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Abstract: The food industry produces an exorbitant amount of solid waste of petrochemical origin as a
result of the increase in the development of new products. Natural polymers are an alternative to this
theme; however, their development with adequate properties is a challenge. The union of different
polymers in the synthesis of packaging is usually carried out to improve these properties. The
combination of agar-agar and chitosan biopolymers show particular advantages through hydrogen
bonds and electrostatic attraction between oppositely charged groups, presenting a promising source
of studies for the synthesis of green packaging. When combined with natural extracts with active
properties, these polymers allow an increase in the microbiological stability of foods associated with
lower chemical preservative content and greater environmental sustainability.
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1. Introduction

Many materials are used in the elaboration of different types of packaging, such as
glass, metals, plastics, and wood, among others, in addition to combinations of more than
one material, such as composites or blends [1,2]. When no longer used, they generate waste;
while some are destined for recycling, the vast majority are destined for municipal landfills,
generating environmental concern due to the time they take to decompose [3].

With growing population and development, the search for new products and ad-
vanced technology has generated the need for production of packaging [4]. Solid waste
takes hundreds and thousands of years to decompose in the environment, causing an
environmental crisis and incurring economic and social problems [5]. It is estimated that
around 300 million tons of plastic packaging are deposited in landfills annually [6]. In
addition to overcrowding, improper disposal causes the death of hundreds of animals who
end up consuming packaging. The food industry is the sector that most contributes to the
generation of waste, as it represents around 50% by weight of the total packaging sold [7].

An alternative for the reduction of synthetic materials harmful to the environment is
the use of biopolymers obtained from natural sources, which can be extracted from agro-
industrial residues, plants, and the biomass of microorganisms, among other sources [8].
However, the development of new materials that present adequate properties to make
up alternatives to synthetic packaging is a challenge, mainly in relation to mechanical
and physicochemical properties, as they commonly present inferior properties to synthetic
polymers [9].

Agar-agar is a natural polymer extracted from red algae which has numerous ap-
plications in the food industry and is highly sensitive to water [10]. Chitosan is another
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natural polymer; it is obtained from the deacetylation of chitin, extracted mainly from
shrimp shells, and is widely used in several areas. It has good chemical properties, and
stands out for being hydrophobic [11]. The union of these polymers to compose a blend
has been little explored in the current literature, and presents potential for the synthesis of
food packaging.

The degradation rate of packaging developed with biodegradable materials is much
higher compared to those made with conventional materials [12]. Along with the reduction
in waste generation, an increase in the shelf life of food products can be achieved by the
use of active biodegradable packaging [13] through the incorporation of antimicrobials.
Natural antimicrobials have been widely highlighted, as their use can efficiently reduce
and/or inhibit microbial development, a phenomenon that is linked to the synthesis of
environmentally friendly food packaging [14,15].

According to a survey carried out by the International Food Information Council
Foundation (IFICF), consumers are more aware of the environment and healthy eating; of
those interviewed, 69% showed an interest in buying foods with only natural nutrients
in their formulation and reported that sustainable production is one of the main factors
in choosing a food product [16]. The present article aims to review the properties of the
natural polymers agar-agar and chitosan, highlighting the contribution of the combination
of their properties in the characteristics of a functional film with the potential for use
as food packaging. In addition, we provide a brief presentation of natural extracts with
active functionality.

2. Food Packaging

Food packaging is intended to allow transport, distribution, and handling, ensuring
protection against shocks and compression. It works by minimizing product losses due to
deterioration through the control of humidity, oxygen, light, and microbial development
by acting as a barrier to the surrounding atmosphere [1].

Packaging must have performance compatible with its functionality, meeting the four
basic functions of protection, communication, convenience, and containment while taking
into account the characteristics of each product. It requires good mechanical strength,
flexibility, and elasticity in order to avoid tears and perforations during all stages of
production, storage, and marketing of the product [2].

