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Simple Summary: Bird populations have been experiencing a rapid decline. Bird monitoring plays an
essential role in bird protection because it can help evaluate the conservation status of species. For bird
monitoring, recent work often uses acoustic sensors for bird sound collection and an automated bird
classification system for recognizing bird species. To build an automated bird classification system,
traditional machine learning needs to manually extract features and train the model to recognize
bird sounds. Recent advances in deep learning models make it possible to automatically extract
features. However, few studies have explored it for bird species classification. This study investigated
various transfer learning models for extracting deep cascaded features with multi-view spectrograms.
We found that deep cascade features being extracted from VGG16 and MobileNetV2 can achieve the
best performance using repeat-based spectrogram.

Abstract: Bird sound classification plays an important role in large-scale temporal and spatial en-
vironmental monitoring. In this paper, we investigate both transfer learning and training from
scratch for bird sound classification, where pre-trained models are used as feature extractors.
Specifically, deep cascade features are extracted from various layers of different pre-trained models,
which are then fused to classify bird sounds. A multi-view spectrogram is constructed to charac-
terize bird sounds by simply repeating the spectrogram to make it suitable for pre-trained models.
Furthermore, both mixup and pitch shift are applied for augmenting bird sounds to improve the
classification performance. Experimental classification on 43 bird species using linear SVM indicates
that deep cascade features can achieve the highest balanced accuracy of 90.94% ± 1.53%. To further
improve the classification performance, an early fusion method is used by combining deep cascaded
features extracted from different pre-trained models. The final best classification balanced accuracy is
94.89% ± 1.35%.

Keywords: bioacoustics; transfer learning; feature selection

1. Introduction

With the development of sensor techniques, acoustic sensors are now widely deployed
in the wild for collecting bird sounds [1]. Each day, several gigabytes of compressed data
can be generated by an acoustic sensor, which makes it difficult to manually analyze the
data [2]. Automated analysis of bird sounds is becoming very important [3–5].

Using the collected bird sounds, there are still several research questions that need
to be answered. For instance, (1) how many bird species are there in the place where bird
sounds are collected? (2) What is the number of each interesting bird species? (3) What is
the relationship between a bird’s vocalization and its behavior? Those questions can be
partly answered by analyzing the collected sounds [6,7]. However, thus far most previous
studies focused on the estimation of bird species in short recordings. Compared to the
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identification of an individual bird and detecting the start and stop time of bird song, this
is relatively simple [8]. For bird species classification in acoustic data, most earlier work
directly used and further modified speech/speaker recognition models to classify bird
species [9–11]. Recently, deep learning has been applied in the acoustic classification of
bird species [12,13]. However, there are still some challenges in achieving satisfactory
classification results for wild recordings, such as the small amount of annotated data and
the imbalance among bird species [14]. To deal with the small amount of annotated bird
data, there are two popular strategies: transfer learning and training from scratch using a
self-defined lightweight model.

Transfer learning is used to solve the basic problem of insufficient annotated training
data [15]. For the acoustic classification of bird species, various studies have used transfer
learning. Sevilla and Glotin presented an adaptation of the deep convolutional network
Inception-v4 tailored to solving bioacoustic classification problems [16]. Ntalampiras pro-
posed a Transfer Learning framework exploiting the probability density distributions of
ten different music genres for acquiring a degree of affinity between the bird species and
each music genre [17]. Zhong et al. evaluated three different models including convolu-
tional neural network (CNN) using VGG16 architecture, transfer learning (ResNet50) and
fine-tuning with pre-trained CNN model, and transfer learning (ResNet50) with custom
loss function and pseudo labeling [18,19]. Kumar et al. verified multiple deep transfer
learning models such as ResNet50, DenseNet201, InceptionV3, Xception, and EfficientNet
for classifying 22 bird species [20]. Dufourq et al. compared 12 transfer learning models
with or without fine-tuning for recognizing four bird species [21].

