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Abstract: Understanding the formation processes of holographic gratings in polymers as a function
of material composition and processing is important for the development of new materials for
holography and its associated applications. Among the processing-related factors that affect grating
formation in volume holographic recording material, pre-exposure, prebaking and dark storage, as
well as the associated variations in layer thickness and composition, are usually underestimated.
This study highlights the influence and interaction of these factors and shows that they should
not be neglected. This is of particular importance for samples with a free surface. Here, one such
epoxy-based free-surface material is investigated. To determine the influence of prebaking on the
holographic grating formation, as well as on the achieved refractive index contrast, angular resolved
analysis of volume holographic phase gratings is applied through point-by-point scanning of the
local material response. Grating characteristics are determined by comparison with simulations based
on rigorous coupled wave theory. Thus, the optimal dose for prebaking can be determined, as well
as the optimal exposure time, depending on the dose. The influence of dark storage on the material
response is investigated over a period of 12 weeks and shows a strong dependence on the deposited
energy density.

Keywords: photosensitive polymers; volume holographic gratings; diffractive optical elements;
material response; pre-exposure; layer thickness; dark storage; holographic grating formation;
refractive index contrast; polymerization-diffusion-process

1. Introduction

Research into new materials for volume holography is being driven by numerous
promising applications, from recording media, holographic data storage, self-describing
waveguides and wavelength-selective devices [1–3] via holographic sensors based on
angular and wavelength selectivity [4] and biosensors [5] to solar energy concentrators,
displays and light management [6]. The vast field of lightweight diffractive optical ele-
ments that can replace conventional optics is particularly worthy of mention [6]. Here,
volume holographic optical elements (vHOE) with the underlying reaction diffusion-driven
photopolymerization process play a special role [7]. They can be realized in guest–host
systems based on cationic [8] or free-radical [9] ring-opening polymerization, achieving
high diffraction efficiency. Here, new application areas are also constantly being added,
such as diffractive elements for biomedical applications [10].

New materials for volume holography are constantly being developed and researched
more and more intensively [2,11]. New compositions, e.g., focusing on biodegradable
components [12] or hydrogels [13], or new photosensitizers based on natural dye [14], are
being explored, while increasing the sensitivity and diffraction efficiency of the recorded
gratings. The key to exploring and optimizing volume holographic materials for vari-
ous applications is their design and understanding of the underlying grating formation
processes [15]. Regardless of the particular grating formation mechanism—whether it is
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based on polymerization or on liquid crystals or whatever—understanding the interactions
between the mechanism of grating formation and the underlying molecular processes helps
optimize device performance for novel optical systems [16,17].

Photosensitive polymers represent a particularly interesting group among stimulus-
responsive polymeric materials for volume holography, characterized by their ability
to be applied in a non-invasive and easily controllable manner [18] with no need for
solvents while maintaining good dimensional stability and variable thickness. Light as a
stimulus means optical patterning by applying volume holography as a one-step method
for fabricating diffractive 3D micro- and nanostructures [19].

The mechanisms underlying the formation of volume holographic gratings in poly-
meric materials can be described by the polymerization–diffusion process, with the chemical
gradient as the driving force [20–23]. Figure 1 illustrates the grating formation mecha-
nism, with 1A representing the material composition based on the guest–host system.
Accordingly, the gratings are formed primarily as a result of photopolymerization and
mass transfer processes: A light (interference) pattern is projected into the photosensitive
medium in the course of exposure (Figure 1B), triggering local polymerization, which is
proportional to the light intensity. This, in turn, induces a chemical gradient, followed by
diffusion of monomers, which in turn also polymerize (Figure 1C). The final grating forms
as a periodic modulation of the optical properties in accordance with the recorded light
pattern [1].
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Figure 1. Schematic illustration of grating formation in the guest–host polymer: (A) Composition
and layer formation based on the polymer host with reactive chains, dopant, photoinitiator and
crosslinker. (B) Interference exposure induces local polymerization, which leads to (C) crosslinking
and diffusion, resulting in the final grating.

In developing and optimizing new materials for volume holography, the determi-
nation of the material response to processing and exposure conditions is of paramount
importance [24]. Here, the criteria for performance evaluation are high energetic sensi-
tivity, wide dynamic range and sharp angular selectivity [25,26]. From the study of the
light-induced material response, information about the mechanism of volume hologram
formation can be obtained [27]. With insufficient knowledge of the influence of external
factors, it is not possible to accurately determine the material response when studying
diffraction properties. In other words, without knowledge of the effects of each factor, it is
not possible to distinguish whether the change in material composition or processing, on
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the one hand, or the exposure or pre-exposure conditions, on the other, affects the response
of the material [24].