Packaging is considered a vehicle for selling and promoting the brand, as it is the
consumer’s first contact with the product, becoming one of the main characteristics for the
decision at the time of purchase [17]. The packaging must be composed of inert material to
ensure that there is no migration of its compounds to the food and that it does not pose a
risk to the consumer’s health and/or change its sensory characteristics [15].

The vast majority of food packaging originates from polymers of petrochemical origin,
which are popular due to their flexibility and lightness; however, petrochemical products
represent a non-renewable resource. Thus, their use results in socioeconomic problems
such as increased oil prices and the generation and accumulation of waste that can take
tens or hundreds of years to decompose in nature [7].

The production of solid waste from food packaging has grown at a rate of 4.2% per
year since 2010. It is estimated that this will continue until at least 2024 [18]. Considering
all of the materials used in the development of these packaging, plastic corresponds to the
largest share. Single-use packaging accounts for an important share of the millions of tons
of plastics that end up in the oceans annually [19]. In 2018, 1.130 billion items of food and
beverage packaging were sent to landfills in the European Union alone [20].

The consumption of plastic film has increased greatly in recent years; in combination
with their long period of decomposition, phthalic acid esters (PAEs) are used as a plasticizer
in the production of polyvinyl chloride (PVC) plastic films, and have a carcinogenic effect
to living beings [21]. PVC plastic films are widely used on a daily basis, and in view of
this problem, alternative means have been sought to reduce such impacts through the
development of bioplastics and through the search for new technologies [8].



Macromol 2023, 3 277

3. Biopolymers

Biopolymers are compounds of natural origin that are precursors in the synthesis of
bioplastic materials. According to the European Bioplastic Association (EBA), bioplastics
are defined as plastics that are biodegradable, based on renewable resources, or based on
biological materials [22]. These materials decompose in the presence of carbon dioxide,
methane, water, and biomass through the enzymatic action of microorganisms, being
able to decompose at the same rate as other known compostable materials. The initial
stage of composting takes place through an abiotic process, that is, based on thermal
conditions, and the fragments from this stage of decomposition must be completely used
by microorganisms [23].

The food packaging industry seeks biodegradable alternatives in order to improve
its sustainability, and has been investing in these natural materials, where current studies
have been mainly focused on techniques for synthesizing packaging from these materials.
However, in the course of an entire investigation, many issues remain, such as large-scale
adoption, and certain properties are still restricted [15].

A number of the limitations regarding the material properties of these materials are
related to fragility, thermal instability, low impact resistance, and high permeability to
water vapor and oxygen; when used in fresh foods they can be susceptible to moisture loss,
which can change the sensory properties of the product [24]. It is in this context that studies
are currently focused, largely based on investigating strategies for improving the material
properties to ensure that these new materials can resist the possible treatments required in
the food industry while maintaining the sensory properties of food for longer [15].

Among the various materials used in the synthesis of bioplastic films, starch, cellulose,
gums, chitosan, and pectins are popular, among which each has specific properties related
to the elaboration of bioplastic materials [25]. In general, materials based on polysaccha-
rides such as starch, chitosan, and carrageenan have limitations in terms of their mechanical
properties while having low permeability to gases [26], When the base is a protein, such as
casein or collagen, the mechanical properties are acceptable, while the physical characteris-
tics are lacking [27]. Lipid-based materials, on the other hand, have an excellent moisture
barrier, but are sensitive to oxidation [9].

For this reason, mixtures or blends of these biopolymers have been researched in
the elaboration of bioplastic films in order to find improvements in the final characteris-
tics. Such blends are able to present a wide range of structures with different properties,
allowing for their characteristics to be directed towards the desired application [6]. The
incorporation of additives such as plasticizers helps to improve the final characteristics, as
they are low molecular weight molecules that act to modify the three-dimensional structure,
reducing intermolecular forces, increasing the mobility of polymer chains, and decreasing
permeability to gases [28].

