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Simple Summary: Proteins are large biomolecules carrying out several different indispensable activi-
ties in all living organisms. As their chemical composition and structure lead to specific functionalities,
possible variations alter conformational transition and cause dysfunctions and pathological diseases.
An emerging technique for their detection and characterization is THz spectroscopy. In this review, we
illustrate its potentialities and drawbacks in protein study. We report the most remarkable experimen-
tal works of the last decades, constituting decisive steps for the scientific and technological progress
in THz spectroscopy for biomolecules. The importance of information provided by THz spectroscopy
is outlined, conforming it as powerful and useful technique for topical open questions, too.

Abstract: Proteins play a key role in living organisms. The study of proteins and their dynamics
provides information about their functionality, catalysis and potential alterations towards pathological
diseases. Several techniques are used for studying protein dynamics, e.g., magnetic resonance,
fluorescence imaging techniques, mid-infrared spectroscopy and biochemical assays. Spectroscopic
analysis, based on the use of terahertz (THz) radiation with frequencies between 0.1 and 15 THz
(3–500 cm−1), was underestimated by the biochemical community. In recent years, however, the
potential of THz spectroscopy in the analysis of both simple structures, such as polypeptide molecules,
and complex structures, such as protein complexes, has been demonstrated. The THz absorption
spectrum provides some information on proteins: for small molecules the THz spectrum is dominated
by individual modes related to the presence of hydrogen bonds. For peptides, the spectral information
concerns their secondary structure, while for complex proteins such as globular proteins and viral
glycoproteins, spectra also provide information on collective modes. In this short review, we discuss
the results obtained by THz spectroscopy in the protein dynamics investigations. In particular, we
will illustrate advantages and applications of THz spectroscopy, pointing out the complementary
information it may provide.

Keywords: terahertz; terahertz spectroscopy; amino acids; peptide; proteins; conformation; protein
dynamics

1. Introduction

Amino acids/proteins participate in the formation of cells and tissues, and they are
responsible for life activities in living organisms, such as enzymes, antibodies, signaling
and transporting molecules, cell membrane, metabolic or catalytic functions, etc. [1–4].
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Notably, they have a crucial role in various fields and applications, such as health, medicine
and food safety. For example, rapid assessment of the contents and types of proteins in food
can improve its quality, and the presence of specific proteins and their dynamics in blood
samples can identify a pathological process or a disease at an early state. An important role
of proteins is also played in viral pathogenesis, where membrane proteins are generally
responsible for infectious processes, anchoring the virus to human receptors, as happens
for the SARS-CoV-2 coronavirus [5,6].

Proteins are polypeptide chains formed by the progressive condensation reactions that
create the peptide bond between the α-amino group and the α-carboxyl group of two amino
acids [7,8]. The amino acid sequence assumes structural hierarchy, allowing the macro-
molecules to bend and generating typical three-dimensional protein structures: primary,
secondary, tertiary and quaternary [7,8]. These structures are correlated to specific protein
functionalities. Then, amino acids mutations and alterations of the primary sequence can
produce anomalies and transitions to different conformational states linked to functionally
relevant phenomena. Small differences in the primary structure imply completely different
biological functions; for example, oxytocin and vasopressin are two oligopeptides with
similar structure but different biological functionalities. Still, in patients with sickle cell
anemia, a residue of glutamic acid in the chain is replaced by a valine residue due to a
genetic error.

Therefore, the evaluation of protein kinds and quantities is an important index of
protein function analysis, clinical diagnosis, recovery check, quality testing of biological
products, etc. [9]. Several methods are used for studying proteins and their dynamics:
techniques such as ultraviolet (UV) absorption, Lowry and Bradford assays, bicinchoninic
acid and Kjeldahl methods, to mention a few [10–17], are used for the protein quantifi-
cation; other significant semi-quantitative analyses to evaluate the protein kinds include
chromatography methods, electrophoresis and immunoassays [18–25]. Among these, in
particular, the protein immunoassay is conventionally used for studying gene expression
at the protein level, detection of the activity of antibodies and early diagnosis of diseases.
The high specificity and sensitivity are guaranteed by using the specific expression infor-
mation of the homologous antibody of the protein that determines its presence and its
amount. The antibody method involves several sophisticated, time-consuming, tedious
and expensive processes. These criticalities emerged especially during the pandemic crisis
of 2020, where the demand for immune analysis for early COVID-19 diagnosis has grown
exponentially [26,27]. Thus, reliable and label-free protein analysis methods could support
the conventional approaches improving detection efficiency in addition to reduction in the
screening time and cost. For a three-dimensional visualization of protein conformational
structures in cell systems, spectroscopy and microscopy approaches can be employed
such as fluorescence spectroscopy and microscopy, atomic spectroscopy, confocal [28] and
multi-photon microscopy [29], optical nonlinear imaging [30–33], super resolution methods,
electron microscopy, etc. [34,35].

