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Abstract: Nickel-based ethylene polymerization catalysts have unique features, being able to produce
macromolecules with a variable content of branches, resulting in polymers ranging from semicrys-
talline plastics to elastomers to hyperbranched amorphous waxes and oils. In addition to Brookhart’s
α-diimine catalysts, iminopyridine Ni(II) complexes are among the most investigated systems. We
report that Ni(II) complexes bearing aryliminopyridine ligands with bulky substituents both at the
imino moiety and in the 6-position of pyridine afford either hyperbranched low molecular weight
polyethylene oils or prevailingly linear crystalline polyethylenes or both, depending on the ligand
structure and the reaction conditions. The formation of multiple active species in situ is suggested
by analysis of the post-polymerization catalyst residues, showing the partial reduction of the imino
function. Some related arylaminopyridine Ni(II) complexes were also synthesized and tested, show-
ing a peculiar behavior, i.e., the number of branches of the produced polyethylenes increases while
ethylene pressure increases.

Keywords: olefin polymerization; nickel; catalysts

1. Introduction

Following the breakthrough discoveries of Ni(II) α-diimine catalysts by Brookhart
et al. [1,2], a huge number of studies from both academia and industry focused on the
development of new late-transition metal olefin polymerization catalysts over the last two
decades. Among the large variety of ligand structural variations, the arylimino-pyridyl
moiety was one of the most investigated, after the independent successful studies of
penta-coordinate 2,6-bis(arylimino)pyridyl Fe(II) and Co(II) complexes by the groups of
Brookhart [3] and Gibson [4]. In addition to catalysts supported by such tridentate [N,N,N]
ligands, a large number of complexes of bidentate [N,N] iminopyridine ligands with diva-
lent metals like Fe(II), Co(II), and especially Ni(II) and Pd(II) have been synthesized and
tested in the polymerization of ethylene [5,6] and in the copolymerization of ethylene with
polar vinyl monomers, such as acrylates [7,8]. Simple modification of the steric and elec-
tronic features of the (imino)pyridine ligands and their usually easy preparation allowed a
fine tuning of the polymerization/oligomerization performance of their metal complexes.
E.g., limiting the discussion to Ni(II) complexes, early studies by Laine et al. [9] reported
complexes bearing 2,6-alkyl-phenyl substituents on the imino moiety, producing nearly lin-
ear or moderately methyl branched low molecular weight polyethylenes (see Scheme 1A).
Introduction of a methyl substituent in the 6-position of pyridine resulted in the production
of a more linear polyethylene with slightly higher molecular weight and lower activity [10].
A related ligand modification introducing a 2,6-dialkylphenyl substituent in the 6-position
of pyridine resulted in prevailing ethylene dimerization to 1-butene with minor amounts of
C6, C8, and higher oligomers [11]. A large number of complexes with increasing steric bulk
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on the arylimino moiety of the ligand, e.g., o-benzhydryl, dibenzhydryl or dibenzocyclo-
heptyl substituents but no substituents on the pyridine moiety, have been synthesized and
tested by the group of Sun [12–18], resulting in thermally stable and highly active catalysts
yielding low molecular weight moderately branched polyethylenes (Scheme 1B). Incorpo-
ration of very bulky 8-arylnaphtyl substituents on the imino moiety [19], blocking only one
of the two coordination sites at the metal center, resulted in catalysts producing moderately
branched polyethylenes with increased molecular weight (∼104 g mol−1) (Scheme 1C).
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Scheme 1. Some relevant previously reported iminopyridine Ni(II) catalysts.: (A) arylimino-pyridine
complexes [9–11]; (B) benzhydryl-substituted arylimino-pyridine complexes [14–16], and (C) “half-
sandwich” pyridine-imine complexes [19].

