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In 1920, Hermann Staudinger discovered that macromolecules consist of long chains 
of covalently linked building blocks and subsequently published the first paper on 
polymerization. Since this article, millions of works have focused on macromolecules and 
their extraordinary impact on humanity [1]. Our world is incomprehensible without pol-
ymers. However, what does the future for macromolecular science entail?  

From the very beginning, Staudinger acknowledged the value of publishing to en-
courage a scientific exchange within the emerging macromolecular research community. 
In this regard, Macromol is a young, open access journal that offers a sociable and active 
home for the macromolecular scientific community which is open to novel ideas, even 
those regarding public uncertainty and especially those on open speech. We believe that 
a knowledgeable interchange will lead to the development of novel directions for the area 
of macromolecular science as well as for our civilization. This is particularly apparent in 
our current period of global change in which the use of polymers is gradually becoming 
extensive and there is a reconsideration emerging of the common applications, where re-
lated technological changes will be required. 

Throughout the year of 2022, various hot topics have been published in our journal. 
Starting from conventional synthetic polymers such as polytetrafluoroethylene (PTFE) [2], 
poly-methyl methacrylate (PMMA) [3] and its fluorinated derivatives [4], as well as co-
polymers [5,6], linear, low-density polyethylenes (LLDPE) [7,8], poly(hydro)silanes [9], 
poly(ethylene glycol) (PEG)-based soft elastomers [10], polyvinylidene fluoride (PVDF) 
[11], and poly(vinyl alcohol) (PVA) and its mixtures [12].  

One of the hottest topics published in Macromol centered around the well-known 
polylactic acid (PLA), an aliphatic polyester that can be produced from agricultural re-
sources such as corn and through a ring-opening polymerization of the lactides [13]. In 
this context, biocomposites comprising natural fibers and recycled PLA-based matrices 
are regarded as very interesting due to the combination of their good mechanical and 
physical properties as well as their sustainability [14]. The tendency towards the usage 
and development of eco-friendly raw materials will be increasingly predominant within 
the coming years since various regulations are encouraging this idea; for instance, in the 
automotive industry, it will be compulsory that 85% of plastic components of a vehicle 
arise from a recycling process. Thus, short fiber biocomposites based on PLA/polycar-
bonate (PC) blends derived from processing scraps and reinforced with cellulosic fibers 
are very promising. Additionally, flax-reinforced PLA biocomposites are ideal candidates 
as an alternative to conventional PP composites [15]. Mixtures of PLA and PP reinforced 
with inorganic nanotubes [16] and hydroxyapatite [17] have also been reported. The mod-
ification of PLA via the incorporation of boehmite alumina and thermochromic dye can 
be used to develop a biodegradable, novel shape-memory polymer composite (SMPC) 
[18].  

Other macromolecules which have been widely investigated include polymers such 
as polyaniline (PANI) and polypyrrole (PPY) [19–22]. Since they have positive charges, 
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they can bind to the negatively charged bacterial membrane and penetrate it, thus hinder-
ing bacterial activities. Thus, conducting polymers can form polymer composites with 
metal, metal oxides, and nanoscale carbon materials as novel types of antimicrobial agents 
[23]. The increase in reactive oxygen species (ROS) from the composites of polymers–
metal nanoparticles has harmful effects and induces cell death. Among such ROS, the hy-
droxyl radical with one unpaired electron in the structure is most effective as it can oxidize 
any bacterial biomolecules, leading to cell death [24]. Future works should focus on the 
combination of conducting polymers and their composites with antibiotics, small pep-
tides, and natural molecules with antimicrobial properties. 

On the other hand, given the fossil fuel crisis and the reduction in finite resources, 
the synthesis of green polymers is becoming essential. The term “green” refers to materials 
which have a biological origin and/or are biodegradable and are produced via sustainable 
processes conducted under mild conditions which do not require the use of chemical cat-
alysts, toxic solvents, or reagents [25]. In this regard, enzymatically synthesized bio-based 
and/or biodegradable polymers are gaining a lot of interest [26]. For instance, the enzy-
matic polymerization of PLA and alipharomatic furan-based polyesters (e.g., PBF) has 
been reported. Thus, significant actions have been taken toward synthesizing green poly-
mers. Additionally, the biodegradation and chain scission of biodegradable polymers is 
of great interest. Thus, the epimerization and chain scission of PLA in the presence of 
various organic bases, including an alkylamine, a pyridine derivative, an amidine, and 
two phosphazenes, some of them being well-known organocatalysts for the ring-opening 
polymerization of lactide, has been investigated [27]. Additionally, the biodegradation of 
poly(ε-caprolactone) (PCL) loaded with 2 wt% PbZrO3 has been examined [28]. The chem-
iluminescence results revealed that the degradation of PCL is accelerated in the presence 
of foreign atoms (Cr, Nd, Mg, Mn, and Ti) at the concentration of 0.1 mol%.  