Spectroscopy and imaging based on THz radiation, ranging from tens of gigahertz
(GHz) to several THz, are new methods which only in recent years emerged with their
potential for protein detection and characterization (Figure 1). Biological vibrations and
rotations, involving intra/inter molecular weak hydrogen bonds, van der Waals forces,
conformational changes, non-bonded hydrophobic and hydrophilic interactions [4,36],
are associated with vibrational and rotational energy that mostly lie in the THz domain.
The optical parameters such as absorption coefficient and refractive index, characterizing
the resonances, reflect the conformational changes and other large-scale deformations
involving charge movement and relocation inside the biomolecule. Relative to proteins, the
capability of THz to qualify and quantify them is recognized [37,38].
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Figure 1. THz region and applications in the protein field of THz radiation. The THz domain
typically lies between microwave and infrared regions, which refers to the frequency band spanning
0.1–15 THz (from 3 cm−1 to 500 cm−1). The generation of THz radiation was successfully developed
with both electronics and photonics, including the up-conversion of electronic radiofrequency sources
and the down-conversion of optical sources. THz technology detects proteins, illustrated by their
structure hierarchy.

Here, we review results obtained by THz spectroscopy and imaging in the study of
amino acids and protein dynamics. In the first sections of this review, we discuss the exper-
imental techniques commonly used for protein detection, their limitations and some critical
issues. Then, we illustrate the advantages and applications of THz radiation providing
complementary information to existing techniques. Finally, we discuss perspectives and
other potential THz contributions in the field of biomolecules.

2. Consolidate Technologies for Amino Acid/Protein Detection

There are two well-established methodological approaches to protein characterization:
total protein nitrogen measurements and chemical and structural identification of a specific
protein, schematically summarized in Figure 2. The determination of total protein nitrogen
is a proximity tool for the early and rapid quantification of the protein content. The
Kjeldahl [10] and Dumas methods are widely used for nutrition labeling and quality
control [15–17]. Other techniques are used and preferred for their accuracy, low cost and
great applicability in many fields where the identification of proteins is required, such as
the bicinchoninic acid, biuret and Lowry methods as well as UV absorption. However,
many of these are time-consuming and can only measure the total organic nitrogen present
in the sample.

The most common immunoassays are enzyme-linked immunosorbent assays, lateral
flow immunoassay and Western blotting, but other analytical technologies [16,18–25] have
been adopted in biomedical and clinical studies. Some analytical methods for monitoring
and detection are based on the ability to propagate/amplify biomolecules in cell cultures
or on the detection of a specific antibody. However, these laboratory diagnostic techniques
require time to detect the specific immune response and its quantification. Especially,
when used for virus recognition or metabolic evaluation the task is challenging, and some
immunoassays may give false positive results. Other techniques, such as microscopy,
fluorescence and spectroscopy, are preferred in describing the protein dynamics. Here we
briefly recall the most used techniques: X-ray crystallography, nuclear magnetic resolution
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(NMR), Cryo-electron microscopy (Cryo-EM), fluorescence, circular dichroism (CD) and
vibrational spectroscopies, including infrared (IR) and Raman ones.
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Figure 2. Schematic overview about the advantages and disadvantages of main techniques for protein
characterization.

X-ray crystallography, NMR and Cryo-EM mainly concern investigations of the three-
dimensional structure of molecules. X-ray crystallography exploits the diffraction lattice
for collecting an electron density map of the crystal. The need for a solid crystalline sample
and the ionizing properties of X-rays represent limitations in the study of proteins in the
physiological environment [39–42].

Most studies in organic chemistry involve the probing of hydrogen atoms with
NMR [43–45]. The process of relaxation of nuclear magnetic spins from higher to lower
energy levels after a certain time-span is the principle of NMR to achieve structural atomic
information.

Cryo-EM provides a 3D structure of cells and macromolecules visualized with 5–8 nm
spatial resolution. Although Cryo-EM allows high spatial resolutions, suitable for studying
the cytoskeleton and the complex surface structures of viruses, the need of a frozen sample,
although useful since it fixes the protein in a well-defined configuration, is not ideal to the
investigate protein dynamics.

