
����������
�������

Citation: Ojeda, E.; García-Barrientos,

Á.; Martínez de Cestafe, N.; Alonso,

J.M.; Pérez-González, R.;

Sáez-Martínez, V. Nanometric

Hydroxyapatite Particles as Active

Ingredient for Bioinks: A Review.

Macromol 2022, 2, 20–29. https://

doi.org/10.3390/macromol2010002

Academic Editor:

Leyre Pérez-Álvarez

Received: 24 November 2021

Accepted: 24 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Nanometric Hydroxyapatite Particles as Active Ingredient for
Bioinks: A Review
Edilberto Ojeda, África García-Barrientos, Nagore Martínez de Cestafe, José María Alonso , Raúl Pérez-González
and Virginia Sáez-Martínez *

i+Med S. Coop., 01510 Vitoria-Gasteiz, Spain; eojeda@imasmed.com (E.O.); agarcia@imasmed.com (Á.G.-B.);
nmartinez@imasmed.com (N.M.d.C.); jalonso@imasmed.com (J.M.A.); rperez@imasmed.com (R.P.-G.)
* Correspondence: vsaez@imasmed.com

Abstract: Additive manufacturing (AM), frequently cited as three-dimensional (3D) printing, is a
relatively new manufacturing technique for biofabrication, also called 3D manufacture with bioma-
terials and cells. Recent advances in this field will facilitate further improvement of personalized
healthcare solutions. In this regard, tailoring several healthcare products such as implants, pros-
thetics, and in vitro models, would have been extraordinarily arduous beyond these technologies.
Three-dimensional-printed structures with a multiscale porosity are very interesting manufacturing
processes in order to boost the capability of composite scaffolds to generate bone tissue. The use
of biomimetic hydroxyapatite as the main active ingredient for bioinks is a helpful approach to
obtain these advanced materials. Thus, 3D-printed biomimetic composite designs may produce
supplementary biological and physical benefits. Three-dimensional bioprinting may turn to be a
bright solution for regeneration of bone tissue as it enables a proper spatio-temporal organization of
cells in scaffolds. Different types of bioprinting technologies and essential parameters which rule
the applicability of bioinks are discussed in this review. Special focus is made on hydroxyapatite
as an active ingredient for bioinks design. The goal of such bioinks is to reduce the constraints of
commonly applied treatments by enhancing osteoinduction and osteoconduction, which seems to be
exceptionally promising for bone regeneration.

Keywords: additive manufacturing; 3D printing; bioprinting; bone cements; hydroxyapatite;
biomimetic

1. Introduction

All along the processes of biomineralization, the organism possesses the ability to
produce and deposit different types of minerals with the purpose of hardening or stiffening
existing tissues. Among them, calcium phosphates (CaP) can be found [1]. These salts are
the dominant mineral components in vertebrate organisms in bone and tooth as well as
in pathological calcifications of tissues: calculus and stones in the oral cavity and urinary
system, or artherosclerotic damages.

Calcified tissues, such as bones, may be designed as anisotropic composites of natural
origin. These tissues are composed of biominerals included in a protein matrix together
with water and other organic materials. The mineral phase of the bone is based on several
forms of calcium phosphates and constitutes 65–70% of it, water accounts for 5–8% and the
organic phase, which is mainly collagen, comprises the rest [2].

The main mineral form of the mammals’ bones is named biological apatite. This
material is an apatite that displays a Ca/P ratio below 1.67 together with a lower amount
of hydroxy groups and a higher quantity of carbonates [1]. Synthetic hydroxyapatite
(Ca10(PO4)6(OH)2 or HA) is aimed to possess similarity to this biological apatite [3].

Therefore, synthetic hydroxyapatite has been commonly employed as a biomaterial
for orthopaedic [4] and dental purposes as well as for improving or exchanging hard
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tissues [5]. Noteworthy this material has been also tested as a drug delivery system as it
displays enhanced stability and ability to target biological systems. In fact, these types of
inorganic materials rely on their appropriate pore size to store a high amount of therapeutic
molecules in the pores [6].