In a previous paper [20], we reported the production of hyperbranched low molecular
weight polyethylene oils by the iminopyridine complex 1 (see Scheme 2) activated by
AlEt2Cl. Both the typical degree of branching (≈100 branches per 1000 carbons) and the
molecular weight of the produced samples (≈1000 Da) were poorly sensitive to the reaction
conditions. However, during that study, we noticed that when the polymerization was
performed at high monomer pressure and low temperature (e.g., 45 atm and 20 ◦C), traces
of solid polymer were obtained together with the low molecular weight polyethylene oils.
We have now investigated complex 1 and some related Ni(II) complexes in ethylene poly-
merization also at sub-ambient temperature and high pressures, resulting in the production
of solid polymers, in some cases consisting of fractions with different crystallinities, either
as the only product or together with a methanol-soluble oily fraction. The possible role of
the in situ formation of multiple active species owing to ligand structure modifications has
been evaluated by analysis of the catalyst residues after the reaction and by the synthesis
and testing of the corresponding aminopyridine Ni(II) complexes. For the latter catalysts,
we have found a dependence of the branching degree on the ethylene pressure, which is
opposite to that usually found, i.e., the number of branches increases at increasing pressure.
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2. Experimental Section
2.1. General Conditions

All procedures sensitive to air or moisture were performed under a nitrogen atmo-
sphere using standard Schlenk techniques. Glassware used were dried in an oven at
120 ◦C overnight and exposed three times to vacuum–nitrogen cycles. Solvents were dried
by refluxing over either CaH2 for dichloromethane or metallic sodium for toluene and
o-dichlorobenzene and then distilled under nitrogen. Deuterated solvents were purchased
from Aldrich and stored in the glovebox over 3 Å molecular sieves before use. All other
reagents were purchased from Aldrich and used as received. Ethylene was purchased from
SON and used without further purification.
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2.2. Characterization Methods
2.2.1. Nuclear Magnetic Resonance Spectroscopy (NMR)

The NMR spectra were recorded on Bruker Advance 400 and Bruker 600 MHz Ascend
3 HD spectrometers.

1H NMR spectra are referenced using the residual solvent peak at δ 7.26 for CDCl3
and δ: 6.93, 7.19 for C6D4Cl2. 13C NMR spectra are referenced using the residual solvent
peak at δ 77. 16 for CDCl3 and δ: 127.19, 130.04, 132.39 for C6D4Cl2.

2.2.2. Size-Exclusion Chromatography (SEC)

The molecular weights (Mn and Mw) and the molecular mass distribution (Mw/Mn)
of the oily hyperbranched oligoethylene samples were measured by Size-exclusion chro-
matography (SEC) at 30 ◦C, using THF as solvent, an eluent flow rate of 1 mL/min, and
narrow polystyrene standards as reference. The measurements were performed on a
Waters 1525 binary system equipped with a Waters 2414 RI detector using four Styragel
columns (range 1000–1,000,000 Å). Molecular weights (Mn and Mw) and polydispersities
(Mw/Mn) of crystalline polyethylene samples were determined by high-temperature size
exclusion chromatography (HT-SEC) using Waters GPC-V200 RI detector at 135 ◦C using
1,2-dichlorobenzene as solvent and Styragel columns (range 1 × 107–1 × 103).

2.2.3. Differential Scanning Calorimetry (DSC)

Melting points (Tm) and crystallization points (Tc) of the polymer samples were
measured by DSC using aluminum pans and a DSC 2920 TA Instruments apparatus,
calibrated with indium. Measurements were performed under nitrogen flow with a heating
rate of 10 ◦C min−1 in the range of −100 to +200 ◦C. DSC data were processed with TA
Universal Analysis v2.3 software and are reported for the second heating cycle.

2.3. Ligands and Complexes Synthesis

Ligands L1–L6 and complexes 1–4 were synthesized as described in our previous pa-
pers [20–22]. Complexes 5–6 were synthesized following a procedure previously reported
for similar complexes [23].

2.3.1. Synthesis of Complex 5

To a solution of L5 (0.48 mmol, 0.180 g) in dry dichloromethane, [(DME)NiBr2]
(0.43 mmol, 0.133 g) was added. The reaction mixture was stirred at room temperature for
16 h. The solvent was removed under vacuum and the residues were washed with dry
hexane and dried to obtain a green solid (0.241 g, 95% yield).

2.3.2. Synthesis of Complex 6

To a solution of L6 (0.39 mmol, 0.150 g) in dry dichloromethane, [(DME)NiBr2]
(0.35 mmol, 0.108 g) was added. The reaction mixture was stirred at room temperature for
24 h. The solvent was removed under vacuum and the residues were washed with dry
hexane and dried to obtain a green solid (0.196 g, 93% yield).