Most often, the response of the material to the energy density of the exposure—the
product of exposure intensity and exposure duration—is studied and well understood [7],
while other influencing factors, such as pre-exposure or storage of the samples in the dark,
are still too little examined [28]. However, these always play a role—for our example, as
soon as more than one hologram is produced per sample and as soon as more than a few
days elapse between preparation and exposure of the photosensitive samples. Strictly
speaking, on the one hand, the pre-exposure level accumulates by scattered light from
grating to grating and on the other hand, the storage of the samples—especially those with
a free surface—can have an influence on the diffusion speed via the material viscosity.

Processing-related factors, which are usually underestimated, influence grating for-
mation in volume holographic recording material, including pre-exposure, prebaking,
dark storage and related variations in film thickness and composition, while the individ-
ual factors can also influence each other [29]. For example, a curing process may allow
stabilization of the hologram, but at the same time may lead to a decrease in diffraction
efficiency [30].

It is an exciting task to explore the mutual influence of material composition and pro-
cessing, exposure and pre-exposure on grating formation in volume holographic materials.
Based on the study of the material response, diffusion models can be built to predict the
behavior of the materials [23,31].

The influence of pre-exposure has already been studied in detail, both on the formation
of holograms in real time and on their final, permanent diffraction characteristics [24]. Here,
it has already been shown that pre-exposure, e.g., by pre-recorded holograms, should not
be underestimated.

The influence of the prebake on the temporal evolution of the grating formation has
been studied, and it has been shown that grating growth strongly depends on the prebake
duration [26]. It also affects the dependence on exposure duration.

In addition, with other photosensitive materials for volume holography, it has recently
been demonstrated that the achievable refractive index contrast can be improved by thermal
post-processing techniques [6].

The present study examines the influence of prebaking and dark storage, as well as
pre-exposure of photosensitive samples, together with the associated variations in layer
thickness and composition. For this purpose, in addition to time-resolved studies, angle-
resolved investigations are used, which are completed through point-by-point scanning of
the local material response [32].

2. Materials and Methods
2.1. Sample Preparation and Pre-Exposure Treatment
2.1.1. Guest–Host System

Free surface, ultraviolet curable epoxy-based samples were prepared by micro resist
technology GmbH (Berlin, Germany). Both host and guest molecules featured epoxy
functional groups (Figure 2A), with the corresponding mechanism of cationic ring-opening
polymerization. The refractive indices of the host and guest components at 589 nm were
nhost ≈ 1.58 and nguest ≈ 1.46, respectively.

2.1.2. Sensitization

A sensitized photoacid generator (PAG) was used to induce crosslinking by cationic
polymerization at 405 nm [8]. A strong protonic acid was used to sensitize the mixture.
Polymerization was initiated via the initial formation of free radicals. The photoinitiator
system consisted of a photosensitive dye, proton donor and onium salt. The proton donor
for cationic photopolymerization was formed by photolysis of triaryl sulfonium salt (see
Figure 2B).
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Figure 2. Chemical structure and mechanisms of the guest–host system. (A) A single SU-8 unit
with epoxy functional groups. (B) The proton donor for cationic photopolymerization is formed by
photolysis of triaryl sulfonium salt. (C) Triarylsulfonium hexafluoroantimonate (TASHFA) undergoes
photodecomposition under UV light.

Exposed to UV light, the triarylsulfonium hexafluoroantimonate (TASHFA) under-
went photodecomposition (see Figure 2C). Free radicals were produced by subsequently
extracting hydrogen ions from the proton donor. As a consequence, the cross-linking of
the resin was initiated [33]. As long as consecutive exposures did not entirely consume all
of the TASHFA, the mixture remained light sensitive. This is particularly important with
respect to multiplexing techniques [34] and for the evaluation of pre-exposure influence.
Furthermore, if the TASHFA is not fully decomposed during the curing process, the residual
photoinitiator may be available to initiate surface grafting upon further exposure to UV
light [33]. Most cationic ring-opening polymerizations involve the formation and propaga-
tion of oxonium ion centers. The reaction involves the nucleophilic attack of monomer on
the oxonium ion [35].

2.1.3. Crosslinking and Glass Transition Temperature

The epoxy functional groups undergo molecular crosslinking. The corresponding
mechanism of polymerization is cationic ring-opening polymerization (CROP): The epoxy
functional group reacts with the proton, provided as a result of the exposure by the
photoinitiator system, as described above. During the initiation process, the proton attacks
the oxygen atom of the epoxy group. The activated monomer reacts with a second monomer
in terms of a ring-opening mechanism. During the propagation of the chain reaction, the
reactive chain end persists in the form of a tertiary oxonium ion.