Biomaterials of synthetic origin composed of HA have been broadly researched as
components of artificial bone grafts as well as surface coating agents. These materials
are bioactive and biocompatible by definition and display mechanical properties and a
porous structure that enables their implantation into the human body [7]. In this regard,
the mechanical strength and the structure of the HA directly affects the osteointegrative,
osteoinductive and osteoconductive characteristics of the material [8,9]. For example,
small-sized HA crystals are rapidly dissolved, which is of great aid for skeletal disorders
such as osteoporosis and other metabolic conditions [7]. Nanosized HA also receives
the name HA nanoparticles and possesses a grain size of less than 100 nm in at least
one dimension. HA nanoparticles display a high surface area and a fine nanostructure,
close to that of the mineral discovered in hard tissues [10]. Indeed, the bioceramics which
rapidly stimulate osteointegration and bone tissue generation are those that imitate the
composition and structure of the bone mineral. In this regard, it has been demonstrated
that ceramic biomaterials produced from HA nanoparticles show an improved resorbability
and enhanced bioactivity than ceramics of micrometre range size [11,12]. The liberation of
calcium ions from HA nanoparticles is comparable to that from apatite of biological origin
and integrates more rapidly with tissues than that from rough crystals. In addition, some
research works indicate that nanoscale HA has the potential ability to diminish apoptotic
cell death and therefore to enhance the proliferation of cells and their activity attributed
to the growth of bone tissue [13,14]. The enhanced proliferation and differentiation of
cells may be caused by the larger surface area and the improved surface properties of HA
nanoparticles compared to micron-sized ones. As a consequence cell adhesion and cell–
matrix interactions are by far greater [15]. Consequently, bioceramics and biocomposites,
produced from HA nanoparticles, have demonstrated to be one of the most interesting
materials for a wide range of applications in biomedicine [2].

The printing of biomaterials in a controlled and precise manner is essential for the
fabrication of two-dimensional (2D) and three-dimensional (3D) cell structures where
biomaterials must be located between cells to hold the gravitational force. The design of
the appropriate bioink is the main challenge for bioprinting. In this regard, convenient
bioinks for producing active bone substituents need to display features such as biomimicry,
biocompatibility, bioprintability, biodegradability and mechanical integrity [16,17]. Besides,
bioprinting parameters including the effects of pressure, temperature, nozzle size of the
bioprinter, bioink viscosity, the macrostructure of the resulting material (i.e., porosity) and
crosslinking methods are issues of consideration for the production of substitutes of bone
tissue [18,19].

2. Bioprinting: Technology and Suitable Biomaterials

Three-dimensional bioprinting is a type of additive manufacturing that uses biomate-
rials to generate 3D objects that will have a biological impact [20]. The route to 3D bioprint
an item consists of several elements: data acquisition to obtain the 3D models, the material
selection to bioprint and functionalization by adding other components to the item [21].
Since 1984 with the invention of stereolithography (SLA) to print objects in 3D (dimensions)
to 1988 with the first bioprinting by inkjet printer to place cells by the technique of cyto-
scribing [22], the 3D and 3D bioprinting technology has been greatly improved. In 2002,
the first bioprinting technique based on extrusion was disclosed and then commercialized
as the 3D-Bioplotter [23]. From there many bioprinters and bioprinting products have been
introduced, such as Tissue Scribe by 3D Cultures, LulzBot Bio by Lulzbot, BioX by Cellink,
etc. Although progress has been made in these types of products, to date, it is unfeasible to
obtain the 3D bioprinting of organs that possess full functionality.
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Within bioprinting, there are two types of printing objects: those that involve the
fabrication of non-living objects, such a prosthesis, scaffolds, medical guides, etc. [24,25]
and the fabrication of living cellular objects such as cartilage, skin, nerves or bones, among
other examples [20,26], where bone appears to be in a more advanced stage than other
tissues for application in humans [27–29]. Three-dimensional bioprinting essentially relies
on three paths: (a) extrusion, (b) droplet-mediated and (c) UV/photocuring-mediated
bioprinting. A summary is displayed in Figure 1.
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2.1. Extrusion-Based Bioprinting

