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Abstract: Gene-environment (G×E) interaction is critical for understanding the genetic basis of
complex disease beyond genetic and environment main effects. In addition to existing tools for
interaction studies, penalized variable selection emerges as a promising alternative for dissecting
G×E interactions. Despite the success, variable selection is limited in terms of accounting for multidi-
mensional measurements. Published variable selection methods cannot accommodate structured
sparsity in the framework of integrating multiomics data for disease outcomes. In this paper, we
have developed a novel variable selection method in order to integrate multi-omics measurements in
G×E interaction studies. Extensive studies have already revealed that analyzing omics data across
multi-platforms is not only sensible biologically, but also resulting in improved identification and
prediction performance. Our integrative model can efficiently pinpoint important regulators of gene
expressions through sparse dimensionality reduction, and link the disease outcomes to multiple
effects in the integrative G×E studies through accommodating a sparse bi-level structure. The
simulation studies show the integrative model leads to better identification of G×E interactions
and regulators than alternative methods. In two G×E lung cancer studies with high dimensional
multi-omics data, the integrative model leads to an improved prediction and findings with important
biological implications.

Keywords: Gene-environment (G×E) interactions; integrated analysis; multidimensional data; high-
dimensional variable selection

1. Introduction

Gene-environment interactions reveal how the changes in environmental exposures
mediate the contribution of genetic factors in order to influence the variations in disease
traits, which makes it critical in understanding the comprehensive genetic architecture of
complex diseases [1,2]. Traditionally, G×E interaction studies have mainly been conducted
within the framework of genetic association studies in order to hunt down the important
main and interaction effects that are associated with the disease phenotypes [3,4].

Most of the existing G×E studies are one-dimensional, in that the interactions between
environmental factors and one type of genetic factor (such as gene expression or SNPs)
have been considered. In the multi-omics era, there is a pressing need to account for multi-
platform measurements in G×E studies. Consider a G×E analysis with environmental
factors and gene expression (GE) as the G factors. In addition, DNA methylation (DM) and
copy number alterations (CNA), which are the regulators of the genetic factors, are also
available. A typical G×E analysis only focuses on the interaction effects that involve the
G factor (GE) and ignores its regulators, losing the extra power of elucidating the genetic
basis of complex disease while using multi-level omics data.

Integrating multi-omics data for prognostic outcomes has mainly been conducted
using parallel and horizontal integration strategies [5]. With the parallel integration, differ-
ent types of omics measurements are treated equally, and important associations between
these measurements and the prognostic outcome are identified in a joint model. On the
other hand, the hierarchical integration fully accounts for the regulatory information by
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accommodating the indirect effects of regulators, such as DM and CNA, on the prognostic
outcomes that are mediated through GEs. Meanwhile, the direct effects of regulators on
the cancer outcomes, which have not been captured by GEs through other mechanisms,
such as post-transcriptional regulations, should also been taken into consideration.

Given the availability of multi-omics features, the major limitation of existing G×E
interaction studies lies in the incapability of integrating regulators in the interaction model
under prognostic outcomes, which has motivated us to develop a two stage integrative
model for G×E interaction analysis while using multi-level cancer omics data. At the first
stage, the sparse regulatory relationship has been determined through penalization, where
the linear regulatory modelling [6], or LRM, has been adopted in order to identify the sets
of regulators that influence the sets of GEs, as well as the residuals of gene expression and
residuals of regulators that cannot be captured by the LRMs. At the second stage, the LRMs
and both types of residuals are treated as direct effects on cancer outcomes in the G×E
model, and penalization has been conducted in order to identify the important main and
interaction effects.

In the past decade, the effectiveness of regularization for G×E interaction studies
has been increasingly witnessed [7]. Extension of the technique for an integrated inter-
action study is not trivial. Our method significantly advances from existing integration
studies not tailored for interaction structures and interaction analysis ignoring the mul-
tidimensional omics measurements. Extensive simulation studies, have been performed
to demonstrate the advantage of the proposed method over multiple alternatives. Our
method leads to main and interaction effects with sensible biological implications and
improved prediction performance in two case studies of the lung cancer data (LUSC and
LUAD) from TCGA.

2. Method

Let Yn×1 denote cancer outcome, En×q = (E1, · · · , Eq) denote the q environmental
factors, Gn×pg = (G1, · · · , Gpg) denote the pg gene expressions, and Rn×pr = (R1, · · · , Rpr )
denote the pr regulators. Suppose that we have two measurements for the regulators, pr1

DM and pr2 CNA, then we can obtain Rn×pr by stacking the measurements together with
pr = pr1 + pr2 . Next, we describe the overall analysis framework and integrative model.

2.1. Analysis Framework

First, consider a G×E model in the multi-omics scenario, where the regulators of the
G factors are also included, in addition to the main and interaction effects.

Y =
q

∑
k=1

αkEk +
pg

∑
j=1

(
β jGj +

q

∑
k=1

ηjkGjEk

)
+

pr

∑
t=1

γtRt + ε, (1)

where αk, β j, and ηjk are the regression coefficients for the kth environmental factor, jth
gene expression and their interactions, respectively. Besides, γt is the regression coefficient
for the tth regulator and ε is the random error.

Model (1) shares the spirit of parallel integration by treating the genetic factor and
its regulators equally. Although such a strategy has shown to be effective in several
studies, a more attractive alternative is to conduct vertical integration via accounting for
the regulatory information among the different levels of omics measurements [5]. Typically,
integrating multi-omics data in a main effect model with prognostic outcomes consists
of two steps. At the first step, the sparse regulatory relationship can be identified, which
leads to gene expressions that are modulated and not modulated by regulators, which
can then be linked to clinical outcomes at the second step [6,8]. Specifically, Zhu et al. [6]
proposed the linear regulatory model (LRM) to pinpoint the set of regulators that affect the
corresponding set of GEs. Subsequently, the clinical model incorporates the GEs, residual
GEs, and residual regulators. In this study, we extend the LRM to investigate the G×E
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interactions in the presence of multi-level omics measurements. In particular, the prognostic
model at the second stage consists of : (1) a low dimensional environmental factors; (2)
regulated GEs in the form of LRMs from the first stage and their interactions with those
environmental factors; (3) Residual GEs and their interactions with environmental factors;
and, (4) the residual effects of regulators.