In addition to transfer learning, some previous studies used self-defined CNN models
for bird sound classification. Xie et al. used a VGGish model to classify 43 bird species [22].
Sinha et al. used braided convolutional neural networks to classify bird species [23].
Ruff et al. proposed a CNN model including four convolutional layers followed by two
fully connected layers [24]. Permana et al. presented a bird sounds classification study
using a self-defined CNN model having four convolutional layers followed by three fully
connected layers [25].

In this study, we investigated both transfer learning and training from scratch for bird
sound classification using five transfer learning models: VGG16, ResNet50, EfficientB0,
MobileNetV2, and Xception. For transfer learning, the VGG16 model was used to compare
transfer learning and training from scratch. Specifically, we extracted deep cascade features
from selected layers. Then, extracted deep features from different transfer learning models
were fused and put into linear support vector machines (SVM) for classifying bird species.
As for training from scratch, we unfroze all layers of those transfer learning models and
built an end-to-end bird species classification framework.

2. Materials and Methods

This section presents the framework of acoustic classification of bird species, as shown
in Figure 1. Here, we first preprocess bird acoustic data which are then characterized using
multi-view spectrograms. Next, five pre-trained models are investigated to find the best-
performing model. Finally, the deep cascade feature extracted from the best-performing
model is fused with other models to achieve the best performance using linear SVM.

2.1. Bird Recordings

A publicly available dataset, named CLO-43DS, is used to evaluate our proposed
method [26]. This dataset includes flight calls of 43 different North American wood-
warblers. The number of instances for all bird species is shown in Supplementary Figure S1.
All audio clips are recorded in different conditions using different recording devices in-
cluding highly directional microphones and omnidirectional microphones. In addition,
the signal-to-noise ratio varies among different recordings. The common names, scientific
names, and abbreviations of those 43 wood-warbler species involved in this dataset can be
found in Supplementary Table S1.
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Figure 1. The flow diagram of our proposed approach. Here, data augmentation is only applied in
the training phase.

2.2. Preprocessing and Multi-View Representation

For signal preprocessing, the duration of audio files in the CLO-43DS data is different,
and they cannot be directly used as the input to CNN. Therefore, the multi-variate varying
length audio data is repeated from the beginning to force the fixed duration of 2 s, which
has been used in [22,27].

In the CLO-43DS data, each audio clip is processed and clipped to only contain a single
flight call. Those audio clips are sampled at 22.05 kHz. The provided Mel-spectrograms
by the authors are obtained using 11.6 ms frame size with an overlap of 1.45 ms and
120 Mel-bands. It must be noted that 11.6 ms frame size is optimal for analysis of flight
calls as suggested by [28]. Finally, the Mel-spectrogram is converted to a log-magnitude
representation for further analysis.

In this study, the transfer learning model is used as a deep cascade feature extraction
program to characterize bird calls. Since the input of the transfer learning model should be a
three-channel feature representation, here we simply repeat Mel-spectrogram three times to
construct a multi-view spectrogram. In addition to repeated multi-view spectrograms, we
included HPSS (harmonic–percussive source separation)-based and delta-based multi-view
spectrograms for comparison.

The weights of selected transfer learning models are originally trained using natural
images (ImageNet [29]), which are different from Mel-spectrograms. Therefore, we assume
that training from scratch using pre-trained models can achieve better performance than
fine-tuning, which will be verified in the Experimental section.