Bioprinting based on extrusion moves the bioink through a nozzle mechanically
or pneumatically, to generate microfilaments in a continuous way that are placed on a
substrate (solid or liquid) to form desired structures. This way may be employed to print
a variety of biomaterials with different viscosities and concentrations of cells. There are
several features, such as the diameter of the nozzle, temperature, speed of the movement,
pressure and speed of the extrusion, and path interval which must be taken into account
when extrusion bioprinting is employed. Depending on the extrusion method this type of
bioprinting can be classified as pneumatic guided, piston guided and screw driven [30].
Extrusion, which is pneumatically guided, releases liquid through the dispensing nozzle by
employing compressed air [21]. Extrusion driven by a piston is a system linked to a motor
by means of a guide screw that is able to provide the piston with rotational motion [31,32].
As mentioned, bioprinting based on extrusion is known to be the most suitable, economical
and typical approach because of its versatility and affordability. Therefore, there are several
bioprinters commercially available on the market such as Tissue Scribe, BIOBOTTM BASIC,
Engine HR, LulzBot Bio, Allevi, BIO V1, BIO XTM and many more [29,33] that rely on
extrusion methods.

2.2. Droplet-Based Bioprinting

Compared to the extrusion technique, this type of bioprinting is based on the pro-
duction of individual small droplets resulting in high-resolution 3D-printed structures.
Furthermore, according to the formation method of the droplets, this type of bioprinting can
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be separated into bioprinting based on inkjet, electrohydrodynamic jetting and bioprinting
aided by laser [33].

The first one is the process of inkjet printing by the formation of individual droplets
that are aimed at a defined location, and the subsequent droplet–substrate interaction.
Furthermore, inkjet bioprinting may be divided into two modes: continuous and drop-on
demand. Continuous inkjet relies on a phenomenon that displays the innate tendency of a
stream of liquid to suffer a morphological transformation to become a line of individual
drops. The ink provided in continuous inkjet is usually conductive and is driven by
magnetic or electric forces [34]. Inkjet printing based on drop-on demand is classified into
thermal, piezoelectric, and electrostatic, where such a division is made based on droplet
motivation mechanisms [35,36]. This technology has enabled applications in industry
ranging from microelectronics to the manufacturing of ceramics and biomedicine [37,38].
Another type of droplet bioprinting is thermal inkjet bioprinting where the thermal actuator
is heated by a manageable impulsive voltage which leads to partial vaporization and
formation of small bubbles [38]. Piezoelectric inkjet bioprinting, applies an actuator of
piezoelectric nature in order to create droplets. In this case, the voltage provokes a rapid
change in the chamber volume that results in the generation of acoustic waves, that provide
a pulse of pressure for bioinking [39]. Electrostatic inkjet bioprinting is driven by the
voltage given to a motor and a platen, provoking a bend on a platen that produces the
bioink by extrusion. This technique displays an enhanced resolution of printing and a
remarkable efficacy to eject inks of high viscosity which allows the bioprinting of, for
example, gelatin. In this case, the broadness of the thinnest printed line was as small as
6 µm and was able to precisely print scaffolds for the culture of living cells [40].

Electrohydrodynamic is the second type of droplet-based bioprinting, where jetting is
driven by filling a metallic nozzle with bioink for generating a meniscus of spherical shape
at the nozzle tip. Next, a high voltage is produced between the substrate and the nozzle
to generate an electrical field. As a result, droplets are expelled under a sufficient voltage
when the electrostatic force breaks the surface tension [41].

Finally, laser-assisted bioprinting is a method that involves a contact-free and nozzle-
free printing procedure to place biomaterials in a controlled manner onto the surface of
materials. This type of printing includes LIFT, LGDW, AFA-LIFT, biological laser processing
(BioLP), and matrix-assisted pulsed laser evaporation direct writing (MAPLE-DW) [42–44].
As an example, this technology has been used for the simultaneous bioprinting of mes-
enchymal stromal cells, together with collagen and nanohydroxyapatite, to improve the
regeneration of bone tissue in a defect model in mice [43].