2.2. Stage 1: The Linear Regulatory Model (LRM)

Denote g = (g1, · · · , gpg) as the pg gene expressions and denote r = (r1, · · · , rpr ) as
the pr regulators. The LRM can be expressed as

E(gVpg×L|r) = a1×L + rUpr×L, (2)

where a is the intercept, V = (v1, · · · , vL) and U = (u1, · · · , uL) both contain L columns
of loading vectors (vl and ul for l ∈ {1, · · · , L}). Denote L as the total number of LRMs.
Here, we assume U and V have orthogonal columns, such that ul⊥ul> , vl⊥vl> , for l 6= l>.
With this assumption, no overlap between gene expressions and regulators exists in LRM.
We expect that different LRMs represent different regulated relationship between gene
expressions and regulators [9]. In addition, vl and ul are assumed as sparse loading vectors,
as only a small number of gene expressions is regulated by, at most, a small number of
regulators [10].

For the jth gene expression, j = 1, · · · , pg, we right multiply V> to both sides in order
to simplify Equation (2). Afterwards, the LRM can be formulated as a regression model
with response variable gj and predictors r:

E(gj) = a>j + rθj, for j = 1, · · · , pg, (3)

where a>j is an intercept and θj is the regression coefficient vector. Equation (3) indicates
that one gene expression is regulated by a number of regulators. We impose sparsity on
θj through penalization to identify a sparse regulatory relationship. Subsequently, the
penalized regression model can be written as

1
2n
∥∥gj − a>j − rθj

∥∥2
2 + λ|θj|, for j = 1, · · · , pg, (4)

where λ is the tuning parameter. The LASSO is adopted for its computational simplicity
and satisfactory performance [11]. Equation (4) leads to a regularized estimate of θj, which
indicates that one gene expression is regulated by a limited amount of regulators.

Next, we further investigate the relationship between sets of gene expressions and
regulators through singular value decomposition (SVD). The regression model (3) can be
collectively written as

E(g) = a> + rΘpr×pg (5)

where a> is the vector of the intercept, g1×pg = (g1, · · · , gpg), r1×pr = (r1, · · · , rpr ),
and Θpr×pg = (θ1, · · · , θpg) is the transition matrix. The SVD is performed on the transi-
tion matrix in order to separate the regression coefficients representing gene expression
and regulators:

Θ = UDV> = (u1, · · · , uL)D(v1, · · · , vL)
> (6)

where D = diag(d1, · · · , dL) is a diagonal matrix with L diagonal elements. The diagonal
matrix D can account for the dissimilarity among loading vectors in terms of different
scaling factors. Subsequently, we can obtain the estimated coefficients for gene expression
and regulators by decomposing the estimated transition matrix Θ̂. Under the sparse
condition, one gene expression is only regulated by a few of regulators, and one regulator
affects a few of gene expressions [10]. In order to impose sparsity, we adopt the sparse
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SVD method that was developed by Lee et al. (2010) [12], where sparse singular vectors
that correspond to the largest singular values are recursively obtained. Consider the first
largest singular value (d1, u1, v1), then the regularized sparse SVD can be expressed as

1
2n
∥∥Θ̂− d1u1v1

∥∥2
F + λ|d1u1|+ λ|d1v1| (7)

where ‖ · ‖F is the Frobenius norm. Tuning parameter λ is the same for u1 and v1 for
computation efficiency. Here d1 is treated as the scaling factor. After estimating (d1, u1, v1),
we update Θ̂ = Θ̂− d̂1û1v̂>1 and recursively update (dl , ul , vl), for l = 2, · · · , L in a similar
manner. With sparse SVD, we can decompose the coefficient and impose sparsity on pz
and px for every LRM. The standard LASSO is not applicable within the current LRM
formulation, since the shrinkage has been imposed on scaled singular vectors.

2.3. Stage 2: The Penalized G×E Interaction Model

Now, we integrate multiomics measurements for G×E interactions. The regulated GEs,
residual GEs, as well as residual regulators can be obtained through LRMs. The G factors are
represented by regulated GEs and residual GEs, which are involved in the interaction with
dimensional environmental factors. The partition of gene expressions into regulated and
non-regulated components proceeds, as follows. The L sets of regulated gene expressions
(GV) are equivalent to the corresponding sets of regulators (RU). We include the L sets of
regulated GEs (GV) in the G×E model , since gene expressions are more directly related to
cancer outcomes. The residual GEs, i.e., the non-regulated GEs that cannot be captured
by LRMs, is denoted as G̃n×pg . The G factors, consisting of both GV and G̃, interact
with q environmental factors. Denote Wj = (GjVj, GjVjE1, · · · , GjVjEq, G̃j, G̃jE1, · · · , G̃jEq),
(j = 1, · · · , pg). Subsequently, Wj corresponds to the interaction with respect to the jth
GE. We only consider the main effect of residual regulators, because the influences of
regulators on cancer outcomes are mostly mediated by gene expressions, and investigating
its interactions with environmental factors is not of interest.

The quantifications of the residuals G̃ and R̃ are conducted through perpendicular
projection operation. Because both can be calculated in the same manner, we take G̃ as an
example. For the jth gene expression, define Sj as the set of all LRMs that contains the j th
gene expression. If Sj is empty, then the jth gene expression is not regulated, which results
in G̃j = Gj. If Sj is not empty, we denote VSj as the sub-matrix of V that only contains
columns (LRMs) of the jth gene expression. Following the perpendicular projection opera-
tion, we calculate the residual as G̃j = (I − GVSj((GVSj)

>(GVSj))
−1(GVSj)

>)Gj, which is
the projection of Gj onto the orthogonal space of GVSj .