As the reaction proceeds and the molecular weight of the epoxy network increases,
the viscosity of the material starts to increase, resulting in gelation, vitrification and the
formation of highly crosslinked solid epoxy [36]. The glass transition temperature of the
evolving network increases and the activation energy decreases.

The glass transition temperature TG of the host–guest system plays an essential role
with respect to the flexibility of the matrix, determining the diffusion ability during grating
formation, on the one hand and the stability of the final structure, on the other hand.
The upper and lower limits of TG, depending on the degree of curing, are therefore most
important for the applicability of the material as a holographic storage system [37].

We identified the glass transition temperature of the composition to be TG =25 ◦C.
This ensures sufficient mobility for monomer diffusion, while crosslinking reduces the
mobility of the matrix. Fixation by UV flood exposure (dose 350 mJ/cm2) and hard bake
up to 140 ◦C results in TG = 130 ◦C [8].
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2.1.4. Spinning and Prebake

The layers were prepared by spin coating the material in a solution on circular glass
substrates of 1 mm thickness. The layer thickness depended on the rotation speed (see
Figure 3). A rotation speed of 800 min−1 results in a layer thickness of 200 µm.
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Figure 3. Correlation between the thickness of the photosensitive layer and the number of rotations
during sample preparation by means of spin coating.

A subsequent pre-exposure bake was carried out on a hotplate (80 ◦C) for 0.5 to 3 h to
drive out the remaining solvent in order to obtain a tack-free film. Long baking times were
necessary for good process control in the case of ultra-thick (>200 µm) layers [38]. More
details on the host–guest system in terms of composition, as well as performance (such as
energetic sensitivity and angular selectivity) can be found in [8].

2.2. Holographic Exposure and Post-Processing Treatment

All investigations were based on one-dimensional, plane-wave, transmission-type
volume holographic gratings. Symmetric recording geometry was applied to create non-
slanted gratings [1] with a periodicity of Λ = (2.8 ± 0.5) µm. Holographic exposure was
performed by two freely propagating, s-polarized recording beams with a wavelength of
λexp = 405 nm, a beam diameter of 2 mm, and a laser power of (1.5 ± 0.5) mW per beam.
The exposure duration texp varied between 2 s and 15 s. The exposure setup is shown in
Figure 4A. Several holograms were recorded per sample, row by row and from left to right
within a row. After the completion of the holographic grating formation, samples were
fixed by a UV flood cure with a dose of 350 mJ/cm2. During this curing step, the remaining
photoinitiator is consumed so that the sample is no longer photosensitive. No postbake,
hardbake or any other additional development was applied.

2.3. Analysis of Final Holographic Gratings

Angular-resolved analysis and lateral scanning were applied to characterize the final
holographic gratings. Angular-resolved investigations allow the determination of Bragg
selectivity, which defines the optical functionality. Therefore, a rotation-scan setup (see
Figure 4B) with a collimated probe beam was used [1,8]. The transmitted signal of a
HeNe laser (λp = 543 nm) is detected while the hologram under test is rotated. The
diffraction efficiency was calculated from the angular-resolved transmission. By comparing
the angular resolved diffraction efficiency with a rigorous solution of the coupled wave
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theory (RCWT) [39], the layer thickness d and the refractive index contrast ∆n were derived:
The diffraction efficiency η for a probe wavelength λ and the probe angle ϑp is given by:

η = sin2

(
πd∆n

2λ cos
(
ϑp
)) (1)

The probe beam diameter was 0.2 mm. Probing only a tenth of the exposed area
allowed precise determination of the local material response [33].
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propagating 405 nm recording beams. (B) Analysis is accomplished with a 543 nm rotation scan
setup.

3. Results and Discussion
3.1. Influence of Prebake

Figure 5 shows individual angle-resolved investigations for different prebake du-
rations and exposure times. Figure 5 shows the exact point for point analysis of three
holograms with different prebake durations and comparable exposure time. In each case,
the prebake duration was 1.5 h (A, B, C), 2 h (D) and 3 h (E, F). The exposure time varied
between 2 s and 15 s.

Simulations according to RCWT were adapted to all measurements, and the obtained
parameters layer thickness d and refractive index contrast ∆n were given. Especially for
measurement C (Figure 5, middle left), there are some deviations from the RCW Theory
that are worth discussing.