2.3. Deep Cascade Feature

In this study, transfer learning is selected to obtain deep cascade features. Here, we
investigate five pre-trained models that have been trained on ImageNet: VGG16, ResNet50,
EfficientB0, MobileNetV2, and Xception. Specifically, the weights of those pre-trained
models are applied by selectively freezing layers of the model while training the model.
Take VGG16 for instance; it is shown in Supplementary Figure S2 whose original input size
is 224 × 224 × 3. However, the size of generated multi-view representation is 120 × 198 × 3.
Therefore, we ignore the top layer when loading VGG16. As for the feature construction,
we apply a global averaging pooling layer to four Conv layers which are further fused to
obtain the final deep cascade feature. Here, the dimension of the final feature set is 1408.
After the concatenated layer, we add a dense layer (512) and a dropout layer whose rate is
set to 0.5, which is used to address over-fitting. Finally, a dense layer with the number of
bird species (43) is added. For other pre-trained models, the layers that are selected and
concatenated are shown in Table 1.
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Table 1. Layers to concatenate deep features for five different transfer learning models. For all
transfer learning models, four individual layers are selected for extracting features except Xception,
where three layers are used for feature extraction.

TL Model Selected Layers for Generating Concatenated Deep Features

VGG16 block2_conv2 block3_conv3 block4_conv3 block5_conv3

ResNet50 conv2_block3_out conv3_block4_out conv4_block6_out conv5_block3_out

MobileNetV2 block_13_project_BN block_14_add block_15_add global_average_pooling2d

EfficientNetB0 block4c_add block5c_add block6d_add avg_pool

Xception block4_sepconv1 block5_sepconv1 block14_sepconv1 —

All deep models are trained using an Adam optimizer with an initial learning rate of
10−4. The categorical loss entropy and focal loss are utilized as the loss function. The batch
size is 32 samples, and the network is trained with 500 epochs. In addition, early stopping
is applied for addressing over-fitting.

2.4. Linear SVM

For the classification, we use the linear SVM based on LIBLINEAR library [30].
Here, an SVM model is considered as a representation of the data or a map of these
data to points in space; the data of different categories are divided by the hyperplane.
New data are then mapped into that same space, and a prediction is made regarding the
category they belong to, based on the side of the hyperplane they fall into. As for the
hyper-parameters, the default setting is used. To verify the effectiveness of using linear
SVM for the classification, we also report the result with the softmax layer.

2.5. Offline Data Augmentation: Pitch Shifting

For offline data augmentation, pitch shifting aims to modify the original pitch of a
sound. This technique has been demonstrated to be an effective method in previous audio
data analysis [31,32]. Here, pitch shifting is implemented using librosa.effects with two
factors 2 and −2. The examples of HEWA and GWWA using pitch shifting are shown in
Supplementary Figure S3.

2.6. Online Data Augmentation: Mixup

Mixup has been demonstrated to be an effective method to augment training data,
where pairs of data samples are mixed [33]. Let us define two different audio data x1 and x2,
and their respective one-hot encoded labels y1 and y2. Then, we obtain the mixed sample
and its label by a convex combination as follows:

xmin = λx1 + (1 − λ)x2

ymin = λy1 + (1 − λ)y2
(1)

where λ is a scalar sampled from a symmetric Beta distribution at each mini-batch generation:

λ ∼ Beat(λ, λ) (2)

where λ is a real-valued hyper-parameter to tune. In this study, the value of λ is set to 0.2.

3. Results
3.1. Comparison of Data Augmentation Methods

Figure 2 shows the classification results using pitch shifting or mixup. Note that the
error bars are also shown in Figure 2 and the following figures where each error bar is
a distance of one standard deviation above or below the average classification accuracy.
We observe that the use of online or offline augmentation can improve performance. This re-
sult verifies the effectiveness of augmentation techniques. For end-to-end classification,
pitch shifting (SpecAug) achieves the best performance, and the highest balanced accuracy
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is 90.00% with seven frozen layers. Here, frozen layers denote that the weights of those
layers in the trained model do not change when reused on a subsequent downstream
mission. Using the deep cascade feature with linear SVM, the highest balanced accuracy is
90.92% with four frozen layers. However, the difference between zero frozen layers (train
from scratch) and four frozen layers is only significant when using SpecAug + mixup as the
data augmentation method, with a significance level of 1% (t = 2.43, df = 4084, p = 0.0076).
For other augmentation methods, they do not show a statistical difference (p > 0.1).
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Figure 2. (a) Classification performance using deep cascade features with linear SVM, (b) End-to-end
classification using softmax. For deep cascade features using linear support vector machines (SVM),
mixup is slightly better than other methods except for having 15 frozen layers. For end-to-end
classification, spectral augmentation (SpecAug) achieves the best performance.