Consider n subjects, pg gene expressions, and L LRMs. Subsequently, all of the main
and interaction effects can be collectively written as

W = (GV, GVE1, · · · , GVEq, G̃, G̃E1, · · · , G̃Eq) = (X1, X2),

where X1 = (GV, GVE1, · · · , GVEq) denotes the main effects of regulated GEs and their
interactions with the environmental factors. Similarly, the effects that correspond to residual
GEs are defined as X2 = (G̃, G̃E1, · · · , G̃Eq). Subsequently, we consider the following
penalized regression models for G×E interactions:

1
2n

∥∥∥∥∥Y−
q

∑
k=1

αkEk −
L

∑
l=1

X1lb1l −
pg

∑
j=1

X2jb2j −
pr

∑
t=1

γtR̃t

∥∥∥∥∥
2

2

+
L

∑
l=1

P1

(
b1l ; λ1

)
+

pg

∑
j=1

P2

(
b2j; λ2

)
+

pr

∑
t=1

P3

(
γt; λ3

)
(8)

where X1l = (GVl , GVlE1, · · · , GVlEq), (l = 1, · · · , L) represents the lth LRM and its in-
teraction with q environmental factors, and X2j = (G̃j, G̃jE1, · · · , G̃jEq), (j = 1, · · · , pg)



BioTech 2021, 10, 3 5 of 19

denotes the main and interaction effects with respect to the jth residual GEs. Here, b1l and
b2j are the corresponding regression coefficients for X1l and X2j. γt is the coefficients for
R̃t (t = 1, · · · , pr), the residual of regulators. Pi(·; λi), (i = 1, 2, 3), is the penalty function
with λi as the tuning parameter to impose sparsity. The three tuning parameters are set as
the same because regression coefficients from the three components are on a similar scale,
and different tunings dramatically increase the computational cost. Regularized identifica-
tion in G×E interaction studies demands tailored penalty functions [7]. For instance, b1l
stands for all the main and interaction effects with respect to the lth LRM. The selection of
b1l on the group levels determines whether the lth LRM has any effect at all. If so, then
selection of the individual effects within the group further determines the main and/or
interactions that are associated with the cancer outcome. Therefore, penalized selection
should accommodate the bi-level (or sparse group) structure. To be consistent with the
analysis in stage 1, we still adopt LASSO as the baseline penalty function. Specifically,
we have

P1(b1l ; λ1) = λ1
∥∥b1l

∥∥
2 + λ1

q+1

∑
k=1

∣∣b1lk
∣∣, P2(b2j; λ2) = λ2

∥∥b2j
∥∥

2 + λ2

q+1

∑
k=1

∣∣b2jk
∣∣,

where P1(b1l ; λ1) and P2(b2j; λ2) are sparse group LASSO. The L1 norm and L2 norm (‖ · ‖2)
result in penalized identification on the individual and group level, respectively. The sparse
group regularization has been adopted for the bi-level selection of main and interaction
effects on the individual and group level simultaneously. Its advantage over LASSO in
G×E studies has been demonstrated in multiple studies [7]. A corresponding price paid is
computational cost, as different bi-level regularization usually demands different tunings.
Because we only consider the main effect of residuals of regulators, the L1 norm penalty is
adopted for γt (t = 1, · · · , pr). Because the number of environmental factors is usually low,
the selection of them is not of interest. They are pre-determined with evidence of being
associated with cancer from previous studies. The proposed regularization respects a weak
hierarchy between main and interaction effects as the penalty has not been imposed on the
environmental main effects. Accordingly, once an interaction effect is selected, at least one
of the two corresponding main effects will be in the model.

2.4. Computation

The Equation (8) can be expressed as:

1
2n
∥∥Y− Eα− X1b1 − X2b2 − R̃γ

∥∥2
2 + P1(b1; λ1) + P2(b2; λ2) + P3(γ; λ3) (9)

where αq×1 = (α1, · · · , αq)> is the coefficient vector for q environmental factors, b1L(q+1)×1
=

(b11 , · · · , b1L)
> and b2pg(q+1)×1

= (b21 , · · · , b2pg
)> are the coefficient vectors for the main

and interaction effects of the regulated and residual GEs, respectively. In addition, γpr×1 =
(γ1, · · · , γpr )> is the coefficient vector for residual regulators.

The integrative analysis consists of two steps. In the first step, the loading matrices
U and V are estimated through the construction of LRMs. The jth column of Θ̂, which is
denoted as θ̂j, (j = 1, · · · , pg), is estimated by minimizing Equation (4). For l = 1, · · · , L,
the singular vectors that correspond to the largest singular values, (ûl , v̂l , d̂l), are conducted
through the rank-1 sparse SVD on Θ̂. The rank-1 sparse SVD is recursively performed for
l = 1, · · · , L, by updating Θ̂(l+1) = Θ̂(l)− ûl d̂l v̂>l at each l. In the second step, the shrinkage
estimate of the regression coefficients can be obtained in the G×E model, where GV,
RU, residuals of gene expressions (G̃), and residuals of regulators (R̃) are calculated
accordingly. At the kth iteration, the vector of estimated regression coefficients for all
of the environmental factors is computed by α̂(k+1) = (E(k)>E(k))−1E(k)>(Y − X1b̂(k)1 −
X2b̂(k)2 − R̃γ̂(k)). Given α̂(k+1) fixed at the current estimate, we obtain (b̂(k+1)

1 , b̂(k+1)
2 , γ̂(k+1))
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by minimizing Equation (9). The iteration stops until convergence. Algorithm 1 shows
the outline of algorithm:

Algorithm 1 The Integrative analysis for G×E Interaction

Step 1: Estimate the loading matrices of LRMs U and V: construct LRMs.

(a) For j = 1, · · · , pg, obtain θ̂j by minimizing Equation (4). Then the estimate Θ̂ =

(θ̂1, · · · , θ̂pg).

Initialize l = 1.

for l = 1, · · · , L do

(b) Apply rank-1 sparse SVD on Θ̂ to obtain the singular vectors corresponding to
largest singular values (ul , vl , dl).

(c) Update Θ̂(l+1) = Θ̂(l) − uldlv>l .

(d) l = l + 1.

end for

Step 2: Estimate regression coefficients α, b1, b2, γ: construct the penalized G×E interac-
tion model.

(a) Calculate GV, RU, G̃ and R̃.

Initialize b̂(0)1 = b̂(0)2 = γ̂(0) = 0.

At the (k + 1)th iteration.

repeat

(b) Compute α̂(k+1) = (E(k)>E(k))−1E(k)>(Y− X1b̂(k)1 − X2b̂(k)2 − R̃γ̂(k)).