3.1. Agar-Agar

Agar-agar is a biopolymer belonging to the natural polysaccharides extracted from red
algae of the Rhodophyta class, being the structural carbohydrate of the wall of these cells. It
is composed of agarose, which has a straight chain, and agaropectin, which has a branched
chain, linked together by bonds α- (1→ 3) e β- (1→ 4) [29]. It is an attractive biopolymer
due to its chemical structure, resistance to acids, and ability to form a consistent gel even at
low concentrations, favoring its application in several industrial areas [30].

In view of its various applications, the food sector stands out, where it is used as
a thickener and in food packaging [31]. In agriculture, it acts as a soil conditioner and
water absorber, and is very efficient in places with little water availability [32], while in
medicine it is used in the microencapsulation of medicines and bioactive compounds [33].
In addition to having a highly porous matrix, it is interesting for particle trapping [29]. Films
based on this polymer, however, are brittle in nature, have poor mechanical properties,
and are highly sensitive to water, as they are hydrophilic in nature, which limits their
application with high-moisture products [10]. However, there are studies that have used



Macromol 2023, 3 278

blending or reinforcement of this polymer for a final result with different characteristics,
whether chemical, physical, or mechanical. Jridi et al. [34] used a combination of gelatin
and agar, resulting in mechanically stronger films. Wongphan and Harnkarnsujarit [35]
obtained improvements in the solubility of the film when developed using mixtures of
starch, agar-agar, and maltodextrin.

3.2. Chitosan

Chitosan is derived from chitin, and was discovered in 1859 when Rouget cooked
chitin (itself discovered in 1811) in potassium hydroxide and found that it became soluble
in organic acids [36]. Chitin is the second most abundant natural polymer in nature,
and is obtained mainly from crab and shrimp shell residues, generally used in seafood
industries. However it can be obtained from several other sources as well, such as mollusc
shells, fungal cell walls and membranes, cell walls of algae, and the exoskeletons of insects
and arachnids [36].

The deacetylation of chitin occurs by the transformation of acetamide (NHCO3) into
amine (NH2) in a basic medium, being produced under different degrees of deacetylation
and molecular weights that vary based on the alkaline concentration, time, and temperature
used in the process [37].

Chitosan is the only polysaccharide of alkaline nature, the others being of acidic
or neutral origin. It is a non-toxic, biocompatible, and biodegradable compound, and
is absorbed by the body [26]. Chitosan’s properties are directly linked to its molecular
weight, degree of deacetylation, and degree of crystallinity. Properties such as viscosity,
solubility, tensile strength, and elongation are influenced by molecular weight, which
corresponds to the number of sugar units per polymer molecule; the viscosity of chitosan
solution is increased with increasing degree of deacetylation [37]. Chitosan polymers
are aminopolysaccharides with unique structures, having several properties and high
functionality, and can be applied to many diverse areas, both industrial and biomedical [38].
It is one of the most promising polymers of biological origin, and can be used as a food
additive in the diet [39], in medicines, where it has great potential as an antacid and
for protecting the stomach from other drugs in addition to acting as a transporter and
drug releaser in the human body [40], and in cosmetics for the treatment of hair and skin,
where it acts as a hydrating agent and has the ability to adhere to fragrance [41]. It has
reported antiviral properties [42], in addition to acting as an antimicrobial agent. In this
context, it acts on the external surface of bacteria, such as the cell walls of Gram-negative
microorganisms (composed of lipopolysaccharides), on the peptidoglycan associated with
teichoic acid, and on the cell membranes of Gram-positive bacteria [43].

However, chitosan has disadvantages for applications in bioplastic films when used
as the sole source of polymer, as it has low solubility, which does not allow for interaction
with other compounds often used to make films, such as plasticizers [21,40]. The union of
chitosan with other polymers, however, results in a film with excellent characteristics [36].
Ghaderi et al. [44] obtained improvements in the barrier properties and solubility of films
based on chitosan and vinyl alcohol when fish gelatin was added. Mendes et al. [45]
produced films with better extensibility and thermal stability using a mixture of chitosan
and corn starch. Li et al. [21] developed chitosan and sodium alginate films with good
mechanical and hydrophobic properties as well as high light blocking capacity.