2.3. Photocuring-Based Bioprinting

This technique employs the photopolymerization properties of UV active polymers
under accurately tailored UV radiation. Moreover, photocuring-based bioprinting includes
two processes: stereolithography and digital light processing. Stereolithography printers
have a tank that is filled with bioinks. Inside this tank, there is a flat structure that shifts up
and down. Once the initial layer is printed, the platform moves to the superficial area of
the solution of the bioink. Following, the liquid hardens point by point after exposition
to the UV radiation. On the other side, digital light processing uses the same mechanism
of stereolithography but solidifies a complete layer at once. Complex biostructures can be
precisely printed with superb spatial exactitude, tailored physicochemical attributes and
even with biochemically modified cells [45,46].

2.4. Biomaterials for 3D Bioprinting

With all the techniques specifically developed to print biomaterials, it becomes essen-
tial to match the best biomaterial to the most suitable technique in order to extract the best
performance from the biomaterial. Moreover, it must be noticed that biomaterial-based
bioink is one of the most critical components of 3D bioprinting due to its great impact
on the generation of biological structures and especially on their behaviour. Within 3D
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bioprinting materials, biocompatibility, homogeneous degradation, and easy printability
are noteworthy aspects to consider. In general, biomaterials for 3D printing may be divided
into natural and synthetic depending on their nature. Research on these materials proposed
them as building blocks for 3D structures with the aim of repairing and replacing sections of
organs of the body [47,48]. Within synthetic materials, there are the Polylactic Acid (PLA),
Poly-D, L-Lactic Acid (PDLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Glycol
(PEG), Polyether Ether Ketone (PEEK), Polycaprolactone (PCL), PolyButylene Terephtha-
late (PBT), PolyUrethane (PU), PolyVinyl Alcohol (PVA), and PolyLactic-co-Glycolic Acid
(PLGA) [49–51]. These synthetic polymers are identified for their mechanical properties to
form defined structures due to their high strength.

On the other hand, natural biopolymers, such as alginate, gelatin, cellulose, hyaluronic
acid, collagen or chitosan, are known for their high viscosity, biocompatibility, degradation,
and low cost. These types of polymers have been used to develop bioinks, which are loaded
with living cells, and biomolecules in a cellular-matrix environment [52,53].

Hence, the use of synthetic materials has spread in the last few years above the natural
materials to solve the former problems of the last related to their scarce rheological proper-
ties, which are not optimal for printability. In this regard, bioinks must be nontoxic and
printable at low temperatures since degradation of biomaterials might occur. Furthermore,
it must be considered that using soft biomaterials based on water-friendly polymers can
offer a cell-friendly environment for developing cell-laden structures and providing a con-
ducive environment for cellular growth and development. Hydrogels with their high water
content and tissue-mimicking properties have enabled their extended use in engineering of
biological tissues [47,54]. In general, polymers capable of forming crosslinked structures
such as hydrogels are a good selection due to their ability to retain an abundant quantity of
water in them but keeping good mechanical properties. Thus, providing a physiological
environment-type to biomolecules or cells.

3. Nanohydroxyapatite for Bioprinting

Fabrication of bone tissue substitutes can be performed using not only a single bioink
but also a combination of bioinks in a composite material, combining the advantageous
properties of each bioink in a synergic way to improve properties such as mechanical
strength, printability, biocompatibility, and gelation characteristics. Hydroxyapatite (HA)
has been widely investigated as a bioactive, osteoinductive and osteoconductive bioma-
terial, which makes it useful to be used as a porous replacement of damaged natural
bone [55,56] (see Figure 2).