2.4. General Procedure for Ethylene Polymerization

Ethylene polymerizations were carried out in a stainless-steel autoclave equipped
with a magnetic stirrer. The reactor was first dried overnight at 120 ◦C in an oven, cooled
under vacuum, then pressurized with ethylene and vented three times. The reactor was
thermostated at defined temperatures, charged with toluene, the catalyst and AlEt2Cl as
cocatalyst and then pressurized at the prescribed ethylene pressure. The mixture was
stirred for a defined time under constant ethylene pressure. Then the mixture was vented
and poured into acidified methanol. The resulting solid (when present) was filtered. The
solution was treated with hexane and water, then the organic layer was dried over MgSO4,
filtered and the volatiles were distilled off in a rotavapor. The resulting waxy or oily
residues were dried in vacuo overnight at 80 ◦C.
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3. Results

As mentioned in the Introduction, we have previously reported that complex 1 (see
Scheme 2) promote ethylene polymerization after activation with AlEt2Cl affording low
molecular weight (Mn~103 g/mol) polyethylene oils under a variety of reaction conditions
(T = 20 ÷ 50 ◦C; ethylene pressure 1 ÷ 50 atm) [20].

We have now tested complex 1 after activation with 200 equiv of AlEt2Cl under 50 atm
of monomer pressure at 0 ◦C (see run 1, Table 1): under these conditions, a solid polymer
was obtained as the prevailing product, in addition to the usual oily fraction recovered
from the reaction solution (see the Experimental section for details). 1H and 13C NMR
analysis of the solid and the liquid fractions (see Figures S1–S4) showed that the latter is a
hyperbranched polyethylene similar to those previously reported [20], while the former
is a moderately branched polyethylene containing prevalently methyl branches. DSC
analysis of the solid polymer showed two melting endotherms, a broad one around 90 ◦C
and a sharp one at 125 ◦C; similarly, two crystallization exotherms were observed (at
113 and 79 ◦C) when cooling the sample (see Figure S5). Changing the conditions of the
DSC analysis (e.g., using different heating or cooling rates) did not affect the results. SEC
analysis of the solid polymer indicated that the Mw was one order of magnitude higher
than that of the oily product and a rather broad polydispersity (Ð = 3.1).

Table 1. Ethylene polymerizations by complexes 1–4.

Run Complex T (◦C) P(ethylene) (atm) Time (h) Yield (g) Activity a Mn
b(kDa) PDI c % Branches d

1 e 1 0 50 4
1.00 f + 25 0.9 3.1 6.2
2.80 e,g 70 4.5 2.6 3.2

2 e 2 40 6 4 0.96 f 24 2.0 1.3 7.4
3 e 3 40 6 4 1.07 f 27 0.73 1.3 10.5
4 e 4 40 6 4 1.4d f 35 0.35 1.2 9.0
5 h 2 40 10 4 4.58 f 114 3.6 1.4 7.3
6 h 2 40 30 20 11.0 f 55 3.10 1.4 8.2
7 h 3 40 10 4 5.21 f 130 0.58 1.3 8.9
8 h 4 40 10 4 4.15 f 104 0.30 1.1 8.8
9 e 2 0 50 4 0.91 e,g 23 5.20 3.2 5.0

a Activity in kg mol[Ni]
−1 h−1.a,b Determined from the ratio between total resonance integral and unsaturated end group intensity in the

1H NMR spectra [24]. c Determined by size exclusion chromatography (SEC) vs. polystyrene standards. d Determined from 1H NMR
spectra [24]. e Polymerization conditions: Ni catalyst = 10 µmol (dissolved in 2 mL of o-dichlorobenzene), AlEt2Cl co-catalyst = 2 mmol,
solvent = 50 mL toluene. f Low-molecular weight polyethylene oil recovered from the reaction mixture. g Solid polyethylene precipitated
in methanol. h Polymerization conditions: Ni catalyst = 10 µmol (dissolved in 2 mL of dichloromethane), AlEt2Cl co-catalyst = 2 mmol,
solvent = 20 mL toluene.

The solid polymer sample was, thus, fractioned using boiling heptane in a Kumagawa
extractor, resulting in a soluble (75%) and an insoluble (25%) fraction: the latter was ana-
lyzed by 1H and 13C NMR, indicating a substantially linear polyethylene (methyl branches
< 1%) with no detectable unsaturated end groups (see Figures S6 and S7); accordingly, DSC
analysis showed only a melting endotherm at 130 ◦C (Figure S8). The heptane-soluble
fraction was analyzed similarly, resulting a more branched, lower melting polyethylene
(Figure S9).