4. Impact of the Formulation of Bioplastics on Their Properties

The compatibility of the mixture of two or more materials is a great challenge; when
this interaction is achieved, whether between polymers of petrochemical origin or of bio-
logical origin such as biopolymers, the resulting polymers have high potential for various
applications. The interaction of these compounds enables a range of physicochemical,
mechanical, and barrier characteristics [21]. When other compounds are used, such as
extracts with active properties, the possibility of altering these characteristics is even greater
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due to the different bonds between the compounds and the polymer matrix and in the
matrix itself [13].

Mir et al. [46] described a number of these changes, mainly with respect to the thick-
ness, water vapor permeability, tensile strength, solubility, and barrier properties. Thickness
is a parameter that directly influences the physical, mechanical, and barrier properties of a
film; generally, the addition of different extracts provides a thicker film due to the increase in
the solid content added, sometimes changing the crystallinity of the polymer structure [47].

Mechanical properties such as tensile strength and elongation at break are very im-
portant in film properties, as they allow the resulting film to have adequate strength for
maintaining the integrity of the packaged products during transport, handling, and storage.
Tensile strength is the maximum force that a film can resist before breaking, while elonga-
tion is the maximum flexibility of the film before breaking. The addition of natural extracts
influences these properties due to their binding interactions; thus, the origin of the extract
and the polymer matrix interfere, acquiring different combinations [13]. Tan et al. [48]
obtained more amorphous films and with lower tensile strength when adding grapefruit
seed extract, while Siripatrawan and Harte [49] obtained an increase in tensile strength and
elongation when adding green tea to a chitosan matrix; however, these properties were
reduced when using an agar-gelatin matrix.

Barrier properties are one of the most important properties for application in food, as
they determines the shelf life of the product based on the permeability of the packaging
to water vapor. This property depends on the morphological structure of the film. The
more compact it is, the lower the permeability, the higher increase the barrier property;
when added, extracts can significantly alter these properties [50]. Studies focusing on
improving the properties of bioplastics through changes in the formulation (Table 1) have
been developed.

Table 1. Improvement of polymer matrices.

Matrix Improvement Influenced Property Reference

Maize starch Different concentrations
of chitosan

Increase in tensile strength and elongation
at break [51]

Gelatin Chitosan Increase in mechanical properties and
decrease in water vapor permeability [52]

Agar-agar Bimetallic Alloy
Nanoparticles (Ag-Cu)

Thermomechanical and O2
barrier improvement [53]

Gelatin-Agar TiO2 nanoparticles
Decreased water vapor permeability,

increased tensile strength and increased UV
light barrier property

[54]

Agar-agar Combined chitosan and
halloysites nanocomposites

Increase in tensile strength and decrease in
swelling degree [31]

Agar-agar Nanobacterial cellulose Increased thermal stability and
mechanical properties [55]

Chitosan ZnO Reduced swelling property [56]

Chitosan-Gelatin Ag nanocomposites Decreased light transmittance [57]

Chitosan-
hydroxypropylmethylcellulose Sage and nettle leaf extract Improved UV-vis light barrier [58]

Chitosan/Guar
Gum/Poly(vinyl alcohol) Moringa extract Improvement in mechanical, thermal,

structural and morphological properties [59]

Gelatin Silver doped sepiolite
Water barrier properties were improved and
allowed for a controlled release mechanism

of the active compound.
[60]

Zein Chitosan nanoparticles Thermal stability [61]
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In general, the union of two or more biopolymers contributes positively to the proper-
ties of films. Nonetheless, in-depth investigation of the combination of the polymer matrix
and the other components added to the film formulation is necessary, as each combination
results in distinct properties [50] (Figure 1). The improvement of matrices through the
combination of chitosan and agar-agar is promising, as both are edible natural polymers.
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5. Agar and Chitosan Blends