3.2. Comparison of Different Multi-View Representations

Simply repeated spectrogram achieves the highest balanced (90.94% ± 1.53%), which
is obtained by four frozen layers (Figure 3). In contrast, when all layers are frozen, the
performance is the worst. One reason is that the ImageNet weights are obtained by natural
images. However, the spectrogram is different from natural images. Thus, training from
scratch (0) or fine-tuning with a few frozen layers (4, 7) can obtain better performance.
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Figure 3. Comparison of three types of multi-view representation. Here, HPSS denotes harmonic–
percussive source separation. Among the three representations, repeat-based spectrogram achieves
the best performance.

3.3. Deep Cascade Features Using Different Pre-Trained Models

In addition to VGG16, five other pre-trained models are investigated. Based on
the classification result of VGG16, rather than fine-tuning the pre-trained CNN models,
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we simply choose to train on datasets from scratch without considering selecting the
optimal layers for extracting deep cascade features. VGG16 performs the best in terms of
balanced accuracy, with ResNet50 being the second best, and EfficientB0 being the third
best (Figure 4).
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Figure 4. Comparison of different pre-trained models using the same input: repeat-based spectrogram.
Here, VGG16 performs the best in terms of balanced accuracy.

3.4. Feature Fusion

To further improve the classification performance, we investigate feature fusion, where
the features extracted from different layers using the selected two models are fused. Specif-
ically, VGG16 is selected as the base model and combined with another model to better
characterize bird sounds. The fusion of deep cascade features extracted from VGG16 +
MobileNetV2 achieves the best performance (94.89% ± 1.35%), with VGG16 + EfficientB0
being the second best and VGG16 + ResNet50 being the third best (Figure 5). A previ-
ous study [34] has shown that VGG16 and MobileNetV2 have very different architectures
and feature selection processes. Therefore, deep cascade features being extracted from
VGG16 and MobileNetV2 are complementary, which explains the better performance of
VGG16 + MobileNetV2.
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Figure 5. Comparison of four early fusion-based models. Here, VGG16 + MobileNetV2 achieves the
best performance (94.89% ± 1.35%).

Finally, we visualize the confusion matrix of the best-performing model (VGG16 +
MobileNetV2) (Supplementary Figure S4). We can observe that the highest confusion is
between BLPW and MAWA, the second highest confusion is BTYW and PAWA, and BWWA
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and MAWA is the third highest. Here, the highest confusion is different from our previous
studies, which indicates the potential of improving the final performance by fusing different
models. However, the computational complexity of the final framework will be higher.

4. Discussion

For bird sound classification, we use scientometrics to analyze publications and re-
search trends. The bibliographic data are derived from the WoS core collection with all
indices, which is one of the largest and most comprehensive bibliographic databases cover-
ing multidisciplinary areas. The search strategy was defined as follows: TS=((acoustic* OR
audio OR sound* OR call* OR vocalization*) AND (monitoring OR classification OR analysis OR
recognition OR detection) AND (bird* OR avian*) AND (“Deep learning” OR CNN OR LSTM OR
RNN OR transformer)). In total, we obtained 111 publications, and our keyword network is
shown in Supplement Figure S5 in VOSviewer [35]. The size of the circle denotes the num-
ber of publications and the color represents the time. We can obtain that most publications
are related to “deep learning”. Of the 111 publications, 30 papers were published in 2021,
but there were only two in 2015, which indicates that this is a rapidly developing research
topic. In addition to the predefined search strategy, we added “AND (transfer learning)”.
Only 12 publications were obtained, which further verifies the need of investigating transfer
learning for bird sound classification.