Subsequently, we have tested several related complexes bearing different substituents
at the pyridino and at the imino moieties (complexes 2–4, see Scheme 2).

Complexes (2)–(4) were initially tested in the homopolymerization of ethylene after
activation with AlEt2Cl (200 equiv) at 40 ◦C and 6 atm monomer pressure (see Table 1,
runs 2–4): under these reaction conditions, all the complexes afforded hyperbranched low
molecular weight polyethylene oils, soluble in methanol, similar to those produced by
complex 1 [20].

Characterization of the polymer samples by 1H and 13C NMR analyses is reported in
the Supplementary Material. As observed for 1, multigram-quantities of low molecular
weight polyethylene oils were obtained under higher catalyst and monomer concentrations
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and for longer reaction times, suggesting that the catalysts are stable under these conditions
(see runs 5–8). Complexes 2, bearing a ketimino ligand, afforded polyethylenes having
higher molecular weights (see runs 2, 5, 6, Table 1) with respect to that produced by the
previously reported corresponding aldimino complex 1 [20].

Complex 2 was then tested under 50 atm of monomer pressure at 0 ◦C (see run 9,
Table 1): in this case, only a solid polymer was produced, while no oily product was
recovered from the reaction mixture. NMR analysis indicated a moderately branched
polyethylene (5% branches, see Figures S12 and S13), while DSC showed very broad
melting endotherms centered around 32 and 71 ◦C and very broad crystallization exotherms
centered around 57 and 24 ◦C (see Figure S14).

The production of fractions of macromolecules with different structures and molecular
weights suggest that different active species can be generated in situ by activation with
AlEt2Cl. With the aim to shed some light on the latter hypothesis, two polymerization
runs were carried out using complexes 2 and 3 activated by AlEt2Cl at 0 ◦C under 1 atm of
ethylene for 1 h (see Scheme 3). The reactions were quenched with acidified methanol, and
water was added; the mixtures were extracted with dichloromethane and, after solvent
removal, the crude product was filtered through a silica column and eluted with hexane
and then dichloromethane. The product isolated from the filtrate was analyzed by 1H NMR,
showing the presence of both the imine ligands and the corresponding amines deriving by
imine reduction. Interestingly, ligand modification after the polymerization run was more
relevant for the aldimine complex 3 than for the ketimine complex 2, since the fraction of
produced amine was 11% for the former and only 5% for the latter. Moreover, performing
the same experiment at higher temperature (40 ◦C) using the ketimine complex 2 resulted
in the formation of 22% of amine (see Figures S15 and S16). Following the suggestion of
the reviewer, we have performed a control experiment in the absence of ethylene, resulting
in the production of the original imino and the reduced amino ligands, as observed in the
presence of ethylene, and an additional amine species bearing an ethyl group on the carbon
in alpha position with respect to N atom (see Figure S17) [25].
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Following the above findings, we decided to synthesize the authentic amine Ni
complexes 5 and 6 (see Scheme 4) having ligand structures corresponding to the imine
complexes 1 and 2, respectively. The complexes were obtained in good yields by allowing
us to react the amine ligands and dimethoxyethane nickel dibromide in CH2Cl2 at room
temperature for 16 h (see the Experimental section).

Pyridilamino complex 5, after activation with AlEt2Cl, was tested in the polymeriza-
tion of ethylene at 0 ◦C under 50 atm of monomer, resulting in the exclusive production
of low molecular weight highly branched polyethylene oils (see run 10, Table 2). In con-
trast, the corresponding pyridylimino complex 1 under similar conditions (although using
higher dilution, see the Experimental Section) produced a mixture of solid polyethylene
and an oily fraction, with significantly higher yield (cf. run 1, Table 1). Pyridylamino
complex 6 under the same conditions also afforded low molecular weight highly branched
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polyethylene oils, although in very low amount (see run 11, Table 2). Complexes 5 and 6
were also tested at T = 40 ◦C under either 10 or 50 atm of ethylene pressure: in all cases low
yields of hyperbranched polyethylene oils were obtained. Interestingly, for both catalysts
the branching degree was higher at 50 atm than at 10 atm (cf. run 12 vs. run 13 and run 14
vs. run 15), at variance with all the literature results reported for Ni(II) catalysts affording
branched polyethylenes via a ”chain walking” mechanism [2].
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Scheme 4. Synthesis of pyridylamino complexes 5 and 6.