The experimental results showed deviations from coupled wave theory, which were
probably caused by the Gaussian intensity distribution of the recording beams in combina-
tion with a high value of the normalized coupling constant. Deviations from the RCWT
simulations existed first in the form of incomplete zero diffraction between the peaks.
This effect can also be observed in the case of very thick films. To explore this effect, a
non-constant lattice plane space due to spatial variations of Λ can be considered, which is
believed to be responsible for the blurring of the Bragg condition [33], leading to incomplete
zero diffraction between the peaks. Similar effects have been observed before [40] and
could also be interpreted in this way. Second, the strength of the second diffraction order is
less pronounced than expected according to the RCWT. Additionally, the initial arguments
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for the Gaussian hologram shape provide a reasonable explanation. The diffraction angle
in the case of the second order deviates strongly from the original recording configuration.
As a consequence, in this case, a less pronounced region of the grating, i.e., at the edge of
the Gaussian profile, is probed, resulting in a lower diffraction efficiency than expected.
The main reason for the strength of the effects described here is the rapid increase in the
material response to the recording intensity [33].
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index contrast ∆n were determined as important parameters for each hologram.
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The main conclusion that can be drawn from the results in Figure 5 is that the investi-
gation of the material response and influence of exposure time depend on the amount of
prebake, as shown for samples with a longer prebake duration. The lateral scans reveal an
increasingly smaller influence of the exposure time on the material response. The higher
the prebake, the greater diffraction efficiencies can be achieved at a constant exposure time.

From Figure 6, it can be seen that the lowest prebake time of 1.5 h provides the best
material response in terms of sensitivity, i.e., the greatest diffraction efficiency at low
energy density. At the same time, stronger modulated gratings are achieved in the case
of a longer prebake for comparable exposure duration: the green curve shows a decrease
above 300 mJ/cm2, which corresponds to overmodulation (normalized coupling constant
ν > π/2). The corresponding refractive index contrast is ∆n = 3.7 × 10−3. The comparison
with a rigorous solution of the coupled wave theory (RCWT) can be seen in Figure 5
middle right (D). However, this effect of an improved material response with a longer
prebake cannot be continued. The longest prebake duration provides smaller refractive
index contrast; here, a normalized coupling constant of ν ≈ π/2 is just reached.
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 Figure 6. Lateral Scans of samples with different prebake durations and comparable exposure
durations. Prebake duration was 1.5 h (texp = 9 s) for the violet curve, 2 h (texp = 7 s) for the green
curve and 3 h (texp = 8 s) in case of the pink curve. The individual angle-resolved measurements from
Figure 5 are marked (A), (D) and (E) with the corresponding local refractive index contrast ∆n.

3.2. Influence of Dark Storage

The special property of a free surface requires consideration of external conditions
that may affect its suitability as a holographic recording material. Without a protective
layer or the usual sandwich configuration, the photosensitive system is in direct contact
with the environment. SU-8 is known to outgas in an unexposed state. The amount of
solvent determines the viscosity of the material. Evaporation of the solvent results in a
higher viscosity. However, viscosity plays a crucial role in terms of sufficient mobility for
monomer diffusion [37].

Interestingly, very long dark storage times can lead to saturation effects with higher
harmonics, resulting from high viscosity and consequently slow diffusion rates. By compari-
son with RCWT simulations, the first-, second- and third-order refractive index contrast can
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be derived as described in [8]. For the diffraction curves shown in Figure 5, consideration
of the first order ∆n(0) is sufficient.

Figure 7 shows the influence of dark storage on the material response: diffraction
efficiency was investigated over a period of 12 weeks for gratings, differing in deposited
energy density. Remarkably, a strong influence of the energy density of exposure can be
observed:
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Gratings recorded with a low exposure dose show a significant increase in diffraction
efficiency with increasing storage time. With a high energy density, however, sample
storage has no effect on hologram performance. Holograms recorded with high doses
show significantly higher diffraction efficiency, exceeding 85%, regardless of the duration
of dark storage. However, the low-dose gratings reach the same level after 10 weeks of
dark storage.

The constant increasing slope of the curve at a low exposure dose indicates a direct
relationship between the viscosity of the material and the performance of the final grating. A
destabilizing effect of low viscosity on the gratings may explain the results. Consequently,
low viscosity, which is a priori desirable because it facilitates the process of monomer
diffusion, seems to have a negative effect on the gratings in the case of a low exposure dose.
A blurring of the grating planes in the low viscosity mixture seems reasonable and would
lead to weak gratings with low diffraction efficiency. In contrast, a higher dose or longer
exposure time could compensate for this instability by increasing the initial crosslinking
and stabilizing the grating. This would explain the difference between the low and high
dose curves in Figure 7. In contrast, long dark storage times lead to high viscosity and,
consequently, slow diffusion rates.