For transfer learning, we use five models for the experiment: VGG16, ResNet50,
EfficientB0, MobileNetV2, and Xception. However, the original weights of those pre-trained
models are trained using natural images which are different from log-Mel spectrograms.
This difference explains the better performance using fewer frozen layers. For five different
pre-trained models, VGG16 achieves the best performance and an early fusion of VGG16
and MobileNetV2 achieves the best performance which verifies the usefulness of comple-
mentary models to be fused. We also compare our proposed method with other previous
studies and the proposed model achieves higher balance accuracies than 86.31% [22] and
88.7% [36]. In the work of [22], the authors used a fusion of two end-to-end frameworks:
Mel-CNN and subnet-CNN. As for [36], the authors explored handcrafted features for
classification. Compared to those methods, the use of deep cascaded features achieves the
best performance, which verifies their effectiveness in discriminating bird calls.

To further improve the classification performance, data augmentation is used.
Specifically, we only use pitch shifting to improve performance rather than stretch and
trim. One reason is that this CLO-43DS dataset is manually segmented and temporal
information is well documented. Preliminary experiments indicate that the use of tem-
poral scale augmentation such as trim does not help the classification. Meanwhile, the
CLO-43DS dataset is highly imbalanced, which might reduce the performance of deep
models. However, we do not apply any imbalance learning methods. One reason is that we
incorporate data augmentation methods in building deep learning models since previous
studies have demonstrated that data augmentation-based framework can handle class
imbalance problem [37].

Several interesting questions are still open for future research. Pre-trained models
are used for extracting features without optimizing the selection of layers for generating
concatenated deep features. In addition, this study used manually segmented bird sounds,
which might overestimate the performance when classifying bird species in continuous
recordings. In addition, the start and stop time of bird sounds in a continuous recording
is important for understanding bird behavior. Since we force all audio data to the fixed
duration, it will artificially create the oscillation structure for all bird calls, which explains
the lower performance using HPSS for creating feature representation. Bird species classifi-
cation has been widely explored, but the recognition of bird individuals needs more work.
Currently, all used transfer learning models are trained using natural images, which are
different from spectrograms. The performance might be improved if we obtain a model
which is originally trained using spectrograms. Moreover, with the use of image data of
birds, it will be possible to further improve the performance.
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5. Conclusions

In this study, we propose a deep cascade feature set for improved bird sound clas-
sification. The best-performing deep cascaded feature is constructed by concatenating
features extracted from two different pre-trained models in different layers. As for the
feature representation, simply repeated spectrogram achieves better performance using
VGG16 than HPSS- and delta-based multi-view spectrograms. Comparing two types of
data augmentation techniques, mixup is more suitable for extracting deep cascade features
which are then classified by linear SVM to realize bird sound classification. Pitch shifting
can achieve better performance for building an end-to-end classification framework. Finally,
an early fusion of deep cascade features being extracted from VGG16 and MobileNetV2
can obtain the highest balanced accuracy (94.89% ± 1.35%).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/birds4010011/s1, Table S1: The common names, scientific names,
and abbreviations of 43 bird species; Figure S1. The number of instances for all bird species in the
CLO-43DS dataset. Here, the x-axis denotes the abbreviations of common names of those 43 bird
species, which can be found in Table S1; Figure S2. Flowchart of bird sound classification system. Here,
four main steps are included which are preprocessing, multi-view representation, model training,
and classification; Figure S3. The example of Setophaga occidentalis and Vermivora chrysoptera
using pitch shift. (a) original Setophaga occidentalis, (b) Setophaga occidentalis using pitch shift with
a factor of 2, (c) Setophaga occidentalis using pitch shift with a factor of −2. (d) original Vermivora
chrysoptera, (e) Vermivora chrysoptera using pitch shift with a factor of 2, (f) Vermivora chrysoptera
using pitch shift with a factor of −2; Figure S4. Confusion matrix (%) of the best result using the
fusion of selected pre-trained models. Here, the x and y axes denote the code of each bird species to
be classified. The x-axis is the true label and y-axis is the predicted label.