(c) Obtain (b̂(k+1)
1 , b̂(k+1)

2 , γ̂(k+1)) by minimizing Equation (9) through bi-level selection.

until convergence

LASSO is adopted in order to conduct the selection of important LRMs from the first
stage. At the second stage, a sparse group LASSO has been formulated to accommodate
the identification of main and interaction effects on both the group and individual level.
We conjecture that other penalization methods, such as adaptive LASSO [13], SCAD [14],
and MCP [15], are also applicable in our framework. For example, MCP can be adopted
in order to identify sparse regulatory relationship from the first stage, and a sparse group
MCP is also tailored for the identification of important G×E interactions in the clinical
model. We do not compare the performances of different baseline penalization methods
within our framework, as it is not the main interest here.

At the first step, we only use one tuning parameter λ for conducting sparse SVD, due
to the similarity in scales between GE and its regulators. The three tuning parameters,
λ1, λ2, λ3, have been used in the second step, where λ1 and λ2 determine the sparsity
of main and interaction effects with respect to the regulated and unregulated GEs corre-
spondingly, and λ3 controls the sparsity of the residuals from regulators. We choose the
optimal tuning parameters using five-fold cross-validation in both the simulation study
and real data analysis. The analysis has been implemented with statistical software R
(version 3.6.3). In simulation, the average CPU time of running one replicated simulated
data (n = 500, pg = pr = 200, q = 4) is 23.1 min. on a regular desktop PC. The R codes
are available from the corresponding author.
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3. Simulation

We perform simulation in order to evaluate the utility of the proposed method in-
tegrative G×E model, termed IGE. In addition, we consider three alternative methods:
(1) the S-LASSO selects gene expressions and regulators separately using LASSO. (2) The
J-LASSO selects gene expressions and regulators that are based on LASSO simultaneously.
(3) ColReg, the collaborative regression [16], identifies important GEs and regulators jointly
in terms of explaining similar variation under the cancer outcome.

We generate the data, as follows. First, each row of R is independently generated from
a multivariate normal distribution with mean zero and one of the four covariance structures:
(i) AR–1 structure with correlation coefficient 0.25|i−j| for the ith and jth regulators; (ii)
banded correlation structure, where the ith and jth regulators have ρ = 0.33 if |i− j| = 1
and ρ = 0 otherwise; (iii) the covariance that was extracted from TCGA lung squamous
cell carcinoma (LUSC) data in Section 4; and, (iv) the covariance structure of the lung
adenocarcinoma (LUAD) from Section 4.

Choose L = 20 for the number of LRMs between gene expression and regulators.
For l = 1, · · · , 20, ul or vl is randomly assigned five non-zero entries, with values being
generated from unif [2, 4]. Subsequently, Θ is computed as ∑20

l=1 ulv>l and G is generated
as G = RΘ + ε, where each row of matrix ε is independently generated from a multivariate
normal distribution with mean zero and the same covariance structure as R. To generate
the cancer outcome, each row of E is generated independently from a multivariate normal
distribution with marginal mean zero and AR-1 structure, where the ith and jth components
have correlation coefficient 0.5|i−j|. Subsequently, we generate the response from model (1)
under standard normal errors.

200 gene expression, 200 regulators, and four environmental factors are simulated
with two different sample sizes, 500 and 1000. We randomly select 30 gene expressions
to assign non-zeros effects in model (1). For every selected gene expression, four non-zero
entries are randomly assigned to the coefficients of G factor or its corresponding G×E
interactions. Those values are generated from unif [0.25, 0.5] and unif [0.5, 1] for weak
and strong coefficient signals, respectively. The coefficients of regulators are randomly
assigned with 30 non-zero coefficients being generated from unif [1, 2]. The coefficients of
environmental factors are generated from unif [2, 3].

For a comprehensive evaluation, we consider a sequence of tuning parameter values
(from 0 to 3, total 100 lambda values) and then use the receiver operating characteristic
(ROC) curve and partial area under the ROC curve (PAUC) to compare the different
methods. The total simulation replication is 100. All of the PAUCs are tabulated in
Tables 1 and 2. Figures 1 and 2 show the ROC curves for the AR-1 structure and estimated
covariance from LUSC. Appendix A provides other scenarios of ROC curves, respectively.

We consider using the receiver operating characteristic (ROC) curve and the partial
area under the ROC curve (PAUC) to compare different methods. Total simulation repli-
cates is 100. Tables 1 and 2 tabulate all of the PAUCs. Figures 1 and 2 show the ROC curves
for AR-1 structure and estimated covariance from LUSC. Appendix A provides the ROC
curves in other scenarios. For all simulation scenarios, the proposed method has higher
PAUCs than the alternative methods. For example, in Table 1 with AR-1 correlation and
weak signal, the proposed method has PAUC 0.73 (sd 0.07) for the identification of G and
G×E effects, while J-LASSO, S-LASSO, and ColReg have PAUCs 0.54 (sd 0.04), 0.47 (sd
0.04), and 0.39 (sd 0.03), respectively. For the identification of regulators, the proposed
method has PAUC 0.76 (sd 0.10), while J-LASSO, S-LASSO, and ColReg have PAUCs 0.32
(sd 0.05), 0.46 (sd 0.13), and 0.45 (sd 0.15), respectively. The similar pattern can be observed
under settings with strong signals. When the sample size increases, the identification re-
sults of all methods become better. The proposed IGE outperforms alternative approaches
across different scenarios. For instance, in Table 2 with AR-1 correlation and strong signal,
the proposed method has PAUC 0.89 (sd 0.02) in the identification of G and G×E, while
J-LASSO, S-LASSO, and ColReg have PAUCs 0.62 (sd 0.04), 0.57 (sd 0.04), and 0.50 (sd
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0.03), correspondingly. For the identification of regulators, the proposed method also
outperforms the alternatives.

(a) n = 500, weak signal (b) n = 1000, weak signal

(c) n = 500, strong signal (d) n = 1000, strong signal

Figure 1. Four cases of receiver operating characteristic (ROC) curves under AR-1 structure. The left panel corresponds to
comparison under both weak and strong signals for 500 subjects. The right panel corresponds to comparison under both
weak and strong signals for 1000 subjects. IGE, solid red; S-LASSO, dashed blue; J-LASSO, long dashed purple; ColReg,
long dashed green.