3.3. Impact of Pre-Exposure and Exposure Duration on Layer Thickness

The influence of the pre-exposure of the sample, the position of the hologram on the
sample and the exposure time of the hologram is discussed below. These factors are related
because several holograms were written per sample, row by row, and within a row from
left to right (see right side of Figure 8). Consequently, holograms written subsequently
have already experienced pre-exposure by previously written ones, in each case depending
on exposure time and duration [25].
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In general, the interdependency of index modulation and layer thickness, as illustrated
in [8], means that within constant index contrast, a variation in layer thickness has a strong
impact on the angular response.

Figure 8, left shows that the hologram thickness clearly depends on the position of
the sample, which is correlated on the one hand with pre-exposure due to scattering on
pre-recorded holograms and on the other hand with a possible flow of the free polymer
layer. Shown are the values for the layer thickness derived from RCWT fits via the angular
response of the respective holograms. All holograms were generated under constant
conditions, i.e., the laser power was constant at 1.5 mW, the exposure time was 15 s in each
case, and the exposure geometry results in unslanted gratings with a period of Λ = 2.9 µm.

Figure 8, left, shows two apparently independent effects. With respect to the horizontal
position, the layer thickness decreased with increasing pre-exposure. For the vertical
position, the situation is reversed. From row to row, i.e., further down on the vertically
positioned sample, thicker gratings are obtained. Although the third row represents a
high pre-exposure, possible flowing of the material during dark storage of the samples or
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between exposures, which is conceivable, especially with respect to the free and uncovered
surface, could be causal for an increase in thickness and cancel the above effect.

In the case of the host–guest system, the issue of material flow is complicated by a
possible variation in chemical composition. In this context, a higher guest content could be
causal for increased volumetric expansion and thus explain the results shown in Figure 8.

From the findings on the influence of pre-exposure, it can be deduced that the duration
of the hologram exposure itself also has an influence on the film thickness. Figure 8
illustrates the interplay of exposure duration and pre-exposure influence on the derived
film thickness. The data presented here serve as an example of an overall trend that has
been seen several times during the investigations. First, an increase in film thickness with
increasing exposure time was evident. However, the opposite effect causes a decrease
in film thickness due to a lower vertical position, which is neither consistent with the
pre-exposure influence nor with the effect of a possible material flow.

As a possible explanation for the observed swelling phenomenon, volumetric expan-
sion in the course of ring-opening polymerization seems worth considering. Overall, the
effect of external influencing factors on hologram thickness d is outlined by the following
set of relationships:

d ↓ ↔ pre-exposure dose

d ↑ ↔material flow

d ↑ ↔ exposure duration.

4. Conclusions

Based on investigations of a novel epoxy-based free surface volume holographic
material, the influence of pre-exposure and dark storage on the diffraction characteristics
of holograms is studied. Refractive index contrast and film thickness were determined by
comparison with RCWT simulations. The influence of processing-related parameters can
be explained by the interaction of polymerization and diffusion.

It was found that the lowest prebake time of 1.5 h provided the best material response
in terms of sensitivity. At the same time, an effect of improved material response in terms of
stronger coupling, i.e., greater refractive index contrast, was observed with longer prebake
time. At the longest prebake time, diffusion appeared to be strongly slowed down, resulting
in weaker gratings.

The long duration of dark storage seemed to cause a slowdown of polymerization and
diffusion. It can be assumed that the diffusion rate D decreases with prebake duration and
the reaction rate F decreases with storage time.

In general, the grating growth process depends on the conditions of preparation and
exposure. The interplay of polymerization and diffusion is described by parameter R:

R = |K|2 D
F

, (2)

with K being the grating vector, D being the diffusion coefficient and F being half the
maximum polymerization rate.

On the one hand, the grating vector K was adjusted directly via the exposure geometry.
The diffusion coefficient D was influenced by the viscosity of the material, which was
adjusted by the sample preparation. Actually, viscosity depended on the duration of the
prebake procedure. Finally, the polymerization rate F depended on the amount of exposure
and thus on the exposure time. Overall, the parameter R and thus grating growth could
be controlled by internal and external influencing factors, which could be accessed via
preparation and exposure procedures [27].
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The so-called diffusion-free condition [41] is associated with a high R parameter, could
be caused by sufficient low recording intensity, and corresponded to slow polymerization,
fast diffusion and/or small grating periods [27].

Altogether, it could be shown that the influence of pre-exposure due to pre-recorded
holograms and the duration of dark storage of samples should not be underestimated but
must always be included in the consideration and evaluation of the material response.
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