
Domains. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications (AINA
2007), Workshops Proceedings, Niagara Falls, ON, Canada, 21-23 May 2007; IEEE Computer Society: Washington, DC, USA,
2007; Volume 1, pp. 651-656.

16. Dorok, S.; BreB, S.; Teubner, J.; Lapple, H.; Saake, G.; Markl, V. Efficient Storage and Analysis of Genome Data in Databases. In
Proceedings of the Datenbanksysteme fiir Business, Technologie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs
“Datenbanken und Informationssysteme” (DBIS), Stuttgart, Germany, 6-10 March 2017; Volume P-265, pp. 423-442.

17. Wilton, R.; Wheelan, S.J.; Szalay, A.S.; Salzberg, S.L. The Terabase Search Engine: A large-scale relational database of short-read
sequences. Bioinformatics 2019, 35, 665-670. [CrossRef] [PubMed]

18. Shin, D. Comparative study of relational and object-oriented modelings of genomic data. In Proceedings of the 28th Annual
Hawaii International Conference on System Sciences (HICSS-28), Kihei, Maui, HI, USA, 3-6 January 1995; IEEE Computer Society:
Washington, DC, USA, 1995; pp. 81-90.

19. Kozanitis, C.; Patterson, D.A. GenAp: A distributed SQL interface for genomic data. BMC Bioinform. 2016, 17, 63. [CrossRef]

[PubMed]

http://doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/0888-7543(91)90071-L
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1093/nar/gkv1189
http://www.ncbi.nlm.nih.gov/pubmed/26553804
http://dx.doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662
http://dx.doi.org/10.1093/nar/gky995
http://www.ncbi.nlm.nih.gov/pubmed/30357350
http://dx.doi.org/10.1146/annurev.genet.39.073003.114725
http://www.ncbi.nlm.nih.gov/pubmed/16285863
http://dx.doi.org/10.1016/S0306-4379(02)00071-6
http://dx.doi.org/10.1093/bioinformatics/16.6.548
http://www.ncbi.nlm.nih.gov/pubmed/10980152
http://dx.doi.org/10.1093/bib/3.2.166
http://www.ncbi.nlm.nih.gov/pubmed/12139436
www.cidrdb.org
http://dx.doi.org/10.1093/bioinformatics/bty657
http://www.ncbi.nlm.nih.gov/pubmed/30052772
http://dx.doi.org/10.1186/s12859-016-0904-1
http://www.ncbi.nlm.nih.gov/pubmed/26846841

BioTech 2022, 11, 31 25 of 25

20.

21.

22.

23.

24.

Hunt, E.; Atkinson, M,; Irving, R. Database indexing for large DNA and protein sequence collections. VLDB J. 2002, 11, 256-271.
[CrossRef]

Hunt, E.; Atkinson, M.; Irving, R. A Database Index to Large Biological Sequences. In Proceedings of the International Conference
on Very Large Databases, Roma, Italy, 11-14 September 2001; pp. 139-148.

Cheung, C.F; Yu,].X,; Lu, H. Constructing Suffix Tree for Gigabyte Sequences with Megabyte Memory. IEEE Trans. Knowl. Data
Eng. 2005, 17, 90-105. [CrossRef]

Schulz, W.L.; Nelson, B.G.; Felker, D.K.; Durant, T.].S.; Torres, R. Evaluation of relational and NoSQL database architectures to
manage genomic annotations. J. Biomed. Inform. 2016, 64, 288-295. [CrossRef] [PubMed]

Otto, T.D.; Catanho, M.; Tristdo, C.; Bezerra, M.; Fernandes, R.M.,; Elias, G.S.; Scaglia, A.C.; Bovermann, B.; Berstis, V.; Lifschitz, S.;
et al. ProteinWorldDB: Querying radical pairwise alignments among protein sets from complete genomes. Bioinformatics 2010,
26, 705-707. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s007780200064
http://dx.doi.org/10.1109/TKDE.2005.3
http://dx.doi.org/10.1016/j.jbi.2016.10.015
http://www.ncbi.nlm.nih.gov/pubmed/27810480
http://dx.doi.org/10.1093/bioinformatics/btq011
http://www.ncbi.nlm.nih.gov/pubmed/20089515

	Background
	Methods
	Conceptual and Logical Modeling
	Cds, ORFs and Proteins
	Genes and Genomic Sequences
	ORFs, Proteins and Taxonomic Classification
	Biological Annotations
	A Logical Relational Model

	Results
	Bio-Strings in Action
	Basic Queries
	Taxonomies
	Proteins and Taxonomic Groups
	Complex Queries and Functions
	Unique Genes
	Orthologs and Paralogs

	Discussion
	Experimental Results
	Database Tuning
	Data and Experiments

	Conclusions
	References