HA is a calcium phosphate. These inorganic salts have been thoroughly investigated
and employed as inorganic fillers in bioprinting and the fact that around 60 wt% of bone
is made of HA makes it an interesting material for research in this field [57]. Due to its
chemical compositions and the release of specific ions when dissolved, HA can influence
the differentiation of stem cells or progenitor cells leading to, biological responses, such
as osteogenic responses. Furthermore, scaffolds for bone regeneration with accurately
controlled sizes of pores and interconnectivity between them can be fabricated using
3D-printing techniques and HA-based bioinks.

Bone cements are composed of a self-curing acrylic polymer that consists of a pow-
der fraction made up of the polymer, generally, methyl methacrylate, a polymerization
initiator and a liquid fraction made up of the monomer. When the monomer and polymer
are brought into contact, the monomer polymerization process begins. This process is
progressive and the mixture, fluid at first, becomes pasty to obtain a resistant and non-
reabsorbable solid material. The polymerization reaction is exothermic, reaching up to
80 ◦C, and is carried out in the operating room itself. This polymerization process is not
optimal and therefore new technologies are demanded that can provide resorbable bone
cements to be incorporated into the bone tissue. Bone cements can incorporate radiopaque
chemical elements in their formulation with the function of revealing in the radiological
examination the place where the cement was applied. Antibiotics may be added to bone
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cement formulations so they function as prophylactics to reduce the incidence of infectious
processes and as a treatment for prosthetic infections and other bone infections [58,59].
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Hydroxyapatite has appeared as an emerging bone cement material to promote bone
formation and growth which has been demonstrated in various orthopaedic and dental
applications [60]. HA displays advantages over other bone-filling materials such injectabil-
ity, malleability and can be applied at body temperature. Furthermore, HA also performs
controlled release of active substances [61,62] and may be used as an effective carrier of
growth factors for osteoinduction, via sustained release [8]. HA is radiopaque which
enables radiological examination [63] as well. Newly designed bone cements for bone
tissue regeneration will attract new studies on HA-based bioinks, which are the base for
bioprinted composite hydrogels incorporating HA particles. These composite bioinks, can
provide in situ crosslinking effects and add for example mineralization capability as an
extra functionality to the matrix. Intradermic injection of HA fillers has shown properties
as collagen and elastin production, angiogenesis, and dermal cell proliferation [64]. Further
functionalization with active molecules can enhance printability and local drug release
properties for advanced therapies.

HA as single-component material for load-bearing applications gets limited usability
due to its slow degradation and low mechanical strength. Nonetheless, HA particles can be
used as reinforcing agents in tough and flexible polymer matrices [65], tailoring mechanical
properties, which is of great interest for cells differentiation [66]. However, issues like
specific ion release and its influence on cell viability, proliferation and migration have to be
examined in the near future. In this regard, the interactions of the active filler components
such as HA of 3D constructs and encapsulated cells by direct contact, on the overall (time-
dependent) cell compatibility of the constructs have so far not been considered in detail in
the published literature.

Although multi-scale porosity scaffolds are of special interest in 3D bioprinting there
are several technical challenges encountered in developing 3D scaffolds of this kind, mainly
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because of the challenge of making reproducible and controlled manufacture of a fully
interconnected macro- micro-porous scaffold. One of the best approaches proposes the
combination of porogen leaching and 3D printing, which results in the formation of microp-
orosity in a controlled manner within the geometry of 3D-printed scaffolds [67]. The highly
ordered 3D-printed macroporous scaffolds manufactured using this technique possess
micropores whose dimensions are in the range of those beneficial for osteogenesis, as
previously reported [68,69].

As described, the synergy between the HA chemical (composition and ions release)
and morphological properties, enhances its bioactivity both in vitro and in vivo. More-
over, as mentioned earlier, hydroxyapatite is employed as a strategically incorporated
ingredient to enhance the osteogenic properties of generally relatively inert polymeric
biomaterials. Therefore, the manufacturing of a bioactive scaffold with HA, which displays
nanoscale topographical features to enhance initial cell differentiation, microporosity for
the accumulation of ions that promote biomineralisation, and a macro-porous network
of polymer materials for facilitating vascularisation, represents a sound strategy for bone
regeneration [70].