Agar is composed of a mixture of agarose and agaropectin, which correspond to the
gelling and non-gelling fractions, respectively. In the agar-agar industrialization process, a
large part of the agaropectin is removed, making a powder with greater gel strength [10].
The film formation process begins by (i) the formation of a viscous fluid through the
dissolution of agar-agar powder, water, and gelation temperature (90–103 ◦C); (ii) cooling;
(iii) thermoreversible gel formation; and (iv) evaporation. Gelation chemically occurs
by the formation of hydrogen bonds between agarose molecules, forming a network of
agarose double helices stabilized by water molecules [62]. In the drying process, the films
have a high rate of retraction caused by the syneresis of the gel. The Agar-agar films
allow easy interaction with mainly aqueous bioactive extracts. In film synthesis, when
the solvent is replaced by an aqueous extract, it allows a homogeneous interaction with
the agar-agar matrix [63]. Due to the high compaction of pure agar film, it becomes very
brittle. A promising alternative to overcome this limitation is a combination with other
biopolymeric substances.

Chitosan films are synthesized from the dissolution of chitosan in aqueous solutions
of organic acids, and have gained much attention from researchers due to their biocompati-
bility. Chitosan is used in combination with natural polymers such as starch and gelatin
in order to improve its properties. It easily allows hydrogen bonds with these polymers,
which makes it biocompatible [31].

Films developed with pure biopolymers have insufficient mechanical properties for
application as packaging compared to films that use a mixture of polymers. The elec-
trostatic interactions between agar-agar and chitosan are compatible, allowing for the
production of stable films with good properties. The electrostatic interaction is caused by
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the –NH3+ groups of chitosan and –COO− of the ester group of agar-agar [64] in addition
to intermolecular interactions through hydrogen bonds between functional groups, such as
–OH [65] (Figure 2). The bond between the polymers allows synthesis of a homogeneous
film that combines the benefits of both, depending on the concentrations used and the
presence or absence of extracts, resulting in materials with particular properties [63].
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Figure 2. Agar-agar and chitosan polymer matrix.

Cao et al. [66] used different concentrations of agar-agar and chitosan, and found that
when the proportions of the polymers were equal the permeability to water vapor was
reduced. This effect is caused by the total interaction between the hydroxyls (-OH) of agar
and chitosan, leaving no free hydroxyls to interact with water. In agar-agar and chitosan
blends, the lower the concentration of agar in the mixture, the greater the elongation of
the material; the agar absorbs moisture from the environment, reducing the bond with
chitosan; the resulting polymer allows greater mobility of the film, increasing its elongation
to break [63].

The current literature presents few reports of chitosan and agar-agar blends in their
ground state, other than in the form of nanocomposites or other complexes, and even these
are limited [63,66–68]. The combination of these polymers without any treatment with
solvents allows the synthesis of a totally green film without any impact on the environment.
Their appropriate combination results in a material with good characteristics for food
storage, and if bioactive natural extracts are added this can allows for the incorporation of
antioxidants and/or antimicrobials as well [69].

6. Trends in Active Bioplastic Packaging

Active packaging aims to improve the characteristics of food beyond the passive
protective role. They are capable of modifying the conditions of the product in order to
prolong its shelf life while maintaining its sensory and safety properties (Figure 3). Addi-
tional functions are divided into compound absorption and compound release. Absorbent
systems contribute to the removal of undesirable compounds responsible for accelerating
food degradation, such as oxygen, excess water, ethylene, and carbon dioxide, among
others. Emitting systems, on the other hand, have the function of releasing compounds
which help to prolong shelf life, which can include carbon dioxide, ethanol, antioxidants,
and antimicrobials [70].
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Figure 3. Biopolymeric films of blends (i.e., chitosan and agar) with active extracts.