(a) n = 500, weak signal (b) n = 1000, weak signal

(c) n = 500, strong signal (d) n = 1000, strong signal

Figure 2. Four cases of ROC curves under estimated covariance from lung squamous cell carcinoma (LUSC). The left panel
corresponds to comparison under both weak and strong signals for 500 subjects. The right panel corresponds to comparison
under both weak and strong signals for 1000 subjects. IGE, solid red; S-LASSO, dashed blue; J-LASSO, long dashed purple;
ColReg, long dashed green.
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Table 1. PAUC: mean (sd) based on 100 replicates. pg = pr = 200, n = 500.

Covariance Signal Approaches G and G×E Regulators

AR-1 weak IGE 0.73 (0.07) 0.76 (0.10)
S-LASSO 0.47 (0.04) 0.46 (0.13)
J-LASSO 0.54 (0.04) 0.32 (0.05)
ColReg 0.39 (0.03) 0.45 (0.15)

strong IGE 0.77 (0.07) 0.85 (0.06)
S-LASSO 0.52 (0.05) 0.48 (0.14)
J-LASSO 0.55 (0.04) 0.33 (0.05)
ColReg 0.39 (0.03) 0.46 (0.15)

Banded weak IGE 0.74 (0.06) 0.74 (0.10)
S-LASSO 0.48 (0.03) 0.44 (0.11)
J-LASSO 0.54 (0.05) 0.32 (0.04)
ColReg 0.39 (0.03) 0.43 (0.12)

strong IGE 0.77 (0.08) 0.84 (0.06)
S-LASSO 0.52 (0.04) 0.46 (0.11)
J-LASSO 0.55 (0.05) 0.32 (0.04)
ColReg 0.39 (0.03) 0.43 (0.12)

LUSC weak IGE 0.59 (0.09) 0.55 (0.15)
S-LASSO 0.39 (0.04) 0.21 (0.06)
J-LASSO 0.42 (0.05) 0.19 (0.06)
ColReg 0.28 (0.04) 0.21 (0.07)

strong IGE 0.63 (0.10) 0.71 (0.13)
S-LASSO 0.42 (0.05) 0.22 (0.07)
J-LASSO 0.43 (0.05) 0.19 (0.06)
ColReg 0.28(0.05) 0.22 (0.07)

LUAD weak IGE 0.64 (0.09) 0.62 (0.15)
S-LASSO 0.45 (0.04) 0.21 (0.06)
J-LASSO 0.47 (0.05) 0.19 (0.05)
ColReg 0.32 (0.03) 0.22 (0.07)

strong IGE 0.70 (0.08) 0.77 (0.11)
S-LASSO 0.47 (0.05) 0.23 (0.08)
J-LASSO 0.48 (0.05) 0.18 (0.05)
ColReg 0.31 (0.04) 0.23 (0.08)

In addition, the proposed method outperforms the alternatives when the correlation is
extracted from real data. For example, in Table 1, with estimated covariance from LUSC and
weak signals, the proposed method has close PAUCs in both G and G×E and regulators,
0.59 (sd 0.09) and 0.55 (sd 0.15). Other methods have low accuracy in identifying main
and interaction effects. In particular, J-LASSO, S-LASSO, and ColReg have PAUCs 0.42
(sd 0.05) and 0.19 (sd 0.06), 0.39 (sd 0.04) and 0.21 (sd 0.06), and 0.28 (sd 0.04) and 0.21
(sd 0.07), respectively. When magnitude of the signals and sample size increase (e.g.,
with LUSC and strong signals), the proposed method still have the best performance in
identification. Overall, the IGE model has much higher identification accuracy than other
methods across different simulation settings by borrowing strength from accounting for
regulatory relationship and bi-level selection in G×E interaction studies.
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Table 2. PAUC: mean (sd) based on 100 replicates. pg = pr = 200, n = 1000.

Covariance Signal Approaches G and G×E Regulators

AR-1 weak IGE 0.89 (0.02) 0.91 (0.02)
S-LASSO 0.57 (0.04) 0.73 (0.09)
J-LASSO 0.62 (0.04) 0.40 (0.04)
ColReg 0.50 (0.03) 0.71 (0.09)

strong IGE 0.91 (0.02) 0.93 (0.02)
S-LASSO 0.61 (0.04) 0.71 (0.08)
J-LASSO 0.64 (0.05) 0.43 (0.04)
ColReg 0.52 (0.03) 0.70 (0.09)

Banded weak IGE 0.89 (0.03) 0.91 (0.03)
S-LASSO 0.55 (0.04) 0.73 (0.07)
J-LASSO 0.62 (0.04) 0.40 (0.05)
ColReg 0.50 (0.03) 0.71 (0.08)

strong IGE 0.90 (0.04) 0.92 (0.02)
S-LASSO 0.61 (0.04) 0.72 (0.08)
J-LASSO 0.64 (0.04) 0.44 (0.06)
ColReg 0.53 (0.04) 0.70 (0.08)

LUSC weak IGE 0.82 (0.04) 0.78 (0.06)
S-LASSO 0.51 (0.05) 0.36 (0.07)
J-LASSO 0.56 (0.05) 0.25 (0.07)
ColReg 0.39 (0.04) 0.35 (0.08)

strong IGE 0.83 (0.04) 0.82 (0.06)
S-LASSO 0.57 (0.05) 0.39 (0.07)
J-LASSO 0.58 (0.05) 0.25 (0.08)
ColReg 0.42 (0.04) 0.38 (0.07)

LUAD weak IGE 0.83 (0.04) 0.80 (0.06)
S-LASSO 0.57 (0.04) 0.43 (0.06)
J-LASSO 0.59 (0.04) 0.25 (0.06)
ColReg 0.47 (0.03) 0.43 (0.06)

strong IGE 0.85 (0.03) 0.84 (0.04)
S-LASSO 0.61 (0.04) 0.46 (0.07)
J-LASSO 0.61 (0.04) 0.26 (0.06)
ColReg 0.49 (0.03) 0.46 (0.07)

4. Analysis of TCGA Data

Lung cancer is a top rank common cancer for both men and women. In this section,
we apply the proposed method as well as the alternatives on lung adenocarcinoma (LUAD)
data and lung squamous cell carcinoma (LUSC) data from the Cancer Genome Atlas
(TCGA, https://cancergenome.nih.gov/).