4. Conclusions

Recent literature on 3D printing of hydroxiapatite-based bioinks for various appli-
cations has been revised in this review. Three-dimensional bioprinting is an additive
manufacturing procedure that uses biomaterials to build 3D objects with important appli-
cations in surgery and orthopaedics, reparation of internal organs and tissue engineering.
Nowadays, bone repair and bone implants are the most advanced technological applica-
tions on the way to clinics.

Among the most popular printers, extrusion bioprinting is the most used technique
in this field. Depending on the bioink, extrusion printers can fabricate scaffolds with
defined shapes and controlled and interconnected porous structures. The fabrication of
homogeneous material-based scaffolds in bone tissue engineering has involved the use of
bioceramic–polymer composites and bioceramic–hydrogel mixtures. Biocompatible poly-
mers from synthetic origin as PEG and PLGA and from natural sources have been broadly
used as organic parts of composites and mixtures made of bioceramics and polymers
for bone tissue engineering to fabricate elastic bones or artificial EC matrices to promote
proliferation and cellular regeneration. Hydroxyapatite (HA) is the most widely used bioce-
ramics due to its exceptional osteoconductivity and bioactivity as well as its bone resorption
properties. The addition of HA to polymers and hydrogels improves the osteogenic and
rheological properties of the printed composite platform enhancing mechanical consistency
and form reliability. Moreover, the use of functionalized HA increases the bioavailability
of certain ions of interest or other biological substances, through their sustained release
over time.

Despite the high potential of this technique, 3D printing is still a very expensive
and technically complex methodology. To continue advancing in the development of this
new technology it is necessary to improve the optimization of the platform design, better
knowledge of the cells and physiology of the organ and most importantly, the optimization
of these hydroxyapatite-based biomaterials that can be printed and that can model the
structural and functional complexity of human bone.
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1. Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249,

321–330. [CrossRef]
2. Sadat-Shojai, M.; Khorasani, M.T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with

diverse structures. Acta Biomater. 2013, 9, 7591–7621. [CrossRef]
3. Malmberg, P.; Nygren, H. Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry

(TOF-SIMS). Proteomics 2008, 8, 3755–3762. [CrossRef] [PubMed]
4. Petit, R. The use of hydroxyapatite in orthopaedic surgery: A ten-year review. Eur. J. Orthop. Surg. Traumatol. 1999, 9, 71–74.

[CrossRef]
5. Balhuc, S.; Campian, R.; Labunet, A.; Negucioiu, M.; Buduru, S.; Kui, A. Dental Applications of Systems Based on Hydroxyapatite.

Crystals 2021, 11, 674. [CrossRef]
6. Mondal, S.; Dorozhkin, S.V.; Pal, U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyap-

atite. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2018, 10, e1504. [CrossRef] [PubMed]
7. Huang, Y.T.; Imura, M.; Nemoto, Y.; Cheng, C.H.; Yamauchi, Y. Block-copolymer-assisted synthesis of hydroxyapatite nanoparti-

cles with high surface area and uniform size. Sci. Technol. Adv. Mater. 2011, 12, 045005. [CrossRef]
8. Zhou, M.; Geng, Y.M.; Li, S.Y.; Yang, X.B.; Che, Y.J.; Pathak, J.L.; Wu, G. Nanocrystalline hydroxyapatite-based scaffold adsorbs

and gives sustained release of osteoinductive growth factor and facilitates bone regeneration in mice ectopic model. J. Nanomater.
2019, 2019, 1202159. [CrossRef]

9. Suchanek, W.; Yashima, M.; Kakihana, M.; Yoshimura, M. Processing and mechanical properties of hydroxyapatite reinforced
with hydroxyapatite whiskers. Biomaterials 1996, 17, 1715–1723. [CrossRef]

10. Lodoso-Torrecilla, I.; Klein Gunnewiek, R.; Grosfeld, E.C.; De Vries, R.B.M.; Habibović, P.; Jansen, J.A.; Van Den Beucken, J.J.J.P.
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