Active packaging incorporating antimicrobials have been highlighted, as deterioration
reactions start on the surface of the food; thus the use of an active film is efficient in reducing
and/or inhibiting microbial development [71]. When used as primary packaging directly
in the product, the incorporation of these agents has the advantage of reducing the content
of preservatives used in the food, serving consumers who seek foods with minimum levels
of additives [72]. The commercialization of portioned and exhibited foods with the use of
bioplastic films on supermarket shelves has grown, as they can provide greater consumer
attraction [73]. The use of biodegradable films incorporating active extracts has potential for
application in these cases. A number of studies have highlighted increases in the shelf life
of foods packaged with active films, with examples including lamb [74] and fish fillets [75].
Other studies have reported the replacement of aluminum foil by active films in different
processed cheeses [63,69,76], confirming an increase in the shelf life of these products.

The development of biodegradable films for application in food products incorporating
extracts with antioxidant and antimicrobial properties has motivated several research
groups (Table 2). Plant extracts have received great focus due to their high concentrations
of phenolic compounds, which confer high antioxidant activity [77].

Table 2. Bioplastic films incorporating different extracts.

Polymer Matrix Extract Action Reference

Chitosan Purple-fleshed sweet potato antioxidant [78]

Starch Green tea and basil antioxidant [79]

Chitosan + Agar-agar Bacteriocin from Lactobacillus sakei antibacterial [63]

Chitosan Black soybean seed husk antioxidant [80]

Polycaprolactone and Chitosan Grapefruit seed antimicrobial [81]

Agar and gelatin Green tea antioxidant and antimicrobial [82]

Chitosan Blueberry and blackberry antioxidant [83]

Corn Starch + Halloysite Clay Pediocin antibacterial [84]

Gelatin and agar-agar Vine leaves antioxidant [34]

Agar-agar Bacteriocin from Lactobacillus sakei antibacterial [69]

Chitosan Apple peel antioxidant and antimicrobial [85]
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Table 2. Cont.

Polymer Matrix Extract Action Reference

Chitosan and TiO2 nanoparticles Black plum peel antioxidant and antimicrobial [86]

Gelatin + silver doped sepiolite Date syrup antimicrobial [60]

Chitosan/Guar Gum/Poly(vinyl alcohol) Moringa extract antibacterial [59]

Chitosan and polyvinyl alcohol Extract of Ocimum tenuiflorum antioxidant [87]

Corn Starch + Halloysite Clay Nisin antibacterial [84]

Zein + Chitosan Nanoparticles Pomegranate Peel Extract antimicrobial [61]

The addition of extracts in films results in impacts on physicochemical, mechanical,
barrier, antioxidant, and antimicrobial properties. Extracts with a wide variety of func-
tions have been used, not only as antimicrobials or antioxidants, but also to modify the
properties of the packaging and improve its application in general [13]. The use of natural
extracts has as its main objective the addition of active compounds to the food product.
However, numerous studies have used compounds of non-renewable origin, such as metal
nanoparticles, in order to achieve efficient antimicrobial characteristics.

Xu et al. [88] incorporated silver nanoparticles into chitosan films to develop a packag-
ing with antimicrobial activity. Peighmbardoust et al. [89] developed active starch-based
films incorporating a combination of Ag, ZnO, and CuO nanoparticles for potential use as
food packaging. Zhixiang et al. [90] developed an antimicrobial film based on curdlan (gum
extracted from a bacterium of the human digestive system, used as a thickener in the food
industry) and silver nanoparticles synthesized with Glycyrrhiz (a plant with medicinal
properties). The use of nanoparticles sometimes restricts the application of the resulting
polymers in food products due to their toxicity and alteration of sensory characteristics.

Studies aiming to investigate the improvement of matrices by the combination of un-
modified natural polymers and natural extracts with active properties represent a promising
approach to synthesizing a packaging with antimicrobial and/or antioxidant properties
and with mechanical, physical, and chemical properties suitable for food packaging.