At present, LUAD is the most common lung cancer subtype among non-smokers and
women, although it has been shown that smoking may increase the risk of LUAD [17,18].
On the other hand, LUSC is closely associated with smoking, and it is more common in
men than in women [19]. LUAD grows more slowly with smaller masses than LUSC of the
same stage, but LUAD tends to initiate metastasis at the early stages [20].

The processed level 3 data have been downloaded from TCGA data portal while using
package cgdsr. We match the multi-omics measurements with the clinical/environmental
variables and survival outcome. LUSC and LUAD has 344 and 426 subjects, correspond-
ingly. We first conduct screenings to reduce dimensionality, so the regularization methods
can be appropriately applied. Here, we select the top 200 mRNA with the largest marginal
variances. As we matched the CNA and Methylation profiles with same mRNA, the cor-
responding 200 measurements on CNA and Methylation are selected at the same time.
We select age, gender, smoking pack years, and pathologic tumor stage as environmental
variables. The accelerated failure time (AFT) model (Appendix B) has been adopted in
order to link the omics and clinical measurements to survival outcomes.

https://cancergenome.nih.gov/
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4.1. Lung Adenocarcinoma (LUAD) Data

The proposed method identifies eight LRMs with one residual effect of gene expression
(mRNA) and 14 residual effects of regulators (DM and CNA). Additionally, the proposed
method results in the identification of seven LRM×E interactions and 11 G×E interactions
from mRNA residual effects.

Table 3 provides the identified main effects of LRMs, residual GEs, and regulators. We
can observe that LRMs does not contain effects from methylation, while most of the residual
effects in regulators are from methylation.The identification results have important bio-
logical implications. As a representative example, gene PIK3R2 is identified by 6 different
LRMs. From a recent study [21], PIK3R2 is significantly associated with lung adenocarci-
noma and its pathway plays a critical role in the progress of LUAD. Besides, gene STK3 is
identified by five different LRMs. STK3 belongs to a large family of serine/threonine ki-
nases, which are implicated in the regulation of signaling pathways involved in cell growth,
differentiation and death. [22,23]. The identified LRMs are also meaningful. For example,
we observe the regulatory relationship between PIK3R2 and NEK2 from both LRM #1 and
#6. One of the recent studies shows that this natural downstream regulation is significantly
related to cancer outcome [24]. Among all of the residual effects, we observe that most of
them are from methylation. For example, SLC2A1, ECT2, TNS4, DKK1, and GNPNAT1 are
found to be associated with the survival of lung cancer patients [25–29].

Table 3. Analysis of the the Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD) data: linear
regulatory models (LRMs) and residual effects for gene expression and regulators with the estimated
coefficient or loadings in the parentheses.

LRMs

#1 (0.07) #2 (−0.01) #3 (−0.02) #4 (−0.03)

mRNA PIK3R2 (0.35) PIK3R2 (0.98) ECT2 (−0.98) INTS7 (−0.77)
STK3 (−0.74) STK3 (0.11) PSMD2 (−0.17) PIK3R2 (−0.62)

NCKAP5L (0.74) NCKAP5L (−0.08)
CUL9 (0.14)

CNA NEK2(−0.22) CECR1 (0.65) KPNA4 (−0.44) INTS7 (−0.70)
LPGAT1 (0.22) C1QTNF6 (−0.75) B3GALNT1 (0.43) DTL (0.70)
INTS7 (0.65) PSMD2 (−0.55)
DTL (−0.65) LIPH (0.55)

CECR1 (−0.19)

#5 (−0.05) #6 (0.08) #7 (−0.06) #8 (0.06)

mRNA PIK3R2 (0.12) INTS7 (0.73) PIK3R2 (−0.10) PSMD2 (0.31)
STK3 (−0.78) PIK3R2 (0.63) STK3 (−0.24) TMOD 3(0.61)

NCKAP5L (0.57) STK3 (0.18) CUL9 (−0.96) DIAPH3 (0.72)
CUL9 (0.16) NCKAP5L (−0.14)

CNA INTS7 (−0.16) NEK2 (−0.69) INTS7 (−0.34) MAPRE3 (0.70)
DTL (0.16) LPGAT1 (0.71) DTL (0.36) IFT172 (−0.67)

CECR1 (−0.78) CECR1 (0.61) PSMD2 (0.09)
C1QTNF6 (−0.57) C1QTNF6 (−0.61) ITGB1 (0.09)

ADAM10 (0.14)

Residual effects

mRNA MAST3 (0.01)
DM ADSS (0.01) SLC2A1 (0.01) PTCH2 (0.01) ECT2 (0.09)

TNS4 (0.02) MUSTN1 (0.05) DKK1 (0.02) FSCN1 (0.05)
GNPNAT1 (0.04) HPS1 (−0.04) MAPRE3 (−0.02)

CNA LAMC2 (−0.01) CD5 (−0.03) E2F7 (−0.01)

Table 4 provides the identification results for interaction effects. The proposed method
selects variables with a sparse group nature. There are five LRMs interacting with en-
vironments. The first and fourth LRMs interact with two environment factors, and the
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second, third, and fifth interact with one environment factor. Additionally, the proposed
method can identify a total of 11 interactions involving mRNA residual effects. Note that,
here, the G factor is no longer in the usual sense from existing G×E studies. The G factor
are represented by the LRMs and residual mRNAs that correspond to the regulated and
un-regulated G factors, respectively.

Table 4. Analysis of the TCGA LUAD data: G×E interaction identifications from LRMs and gene
expression with the estimated regression coefficients in the parentheses.

LRMs AGE GENDER SMOKING

#1 0.08 −0.25
#2 0.02
#3 0.01
#4 0.01 0.01
#5 0.01

mRNA Residual AGE GENDER SMOKING

MAST3 0.27
HPS1 0.01
BBS5 −0.04 −0.03
TLE1 −0.01

ADAM10 0.02 0.03
SLC16A3 0.07
BTN2A2 −0.02 −0.06
FAM71E1 0.02

In terms of prediction, we adopt a random sampling approach. More specifically, we
randomly select 30% data as a test set and the remaining as a training set. The estimates are
generated using the training set only and the predictions are made based on the testing set.
We dichotomize the predicted response at the median, create two risk groups, and compute
log-rank statistics, which measure the difference in survival between the two groups.
Larger log-rank test statistic indicates better predictive performance. The procedure is
repeated 100 times to avoid extreme splits. The average log-rank test statistics are 5.97
(IGE, sd 0.35), 4.76 (S-LASSO, sd 0.25), 4.60 (J-LASSO, sd 0.08), and 3.74 (ColReg, sd
0.26), respectively. The proposed method has the largest log-rank statistic, hence the best
prediction performance.