Fluorescence spectroscopy is an alternative method that works most accurately at very
low concentrations of fluorophores, giving structural information about a single molecule
or protein complex interactions. It exploits mainly the intrinsic and extrinsic protein
fluorescence. It may contribute to reconstruct structural effects induced by pH and solvent
composition, to measure lifetimes and temporal kinetics. Few proteins possess intrinsic
fluorophores, such as tryptophan and tyrosine, but most of them are non-fluorescent. In
many of these cases, an external fluorophore can be introduced by chemical coupling or
non-covalent binding. This labelling technique allows the development of new fluorescent
dyes with different excitation and emission properties. This has promoted the emergence
of new techniques for the study of protein dynamics: quenching, fluorescence resonance
energy transfer (FRET) [46,47], bioluminescence resonance energy transfer (BRET) [48],
fluorescence recovery after photobleaching (FRAP) [49], fluorescence polarization and
cross-correlation, and on all microscopy.

However, all spectroscopic/microscopic techniques have clear limitations. Indeed,
requiring chemical labels, the biological functionalities can interfere with the protein
dynamics; additionally, photo-bleaching can introduce artefacts and limit the measurement
repeatability in the microscopic approach. Therefore, it may be desirable to implement
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real-time, three-dimensional imaging with high spatial resolution, high sensitivity and high
chemical selectivity for unlabeled living cells.

Circular dichroism (CD) involves the measurements of small differences in the UV–vis
absorption values due to the chirality of biomolecules. The left- and right-handed polarized
components of the incident light are absorbed differently by the optically active molecules,
which yields a difference in the absorption parameters [50–52]. CD spectroscopy is largely
adopted to verify the natural secondary structure of proteins and their changes induced by
chemical–physical conditions.

Vibrational spectroscopy, including Fourier Transform Infrared (FTIR) and Raman
spectroscopy, provides selective, non-destructive identification of the molecules, through
the interrogation of molecular roto-vibrational and vibrational modes [53–55]. Both FTIR
and Raman spectroscopy give similar information about a molecule: FTIR is associated
with the change of dipole momentum and Raman with a change of the polarizability,
respectively, as a consequence of the matter–light interaction. Their use is typically in
chemical and biochemical research of small-molecule compounds and in the identification
of synthesized compounds due to their intrinsic chemical selectivity. The nine characteristic
vibrational bands (named amide A, B, I, II, III, . . . , VII, where amide I and II, between 1600
and 1700 cm−1 as well as 1500 and 1600 cm−1 respectively, are the major contributors in the
IR spectrum) exhibited by the peptide bonds in the infrared region ensure the recognition
of the protein backbone conformation and the assessment of the secondary structure of
peptides and proteins [53]. Novel instruments combine the FTIR technique and the features
of an evanescent field, probing the sample with the Attenuated Total Reflection (ATR)
technique. ATR is frequently used for small amounts of solid and liquid samples, avoid-
ing difficult preparation. Instead, time-resolved FTIR enables the observation of protein
reaction at the sub-millisecond timescale, such as the study of the light-driven proton
pump bacteriorhodopsin [53]. Nevertheless, linear Raman spectroscopy and microscopy
are limited to weak signals and very long times for signal collection. Thus, only recently
with the accessibility of ultrafast lasers, coherent Raman Scattering (CRS) techniques are
going to assert themselves thanks to the sensitivity at the same molecular vibrations probed
in spontaneous Raman spectroscopy and to the nonlinear dependence on the incoming
light fields [30–33].

3. THz Technology for Protein Spectroscopy

In the last two decades, many efforts have been made to improve THz technol-
ogy, e.g., THz sources and detectors [56–69], discovering new materials with strong THz
response [70–73] and new customizable, flexible and compact devices for spectroscopy [74].

These systems have promoted the diffusion of THz radiation for spectroscopy applica-
tions. Thus, it was applied with success in various scientific fields e.g., gas sensing [75–80],
chemical and pharmaceutical analysis [81,82], condensed matter [83–85], identification
of crystalline polymorphs, microelectronics and security [86–89], agri-food industry [90]
and cultural heritage [91], including the emerging support in the field of biomedicine and
bio-imaging [92–99], etc. Thus, THz spectroscopy has become a valuable tool for rapid and
non-invasive detection thanks to many advantages that make it particularly appealing for
probing the intermolecular structure and dynamics of biomolecules [95,100,101]. In fact,
THz radiation lies between microwave and infrared, being characterized by low photon
energy (4 meV @ 1 THz), and it provides energy levels related to rotational and vibra-
tional molecular modes and intermolecular vibrations, such as hydrogen bonds [102,103].
For example, external lattice vibrations typically dominate the low-frequency region, and
these modes are influenced by the crystalline arrangement of molecules. This occurs for
different polymorphs where the unique THz spectral features can be used as identifying
fingerprints [104]. THz waves are sensitive to the conformation and structure of pro-
teins [105,106], and they can be used for providing useful information in combination with
quantum-mechanical theory [101,107]. Moreover, the low photon energy is too low to heat
materials or to induce atoms/molecules ionization. For this reason, it is a non-ionizing
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radiation, suitable and attractive for noninvasive biological applications and biomedical
imaging [97]. At variance, other biochemical/molecular techniques, such as ultraviolet or
X-rays using higher-energy photons (from few eV to ~keV), may damage any biological
sample [81,101,108,109].