Author Contributions: Conceptualization, J.X. and M.Z.; formal analysis, J.X. and M.Z.; data curation,
J.X.; writing, J.X. and M.Z.; visualization, J.X. and M.Z.; funding acquisition, J.X. and M.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No:
61902154). This work was also partially supported by the Natural Science Foundation of Jiangsu
Province (Grant No: BK20190579) and the Jiangsu Province Post Doctoral Fund (Grant No: 2020Z430).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study can be obtained at the following link
(https://wp.nyu.edu/birdvox/codedata/).

Acknowledgments: The authors thank Kai Hu for his helpful discussions. The authors also thank
anonymous reviewers for their careful work and thoughtful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, J.; Huang, K.; Cottman-Fields, M.; Truskinger, A.; Roe, P.; Duan, S.; Dong, X.; Towsey, M.; Wimmer, J. Managing and

analysing big audio data for environmental monitoring. In Proceedings of the 2013 IEEE 16th International Conference on
Computational Science and Engineering, Sydney, Australia, 3–5 December 2013; pp. 997–1004.

2. Gage, S.H.; Wimmer, J.; Tarrant, T.; Grace, P.R. Acoustic patterns at the Samford Ecological Research Facility in South East
Queensland, Australia: The Peri-Urban SuperSite of the Terrestrial Ecosystem Research Network. Ecol. Inform. 2017, 38, 62–75.
[CrossRef]

3. Xie, J.; Hu, K.; Zhu, M.; Guo, Y. Bioacoustic signal classification in continuous recordings: Syllable-segmentation vs sliding-window.
Expert Syst. Appl. 2020, 152, 113390. [CrossRef]

4. Wang, H.; Xu, Y.; Yu, Y.; Lin, Y.; Ran, J. An Efficient Model for a Vast Number of Bird Species Identification Based on Acoustic
Features. Animals 2022, 12, 2434. [CrossRef]

5. Zhang, C.; Chen, Y.; Hao, Z.; Gao, X. An Efficient Time-Domain End-to-End Single-Channel Bird Sound Separation Network.
Animals 2022, 12, 3117. [CrossRef]

6. Dawson, D.K.; Efford, M.G. Bird population density estimated from acoustic signals. J. Appl. Ecol. 2009, 46, 1201–1209. [CrossRef]

https://www.mdpi.com/article/10.3390/birds4010011/s1
https://www.mdpi.com/article/10.3390/birds4010011/s1
https://wp.nyu.edu/birdvox/codedata/
http://doi.org/10.1016/j.ecoinf.2017.01.002
http://dx.doi.org/10.1016/j.eswa.2020.113390
http://dx.doi.org/10.3390/ani12182434
http://dx.doi.org/10.3390/ani12223117
http://dx.doi.org/10.1111/j.1365-2664.2009.01731.x


Birds 2023, 4 146

7. Pérez-Granados, C.; Traba, J. Estimating bird density using passive acoustic monitoring: A review of methods and suggestions for
further research. Ibis 2021, 163, 765–783. [CrossRef]

8. Stowell, D. Computational bioacoustics with deep learning: A review and roadmap. PeerJ 2022, 10, e13152. [CrossRef]
9. Somervuo, P.; Harma, A.; Fagerlund, S. Parametric Representations of Bird Sounds for Automatic Species Recognition. IEEE Trans.

Audio Speech Lang. Process. 2006, 14, 2252–2263. [CrossRef]
10. Zhang, X.; Li, Y. Adaptive energy detection for bird sound detection in complex environments. Neurocomputing 2015, 155, 108–116.

[CrossRef]
11. Tuncer, T.; Akbal, E.; Dogan, S. Multileveled ternary pattern and iterative ReliefF based bird sound classification. Appl. Acoust.