4.2. Lung Squamous Cell Carcinoma (LUSC) Data

The proposed method identifies eight LRMs with two residual effects from GEs and
17 residual effects from regulators (DM and CNA). The interactions involve seven LRMs
and 26 mRNAs.

Table 5 provides the identified main effects using the proposed method. As afore-
mentioned, we aim to find a sparse relationship between gene expressions and regulators.
Therefore, a small subset of regulators are related to genes and vice versa. Table 6 provides
the identifications of G×E interaction effects. There’s one LRM not interacting with any
other environmental factors. The findings have important implications. For instance, gene
RNF24 is identified by 2 different LRMs (#1, #2). RNF24 is a membrane protein, which
interacts with TRPC protein [30]. A recent study shows that RNF24 acts as one of the
important factors for the prognosis of carcinoma [31]. RNF24 is also shown to be correlated
with the occurrence of esophageal adenocarcinoma [32]. For DM, RGP1 is identified by
three different LRMs (#4, #6, #7). RGP1 belongs to the regulation of guanosine diphosphate
(GDP) reaction exchange, and it acts as a prognostic factor in cancer, according to Anand
(2020) [33]. For CNA, CD163L1 is identified by three different LRMs (#1, #4, #8), and it can
be used as a significant biomarker of cancer [34]. The identified LRMs are also meaningful.
For example, the regulatory relationship between NCOR2 and TCTN2 can be identified
in LRM #7. This result has also been observed in a regulatory network analysis [35].
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Among all of the residual effects, LRAT, PLEKHA6, ACOT7, KLK6, PLEKHB1, FGFRL1,
and FPR2 are associated with prognosis of LUSC patients from existing studies [36–41].

Table 5. Analysis of the TCGA LUSC data: LRMs and residual effects for gene expression and
regulators with the estimated coefficient or loadings in the parentheses.

LRMs

#1 (−0.01) #2 (0.01) #3 (0.01) #4 (−0.02)

mRNA RNF24 (−0.17) SEC23B (0.23) REEP3 (−0.76) AP2A2 (−0.59)
ESM1 (−0.53) RNF24 (−0.97) FUT11 (−0.64) PNPLA6 (−0.37)

RASAL2 (−0.39) RFX1 (−0.55)
LAMC1 (−0.34) XRN2 (0.45)
DLGAP4 (−0.63)

DM DCBLD1 (0.09) TCF7L2 (0.22) RGP1 (−0.52)
CHI3L1 (0.18) NCOR2 (0.27)

CNA CD163L1 (−0.16) ENTPD6 (0.68) RERE (−0.89) CD163L1 (0.70)
DLGAP4 (−0.96) ABHD12 (−0.69) DLGAP4 (−0.43) PARD6G (−0.39)

#5 (0.16) #6 (0.05) #7 (−0.05) #8 (0.01)

mRNA COL5A3 (0.45) MGST3 (0.33) TPM4 (0.68) TCTN2 (−0.45)
DCBLD1 (0.57) OSBPL5 (0.31) UBB (0.59) ANGPT2 (−0.40)
PDGFA (0.31) SNX9 (0.56) NCOR2 (−0.42) UBE4B (−0.37)
CHST15 (0.45) MYO1C (0.46) MBTPS1 (−0.47)
LGALS1 (0.39) CCDC68 (0.49) FAM178B (−0.50)

DM DCBLD1 (−0.86) CHST15 (−0.97) RGP1 (−0.55) NCOR2 (0.16)
FAM178B (−0.37) RGP1 (0.13)
CHST15 (−0.17) NCOR2 (−0.10)

LGALS1 (−0.15)
CNA DLGAP4 (0.27) STK40 (−0.26) CD163L1 (−0.35)

TCTN2 (−0.78) DLGAP4 (−0.92)

Residual effects

mRNA LRAT (−0.02) PLEKHA6 (−0.02)
DM BAMBI (0.01) PYGB (0.02) FUT11 (−0.18) ZNF394 (0.03)

CCIN (−0.01) DEAF1 (−0.10) ACOT7 (0.04) KLK6 (−0.12)
LHX8 (−0.01) PLEKHB1 (0.09)

CNA FGFRL1 (−0.05) DCBLD1 (−0.04) NEFL (−0.04) CHST1 (0.02)
ULK1 (−0.03) FPR2 (0.02) PYGB (−0.10)

We adopt a random sampling approach and apply log-rank test for assessment in
order to evaluate prediction. We adopt the similar procedure as previous real data analysis
section. After repeating 100 times, the average log-rank test statistics are 33.20 (IGE, sd 2.32),
25.06 (S-LASSO, sd 1.84), 24.41 (J-LASSO, sd 2.13), and 27.88 (ColReg, sd 2.45), respectively.
The proposed method has superior prediction performance over alternatives.
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Table 6. Analysis of the TCGA LUSC data: G×E interaction identifications from LRMs and gene
expression with the estimated regression coefficients in the parentheses.

LRMs AGE GENDER SMOKING

#1 0.02 0.03
#2 0.03
#4 −0.02
#5 0.01 0.05 −0.02
#6 0.01 −0.01
#7 −0.36
#8 0.02

mRNA Residual AGE GENDER SMOKING

LRAT −0.17
PLEKHA6 −0.30

AP2A2 0.02
SLC12A7 −0.10 0.07
TCTN2 −0.15 −0.09

CLEC5A 0.01
RNF24 −0.06 0.04
PRRX2 0.04 −0.04

CCDC74A 0.14 −0.13
FGF9 0.03 −0.06
IGF2R 0.05 −0.02

CHMP4C 0.24 0.13 −0.01
SLC45A4 −0.11

SULF2 −0.05 −0.03
UBB −0.11

DVL1 −0.07
NID1 0.08 0.20
KLK8 0.01

DOCK6 0.26 −0.10
FHDC1 0.01 −0.16
OPLAH −0.12
VSTM1 −0.02

SLC28A1 −0.07
TCF7L2 0.12

DLGAP4 −0.04
CRNKL1 −0.25

5. Discussion

We have conducted an integrative gene–environment interaction analysis for multi-
dimensional omics data based on the proposed two-step variable selection model. Specifi-
cally, at the first step, sparse regulatory relationship between the G factor and its regulators
have been pinpointed via penalization, which leads to effects that can be directly linked to
the prognostic outcomes. At the second step, a G×E prognostic model has been considered,
where the G factor that is involved in the interaction consists of regulated (corresponding to
the LRM) and unregulated (i.e., the residual GE) components. Besides, the residuals of the
regulator are also included. The integrative G×E analysis fully takes the advantage of the
multi-omics measurements, which distinguishes itself from most of the published studies.