Furthermore, THz radiation strongly interacts with polar molecules [74,110,111], such
as water. Especially in THz imaging, the intense absorption, due to water molecules [95],
represents a limiting condition for the THz penetrability inside fresh tissues (from tens to
hundreds of microns) [94], reducing the diagnostic capability in vivo only to superficial
layers. On the contrary, nonpolar materials (such as paper, cloths and plastic) are usually
transparent in the THz range [89,112,113].

Many layouts and materials can be used for THz signal collection in THz spec-
troscopy [114–116], exhibiting high performance in terms of the signal-to-noise ratio with
coherent detection mode [116]. Because THz spectroscopy is insensitive to the thermal
background, it shows a high signal-to-noise Ratio (SNR), and it does not require the use
of cooled detectors [116,117]. Concerning the coherent detection mode, the THz electric
field is directly assessed. Therefore, both amplitude and phase of the THz pulse electric
field can be simultaneously measured, and the optical parameters, including sample ab-
sorption coefficient and refractive index, can be extracted without using Kramers–Kronig
relations [101,116].

4. Current Status of THz Spectroscopy for Research on Amino Acids and
Short-Chain Peptides

Amino acids are the backbones of proteins as well as fundamental elements to assemble
cells and tissues. They are involved in all cellular metabolic and repairing processes and
are responsible for various pathological genesis. The structural differences between amino
acids depend on the side chain R and its polarity. Most THz biomolecule investigations have
been focused on amino acids in the low-frequency spectral interval [118–131], see Table 1.
All 20 standard α-amino acids under the same conditions revealed a correlation between
molecular structures and spectral peaks between 0.2 and 3.0 THz (6.67–100 cm−1) [122]. The
amino acids were studied in the solid phase, mixing them with a polyethylene powder in
various proportions. For example, high proportions of amino acids to polyethylene (1:1 and
2:1) [123,124], as well as low proportions (1:15 and 1:9) [125,126], are used. From these, it
emerged that the proportion of amino acids to THz transparent material in the production
of the pellet influences the spectrum, especially in the low-frequency region [123,127].
Taday et al. [127] characterized the temperature-dependent L-glutamic acid spectrum and
compared it with the theoretical model proposed by Chiba et al. [132], but poor agreement
was achieved. Actually, theoretical simulations are not able to model the complexity
of hydrogen bonding and crystalline structure occurring at low frequency in biological
molecular systems.

Table 1. Main THz absorption frequencies observed in the literature [118–134].

Amino Acids THz Absorption Frequencies (THz)
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Arginine (Arg)

0.99, 1.45, 2.02, 2.62, 3.51, 3.77, 4.40
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Arginine (Arg) 
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Aspartic acid (Asp)

1.35, 1.71, 2.58, 3.01, 3.26, 3.98, 4.41, 5.36
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Glycine (Gly)

1.83, 2.30, 2.51, 2.70, 4.07
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Arginine (Arg) 
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0.66, 0.84, 1.46, 1.64, 2.14, 2.56, 2.74, 

2.88, 2.96, 3.68, 5.11 

 
Lysine (Lys) 

0.90, 1.26, 1.79, 2.25, 2.64 

 
Methionine (Met) 

1.01, 1.79, 2.70, 2.94, 3.77 

 
Phenylalanine (Phe) 

1.25, 2.02, 2.52, 2.76, 4.16 

 
Proline (Pro) 

1.69, 2.00, 2.64, 3.12, 3.62, 4.05, 4.69 
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1.97, 2.41, 2.71, 3.12, 3.98, 4.34 
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Leucine (Leu)

0.66, 0.84, 1.46, 1.64, 2.14, 2.56, 2.74, 2.88, 2.96, 3.68, 5.11
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0.90, 1.26, 1.79, 2.25, 2.64
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Proline (Pro) 