Table 2. Ethylene polymerization by aminopyridine complexes 5 and 6.

Run a Complex Temperature (◦C) P (atm) Yield (g) Activity b Mn
c (kDa) % Branches d

10 5 0 50 0.11 3.0 2.2 20.4
11 6 0 50 0.02 0.5 4.9 8.8
12 5 40 10 0.06 1.5 4.5 13.3
13 5 40 50 0.20 5.0 5.8 29.8
14 6 40 10 0.05 1.2 3.3 12.4
15 6 40 50 0.10 2.5 4.6 21.9
a Polymerization conditions: Ni catalyst = 10 µmol, AlEt2Cl = 2 mmol, solvent = 20 mL toluene, time = 4 h. b Activity in kg mol[Ni]

-1 h-1.
c Determined from ratio between total resonance integral and unsaturated end group intensity in the 1H NMR spectra [24]. d Determined
from 1H NMR spectra [24].

4. Discussion

It is well known that Ni(II) catalysts operate via a “chain-walking” mechanism of
polymerization, involving a number of β-hydride eliminations and reinsertions with
opposite regiochemistry: in this way, a variable content of branches of different lengths are
introduced in the polymer chain [2]. As established in the literature, the degree of branching
depends on temperature, monomer pressure, and catalyst structure: higher branching is
favored by higher polymerization temperature, lower monomer pressure and larger steric
bulk in the axial positions of the square-planar coordination sphere [1,2,26–30]. So, very
different products can be obtained from polymerization of ethylene only, ranging from
substantially linear and crystalline materials to elastomers to hyperbranched polyethylene
waxes and oils [1,2,26–31].

However, the above framework cannot explain the concomitant production of the
different types of macromolecules that we have observed in the above reported polymeriza-
tion runs by our Ni(II) catalysts bearing aryliminopyridine ligands with bulky substituents
both at the imino moiety and in the 6-position of pyridine. On the other hand, there are
many literature examples pointing to the easy modification in situ of olefin polymerization
catalysts based on imino complexes activated by aluminum alkyls [32–35], resulting in the
reduction of the imino functionality. Moreover, Gibson reported examples of reactions of
α-diimine and pyridylimine ligands with, e.g., AlMe3, resulting in Al imino-amide and
pyridyl-amide complexes arising from methyl group transfer from the aluminium centre
to the backbone carbon of the imine ligand [34]. So, it is reasonable to hypothesize that
multiple active species are generated under the examined conditions.

As a matter of fact, our experiments analyzing the fate of the iminopyridine Ni(II)
catalysts after the polymerization run showed the partial transformation of the original
ligands in the corresponding aminopyridines. This finding supports the multi-site nature
of our catalyst systems, at least under certain conditions.
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Looking for some further evidence on the matter, we have synthesized and tested two
aminopyridine Ni(II) complexes (5 and 6) having structures similar to the iminopyridine
complexes 2 and 3. While aminopyridine Ni(II) complexes have been previously reported as
efficient ethylene polymerization catalysts [36,37], only traces of uncharacterized oligomers
were obtained using aminopyridine complexes having aryl groups in the 6-position of the
pyridine moiety, similar to 5 and 6 [37].

Our polymerization results have shown that, under similar conditions (T = 0 ◦C,
P = 50 atm), the aminopyridine complexes produce only low amounts of hyperbranched
polyethylene oils, while the iminopyridine analogs afford mixtures of different types
of macromolecules (see above), again suggesting the possible modification of the imino
functionality. Interestingly, for the aminopyridine complexes more branched polyethylenes
are produced at higher monomer pressure, at variance with the usual behavior of Ni(II)
catalysts. The latter could be an interesting feature, since one of the main limitations of
Brookhart’s Ni(II) catalysts for practical applications in the field of elastomeric materials
obtained by ethylene feed only (without the need of comonomers such as propene or
1-hexene) is the fact that the polymers obtained under the high pressures required by the
industrial processes are substantially linear. Further investigation in this direction is in
progress in our laboratories.
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sample, Figure S13: 13C-NMR spectrum of a crystalline polyethylene sample, Figure S14: DSC
thermogram of a crystalline polyethylene sample, Figure S15: 1H-NMR spectra of the products of
reaction between complex 3 and AlEt2Cl, Figure S16: 1H-NMR spectra of the products of reaction
between complex 2 and AlEt2Cl.
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