Numerous novel biopolymers and their composites have been investigated [29]. Nat-
ural biopolymers include cellulose, chitosan, starch, collagen, gelatin, hyaluronic acid, al-
ginates, fibrin, and pectin, which are widely found in nature. These biopolymers have 
displayed many interesting properties, including biocompatibility, biodegradability, and 
antibacterial activity [30]. However, the development of novel methods to be used at an 
industrial level is required. For instance, low-substituted hydroxypropyl cellulose have 
been developed and were compressed at different compression loads to achieve a differ-
ent tablet porosity. It was found that the particle size and the percentage of the hydroxy-
propyl content have a significant effect on the disintegration behavior of this biopolymer 
[31]. Additionally, high-molecular weight hypromellose and hydroxypropyl cellulose are 
widely known, extended-release polymers. High molecular-weight HPC GXF provided a 
better processability at low temperatures and an adequate tablet strength for the melt 
granulation of metformin HCl [32]. Other novel biopolymer blends such as Trigonella 
foenum–graceum galactomannan and xanthan gum mixtures have been prepared and 
their rheological properties have been assessed [33]. The synergistic interaction between 
two biopolymers, particularly in the samples treated with an ultrasound, resulted in better 
rheological aspects which could be related to the strong bonds between them.  

Poly(n-alkylene succinate)s are a class of biodegradable and aliphatic polyesters that 
have attracted much interest, mainly in the framework of sustainability and the circular 
economy. Thus, the US Department of Energy (US DOE) declared biobased succinic acid 
as a chemical platform with a high potentiality towards the synthesis of compounds con-
ventionally derived from fossil feedstock. During the last decade, succinic acid has been 
proven to be a green and sustainable precursor of many important, large-scale industrial 
chemicals and consumer manufactured goods [34]. Besides their green chemistry origin, 
these biopolymers are highly promising materials in a variety of sectors, including food 
packaging and biomedical applications. Their properties can be easily tuned, such as the 
semicrystalline morphology and the crystalline fraction, properties which are crucial for 
the applicability of these materials in several fields. 
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Biopolyamide 11/flax/basalt hybrid composites have also been developed to improve 
sustainability in the automotive sector [35]. Their impact performance as a function of 
temperature and plasticizer addition has been analyzed in detail. The results proved that 
plasticized PA11 is endowed with a lower glass transition temperature and melting tem-
perature, which makes for a simpler manufacturing and processing, but also possesses a 
higher toughness which delays the penetration phenomena and reduces the permanent 
indentation at room temperature.  

Further, magnetic nanoparticle-reinforced biopolymers are also highly interesting for 
biomedical applications, including drug delivery systems guided by a magnetic field, im-
age contrast agents, and heat generators in hyperthermia treatments [36,37]. Chitosan, a 
natural polysaccharide, has also been widely investigated as a biomaterial, especially for 
hemostasis. However, it presents some drawbacks, one of them being a low stability. 
Through chemical reactions with hydroxyl and amino groups, such as alkylation, carbox-
ylation, quaternization, etc., different groups can be introduced into the repeating units 
and significantly enhance its hemostatic property [38]. It has also been used as a nanocar-
rier for drug delivery [39], as a scaffold [40], as antibacterial wound dressing [41] for food 
packaging [42], or for the treatment of illnesses [43]. The mixture of chitosan and PCL also 
shows great potential as scaffolds for tissue engineering [44]. Other natural polysaccha-
rides such as kefiran, the primary structural component of kefir grains, which are the ge-
latinous irregular masses that form the symbiotic cultures of lactic and acetic acid bacteria, 
have been recently investigated [45]. It was used for the fabrication of cryogel films in the 
presence of plasticizers, such as glycerol and sorbitol. Varying the ratios of the polysac-
charide/plasticizer system, different physical (the film thickness, moisture content, and 
solubility) and mechanical (the tensile strength and elongation at break) properties were 
attained.  