2021, 176, 107866. [CrossRef]
12. Zhang, X.; Chen, A.; Zhou, G.; Zhang, Z.; Huang, X.; Qiang, X. Spectrogram-frame linear network and continuous frame sequence

for bird sound classification. Ecol. Inform. 2019, 54, 101009. [CrossRef]
13. Xie, J.; Zhu, M. Handcrafted features and late fusion with deep learning for bird sound classification. Ecol. Inform. 2019, 52, 74–81.

[CrossRef]
14. Xie, J.; Hu, K.; Guo, Y.; Zhu, Q.; Yu, J. On loss functions and CNNs for improved bioacoustic signal classification. Ecol. Inform.

2021, 64, 101331. [CrossRef]
15. Tan, C.; Sun, F.; Kong, T.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the Artificial Neural Networks

and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October
2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 270–279.

16. Sevilla, A.; Glotin, H. Audio bird classification with inception-v4 extended with time and time-frequency attention mechanisms.
CLEF (Work. Notes) 2017, 1866, 1–8. [CrossRef]

17. Ntalampiras, S. Bird species identification via transfer learning from music genres. Ecol. Inform. 2018, 44, 76–81. [CrossRef]
18. Zhong, M.; LeBien, J.; Campos-Cerqueira, M.; Dodhia, R.; Ferres, J.L.; Velev, J.P.; Aide, T.M. Multispecies bioacoustic classification

using transfer learning of deep convolutional neural networks with pseudo-labeling. Appl. Acoust. 2020, 166, 107375. [CrossRef]
19. Zhong, M.; Taylor, R.; Bates, N.; Christey, D.; Basnet, H.; Flippin, J.; Palkovitz, S.; Dodhia, R.; Ferres, J.L. Acoustic detection of

regionally rare bird species through deep convolutional neural networks. Ecol. Inform. 2021, 64, 101333. [CrossRef]
20. Kumar, Y.; Gupta, S.; Singh, W. A novel deep transfer learning models for recognition of birds sounds in different environment.

Soft Comput. 2022, 26, 1003–1023. [CrossRef]
21. Dufourq, E.; Batist, C.; Foquet, R.; Durbach, I. Passive acoustic monitoring of animal populations with transfer learning. Ecol.

Inform. 2022, 70, 101688. [CrossRef]
22. Xie, J.; Hu, K.; Zhu, M.; Yu, J.; Zhu, Q. Investigation of Different CNN-Based Models for Improved Bird Sound Classification. IEEE

Access 2019, 7, 175353–175361. [CrossRef]
23. Sinha, H.; Awasthi, V.; Ajmera, P.K. Audio classification using braided convolutional neural networks. IET Signal Process. 2020, 14,

448–454. [CrossRef]
24. Ruff, Z.J.; Lesmeister, D.B.; Duchac, L.S.; Padmaraju, B.K.; Sullivan, C.M. Automated identification of avian vocalizations with

deep convolutional neural networks. Remote. Sens. Ecol. Conserv. 2019, 6, 79–92. [CrossRef]
25. Permana, S.D.H.; Saputra, G.; Arifitama, B.; Yaddarabullah; Caesarendra, W.; Rahim, R. Classification of bird sounds as an early

warning method of forest fires using Convolutional Neural Network (CNN) algorithm. J. King Saud Univ.-Comput. Inf. Sci. 2022,
34, 4345–4357. [CrossRef]

26. Salamon, J.; Bello, J.P.; Farnsworth, A.; Robbins, M.; Keen, S.; Klinck, H.; Kelling, S. Towards the Automatic Classification of Avian
Flight Calls for Bioacoustic Monitoring. PLoS ONE 2016, 11, e0166866. [CrossRef]

27. Thakur, A.; Thapar, D.; Rajan, P.; Nigam, A. Deep metric learning for bioacoustic classification: Overcoming training data scarcity
using dynamic triplet loss. J. Acoust. Soc. Am. 2019, 146, 534–547. [CrossRef]

28. Salamon, J.; Bello, J.P.; Farnsworth, A.; Kelling, S. Fusing shallow and deep learning for bioacoustic bird species classification. In
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 5–9 March 2017; pp. 141–145. [CrossRef]

29. Deng, J.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

30. Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.-J. Liblinear: A library for large linear classification. J. Mach. Learn. Res.
2008, 9, 1871–1874.