Traditionally, statistical testing based marginal analysis has dominated the G×E
studies. The paradigm shift to the joint analysis has been mainly motivated by the gene set
and pathway-based association analysis [42–45]. Recently, the effectiveness of regularized
variable selection has been recognized not only in joint G×E studies when a large number
of genetic factors are involved [7], but also in multi-level omics integrations [5]. Therefore,
it has been adopted here.

This study can be improved by the following aspects. Because strong correlations
have been widely observed in among omics measurements, network based penalization
can be imposed to accommodate the correlations among regulators at the first stage [46–48].
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Besides, robustness can be incorporated at the first stage to model the regulatory relation-
ship between GE and its regulators [49], and in the second stage for a robust prognostic
model [50,51]. Accounting for the form of environmental factors has received consid-
erable attention in G×E studies, which results in the development of a wide range of
nonparametric [52–54] and semiparametric [55–57] methods. However, in integrative G×E
studies, capturing the nonlinear form of interaction is challenging. In this study, we
focus on prognostic outcomes. With other types of outcomes, such as the longitudinal
phenotypes [58,59], the G×E model in the second stage can be modified accordingly.

Author Contributions: Conceptualization, Y.D. and C.W.; methodology, Y.D., K.F., X.L. and C.W.;
software, Y.D. and C.W.; formal analysis, Y.D.; investigation, Y.D.; writing—original draft preparation,
Y.D. and C.W.; writing—review and editing, Y.D., K.F., X.L. and C.W.; visualization, Y.D.; supervision,
C.W.; funding acquisition, C.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This study received no external funding. It has been partly supported by an innovative
research award from KSU Johnson Cancer Research Center and a KSU Faculty Enhancement Award.

Institutional Review Board Statement: This study is a secondary data analysis. The dataset can be
freely downloaded through TCGA data portal. The IRB is not required for accessing and using the
data. The patient information has been de-identified from the dataset used in this study.

Informed Consent Statement: Not applicable due to the reason specified above.

Data Availability Statement: The datasets used for the analyses described in this manuscript has
been downloaded from the TCGA data portal (https://portal.gdc.cancer.gov/) and are available to
the general public without restricted access.

Acknowledgments: We thank the editor and reviewers for their invitation, careful review and
insightful comments, leading to a significant improvement of this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Other Simulation Scenarios

(a) n = 500, weak signal (b) n = 1000, weak signal

(c) n = 500, strong signal (d) n = 1000, strong signal

Figure A1. Four cases of ROC curves under banded correlation structure. Left two columns are 500 subjects to compare
weak and strong signal performance. Right two columns are 1000 subjects to compare weak and strong signal performance.
IGE, solid red; S-LASSO, dashed blue; J-LASSO, long dashed purple; ColReg, long dashed green.

https://portal.gdc.cancer.gov/
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(a) n = 500, weak signal (b) n = 1000, weak signal

(c) n = 500, strong signal (d) n = 1000, strong signal

Figure A2. Four cases of ROC curves under estimated covariance from LUAD. Left two columns are 500 subjects to compare
weak and strong signal performance. Right two columns are 1000 subjects to compare weak and strong signal performance.
IGE, solid red; S-LASSO, dashed blue; J-LASSO, long dashed purple; ColReg, long dashed green.

Appendix B. Accelerated Failure Time (AFT) Model

Denote T as the logarithm of the failure time and denote C as the logarithm of the
censoring time. Under right censoring, we observe Y = min(T, C), δ = I(T ≤ C). We
adopt the Kaplan-Meier weights for censoring. Let F̂ be the Kaplan-Meier estimator of the
distribution function F of T. According to [60], we have F̂(y) = ∑n

i=1 wi I{Y(i) ≤ y}, where
wi can be computed as

w1 =
δ(1)

n
, wi =

δ(i)

n− i + 1

i−1

∏
j=1

(
n− j

n− j + 1

)δj

, i = 2, ..., n,

where Y(1) ≤ · · · ≤ Y(n) are the order statistics of Yi and δ(1), · · · , δ(n) are the corresponding
censoring indicators. Denote (E(i), X1(i) , X2(i) , R̃(i)) as the measurements associated with
(Y(i), δ(i)), where the notations are from Equation (9). We center E(i), X1(i) , X2(i) , R̃(i), Y(i)
using wi-weighted mean as follows:

Ēw =
n

∑
i=1

wiE(i)/
n

∑
i=1

wi, X̄1w =
n

∑
i=1

wiX1(i)/
n

∑
i=1

wi, X̄2w =
n

∑
i=1

wiX2(i)/
n

∑
i=1

wi,

¯̃Rw =
n

∑
i=1

wiR̃(i)/
n

∑
i=1

wi, Ȳw =
n

∑
i=1

wiY(i)/
n

∑
i=1

wi.

Then the centered predictors and responses are Ew(i) =
√

wi(E(i) − Ēw), X1w(i)
=

√
wi(X1(i) − X̄1w), X2w(i)

=
√

wi(X2(i) − X̄2w), R̃w(i) =
√

wi(R̃(i)− ¯̃Rw) and Yw(i) =
√

wi(Y(i)

− Ȳw). Hence, Y = (Yw(1), · · · , Yw(n))
T , E = (Ew(1), · · · , Ew(n))

T , X1 = (X1w(1)
, · · · , X1w(n)

)T ,

X2 = (X2w(1)
, · · · , X2w(n)

)T , and R̃ = (R̃w(1), · · · , R̃w(n))
T .
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