Bio-based polyurethanes (PU) have also attracted a lot of interest in recent decades 
and have mostly overtaken petrochemical-based PU in terms of challenges such as solid 
pollution, economic effectiveness, and the availability of raw materials. Many kinds of 
available bio-renewable sources as precursors for the production of polyols and isocya-
nates have been explored for the development of “greener” PU materials; these bio-based 
polyurethanes have a noteworthy potential to be used as future PU products, for the re-
placement of petroleum-based polyurethanes, due to increasing concern about the envi-
ronment as well as their relatively low cost and biodegradability [46]. Vegetable oils are 
an excellent raw material for the production of PU adhesives. The most important com-
ponent of vegetable oil is triglycerides, which are glycerol esters with three long chains of 
fatty acids of a varying composition depending on the source of the oil. As triglycerides 
hydrolyze to form a range of fatty acids and glycerols, polyols, and isocyanates, raw ma-
terials for the synthesis of polyurethane can be derived from them. Various vegetable oils 
which can be utilized for PU synthesis are castor oil, palm oil, canola oil, soyabean oil, and 
jatropha oil [47–49]. 

Another hot topic is hydrogels, which are synthesized by the homo- and copolymer-
ization of functionalized acrylamides [50]. The gels swell in aqueous solution, and some 
of them (e.g., poly(N-isopropylacrylamide (PNIPAM [51])) also swell in organic solvents 
of a low polarity (e.g., dichloromethane), making them amphiphilic materials. Nanocom-
posites can be prepared via dispersing nanomaterials (metallic nanoparticles, graphene, 
and carbon nanotubes) inside the gels. PNIPAM-based nanocomposites show a lower crit-
ical solution temperature (LCST) transition of the gel matrix, which can be reached by 
thermal heating or the absorption of electromagnetic radiation [52]. The characteristic 
properties (the swelling degree and rate, LCST, solute partition, mass transport, hydro-
philicity, and biocompatibility) can be tuned by changing the functional groups in the 
copolymers and/or the other components in the nanocomposite. The nanocomposite’s 
properties are used to produce technological applications, such as sensors, actuators, a 
controlled release, biological cell scaffolds and surfaces, antimicrobial, carriers of bioac-
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tive substances, and so forth [53]. For instance, xyloglucan (XG), a branched polysaccha-
ride composed of a central backbone of D-glucose units linked by β(1→4)-glycosidic 
bonds, decorated with D-xylose units through α(1→6) glycosidic bonds, is a hydrogel-
forming polymer which is able to retain large amounts of water. Its main applications are 
as a medical device for wound dressings, mucosal protection, and ocular lubrication, as 
well as its uses as an excipient have been recently highlighted [54]. Additionally, new 
water-soluble photoinitiators based on the α-alkoxy aryl ketones have been synthesized 
and investigated for their ability to initiate photopolymerization for the preparation of 
hydrogels [55].  

Overall, macromolecular science is always in need of a great diversity of competen-
cies, from physical to biological and medicinal properties as well as from fundamental to 
applied topics. One recent challenge related with this growing interdisciplinarity is that 
an increasing number of polymer-related topics appear in novel scientific journals which 
are not directly associated with the macromolecular field. In addition to its interdiscipli-
narity, the macromolecular community is widely known and has been noticed by other 
chemical arenas for bridging academia with industry. The connexon between fundamen-
tal research and industry is crucial, as we have observed since the early days of polymer 
science. 

A future world without polymers is unconceivable: they are currently used in many 
novel areas such as heat insulation, construction materials, microelectronics, green energy 
generation, soil fertility, food packaging and safety, the search for new antibiotics, regen-
erative medicine, ink-jet-based manufacturing, lightweight composite materials for wind-
mills, and e-mobility, to mention but a few from an endless list.  

The use of renewable resources for the synthesis of polymeric materials must be de-
veloped further because it offers the potential to replace petroleum-derived plastic mate-
rials. In terms of sustainability, this offers a noteworthy reduction in CO2 emissions, dis-
playing how polymers can play a role in reducing the use of fossil resources. The polymer 
industry and the related market will change in the coming future, but it continues to be 
productive and provide a range of opportunities. 

Conflicts of Interest: The author declares no conflict of interest. 
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