31. Schlüter, J.; Grill, T. Exploring data augmentation for improved singing voice detection with neural networks. In Proceedings of
the 16th International Society for Music Information Retrieval Conference, Malaga, Spain, 26–30 October 2015; pp.121–126.

32. Terashima, R.; Yamamoto, R.; Song, E.; Shirahata, Y.; Yoon, H.-W.; Kim, J.-M.; Tachibana, K. Cross-Speaker Emotion Trans-
fer for Low-Resource Text-to-Speech Using Non-Parallel Voice Conversion with Pitch-Shift Data Augmentation. arXiv 2022,
arXiv:2204.10020.

33. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
34. Sharma, A.; Singh, K.; Koundal, D. A novel fusion based convolutional neural network approach for classification of COVID-19

from chest X-ray images. Biomed. Signal Process. Control. 2022, 77, 103778. [CrossRef]
35. Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84,

523–538. [CrossRef]

http://dx.doi.org/10.1111/ibi.12944
http://dx.doi.org/10.7717/peerj.13152
http://dx.doi.org/10.1109/TASL.2006.872624
http://dx.doi.org/10.1016/j.neucom.2014.12.042
http://dx.doi.org/10.1016/j.apacoust.2020.107866
http://dx.doi.org/10.1016/j.ecoinf.2019.101009
http://dx.doi.org/10.1016/j.ecoinf.2019.05.007
http://dx.doi.org/10.1016/j.ecoinf.2021.101331
https://scholar.google.com.au/scholar?cluster=15873588638352021843&hl=zh-CN&as_sdt=2005&sciodt=0,5
http://dx.doi.org/10.1016/j.ecoinf.2018.01.006
http://dx.doi.org/10.1016/j.apacoust.2020.107375
http://dx.doi.org/10.1016/j.ecoinf.2021.101333
http://dx.doi.org/10.1007/s00500-021-06640-1
http://dx.doi.org/10.1016/j.ecoinf.2022.101688
http://dx.doi.org/10.1109/ACCESS.2019.2957572
http://dx.doi.org/10.1049/iet-spr.2019.0381
http://dx.doi.org/10.1002/rse2.125
http://dx.doi.org/10.1016/j.jksuci.2021.04.013
http://dx.doi.org/10.1371/journal.pone.0166866
http://dx.doi.org/10.1121/1.5118245
http://dx.doi.org/10.1109/icassp.2017.7952134
http://dx.doi.org/10.1016/j.bspc.2022.103778
http://dx.doi.org/10.1007/s11192-009-0146-3


Birds 2023, 4 147

36. Ji, X.; Jiang, K.; Xie, J. LBP-based bird sound classification using improved feature selection algorithm. Int. J. Speech Technol. 2021,
24, 1033–1045. [CrossRef]

37. Afzal, S.; Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Awan, K.M.; Mehmood, I.; Song, O.-Y. A Data Augmentation-Based
Framework to Handle Class Imbalance Problem for Alzheimer’s Stage Detection. IEEE Access 2019, 7, 115528–115539. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10772-021-09866-4
http://dx.doi.org/10.1109/ACCESS.2019.2932786

	Introduction
	Materials and Methods
	Bird Recordings
	Preprocessing and Multi-View Representation
	Deep Cascade Feature
	Linear SVM
	Offline Data Augmentation: Pitch Shifting
	Online Data Augmentation: Mixup

	Results
	Comparison of Data Augmentation Methods
	Comparison of Different Multi-View Representations
	Deep Cascade Features Using Different Pre-Trained Models
	Feature Fusion

	Discussion
	Conclusions
	References