6.1. Packaging Providing Microbiological Stability of Food

Active antimicrobial compounds act by inactivating pathogenic microorganisms trans-
mitted by food and/or deteriorating microorganisms. From this perspective, the use of
potential bioactive agents in packaging is a promising strategy for extending the shelf
life of food products [91]. Several natural compounds with antimicrobial capacity have
been described in the literature, such as cinnamon essential oil [92], clove essential oil [93],
grape pomace extract [94], prune peel [86], zein essential oil [95], and apple peel [85],
among others.

For the same purpose, a more limited approach is the use of natural antimicrobials
produced by microorganisms. Certain bacteriocins, for example, have been studied in
combination with different polymer matrices, obtaining satisfactory results in extending the
shelf life of minimally processed papaya [96], sliced ham [97], fresh pork [98], and different
types of cheese [63,69]. Bacteriocins are compounds with antimicrobial activity produced
by microorganisms considered safe or of qualitative presumption of safety, being generally
digested by the human organism without intoxication and pathogenicity indexes [99].

For an efficient antimicrobial package, it is fundamental that it is in direct contact with
the food to ensure that the compound migrates to the surface of the product. However,
when using compounds with volatility properties, direct contact is not necessary [100].
Contessa et al. [63] studied the improvement of the polymeric matrix by the combination of
chitosan and agar; when adding bacteriocin from Lactobacillus sakei as an active compound,
the matrix showed bactericidal effects due to volatility. Fontes et al. [76] reported antimi-
crobial activity by volatility when applying pink pepper essential oil to simulated cream
cheese packaging.
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6.2. Packaging with Active Antioxidant Property

The literature includes several studies regarding the extraction of natural antioxidants,
especially in the form of plant extracts and essential oils [101–103]. The use of these com-
pounds is common due to their high safety and lack of toxicity [104]. These chemical com-
pounds have biological activities beneficial to humans, including anti-inflammatory [105],
anticancer [106], prevention and treatment of diabetes [107], and beneficial effects on the
immune system [108]. Antioxidants act by inhibiting free radical reactions, suppressing
oxidative processes, and avoiding consequent cell damage [109].

In foods, antioxidants act mainly on sensory quality, as lipid oxidation is the main al-
teration of food products, and causes nutritional loss [110]. Oxidative changes result in loss
of color, changes in taste and odor, and additional production of substances with potential
harmful effects on the consumer [111]. In this sense, active packaging/films incorporating
natural antioxidants act on the sensory and nutritional quality of packaged food.

There are several natural sources for extracting antioxidants with potential applica-
tion in active films, such as oregano extract [112], mango [113], cranberry extract [114],
onion [115], pomegranate peel [116], red cabbage [117], rice straw extract [118], lemon
essential oil [119], and tomato extract [120], among others. In addition to the antioxidant
activity itself, these extracts have different properties from the other constituents of the
polymeric matrix, potentially acting to improve material properties such as opacity and
elasticity [121], mechanical properties and water resistance [122], and permeability to
water vapor [123].

7. Challenges and Future Prospects

The food industry is responsible for much of the accumulation of solid waste due to
high consumption of food and the need for packaging that acts as a barrier to the external
environment. Many studies have focused on alternative approaches to this problem.
The development of biodegradable packaging from natural polymers is a promising field;
however, it presents challenges regarding the mechanical, physical, and chemical properties
of these materials. The union of agar-agar and chitosan shows promise for the synthesis
of food packaging, as they are both non-toxic and edible natural polymers. Unlike the
union of other polymers, agar and chitosan present good interactions in terms of their
electrostatic forces and hydrogen bonds, allowing for particular properties. With the
addition of active natural extracts to the resulting biodegradable material, active packaging
can be produced which acts to prolong the microbiological stability of food. The exploration
of new combined packaging substances from the union of these polymers in combination
with the addition of natural extracts with active properties is a promising field of research
in keeping with the latest trends in food packaging.
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