1.69, 2.00, 2.64, 3.12, 3.62, 4.05, 4.69 

 
Serine (Ser) 

1.97, 2.41, 2.71, 3.12, 3.98, 4.34 

 

1.11, 1.42, 2.12, 2.61, 3.06, 3.33, 3.75, 

4.44, 4.98, 5.30 

Methionine (Met)

1.01, 1.79, 2.70, 2.94, 3.77
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1.25, 2.02, 2.52, 2.76, 4.16
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Proline (Pro)

1.69, 2.00, 2.64, 3.12, 3.62, 4.05, 4.69
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Serine (Ser) 
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1.11, 1.42, 2.12, 2.61, 3.06, 3.33, 3.75, 

4.44, 4.98, 5.30 

Threonine (Thr)

1.11, 1.42, 2.12, 2.61, 3.06, 3.33, 3.75, 4.44, 4.98, 5.30
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Threonine (Thr) 

 
Tryptophan (Trp) 

0.91, 1.19, 1.44, 1.85, 2.26, 2.57, 3.22, 

3.69, 4.02, 4.85 

 
Tyrosine (Tyr) 

0.95, 1.92, 2.06, 2.65, 2.82, 3.31, 3.48, 

3.96, 4.32, 4.75, 5.13, 6.22 

 
Valine (Val) 

1.11, 1.68, 2.12, 2.22, 2.52, 2.64, 2.84, 

3.53, 4.39 

5. Current Status of THz Spectroscopy for Protein Research 

As mentioned above, it is clear that molecular conformation affects the biological 

activity and functionality of proteins [162], so it is strategic to characterize the native 

protein conformation. With the advance in THz technologies, research on proteins and 

their conformation in the THz spectral region has been extensively carried out 

[163,164,165,166]. All findings demonstrated that the collective vibration mode related to 

the protein molecular conformation is optically active in the THz range [167,168]. Markelz 

and co-authors collected the THz spectrum of lyophilized powder bovine serum albumin 

(BSA) of pressed pellets in the range between 0.06 and 2.00 THz (2–66.6 cm−1). Paciaroni 

et al. focused the attention on vibrational collective dynamics of a dry perdeuterated 

maltose-binding protein in the THz domain [169]. Sun et al. used THz spectroscopy to 

study the binding of hemagglutinin protein and broadly neutralizing monoclonal 

antibodies in the liquid environment [170]. 

THz spectroscopy is, among others, a convenient method for probing conformational 

changes in photoactive proteins [171,172,173]. Castro–Camus and Johnston [171] 

investigated conformational changes in photoactive yellow protein (PYP) suspended in a 

physiological buffer solution. The sample was uniformly illuminated by high-intensity 

blue (450 nm) light emitting diodes to trigger a conformational change from the ground 

state of the photoactive yellow protein (called pG) to the photo-intermediate (pB). 

Changes in the protein structure were probed by THz radiation, which is far from 

triggering any modifications in the protein itself. Absorption differences were observed, 

such as an increase in the absorption of the pB configuration compared to that in the pG 

state in the range 0.25–2 THz (8–66.6 cm−1). 

An interesting study was conducted by Han et al. using both THz spectroscopy and 

imaging [174]. These attempted to identify proteins and quantify their content. The 

frequency-dependent refractive index of six proteins (rn21, rn22, rn28, n42, n43 and n53 

with concentration of 2.0 μg/μL and quantity of 8 μg) were initially evaluated with THz-

TDS in the spectral region 0.1–3.5 THz (3.33–117 cm−1). In Figure 3, the refractive index of 

these six proteins is reported in the sub-frequency band. 

Tryptophan (Trp)

0.91, 1.19, 1.44, 1.85, 2.26, 2.57, 3.22, 3.69, 4.02, 4.85

Radiation 2022, 2, FOR PEER REVIEW 10 
 

 

Threonine (Thr) 

 
Tryptophan (Trp) 

0.91, 1.19, 1.44, 1.85, 2.26, 2.57, 3.22, 

3.69, 4.02, 4.85 

 
Tyrosine (Tyr) 

0.95, 1.92, 2.06, 2.65, 2.82, 3.31, 3.48, 

3.96, 4.32, 4.75, 5.13, 6.22 

 
Valine (Val) 

1.11, 1.68, 2.12, 2.22, 2.52, 2.64, 2.84, 

3.53, 4.39 

5. Current Status of THz Spectroscopy for Protein Research 

As mentioned above, it is clear that molecular conformation affects the biological 

activity and functionality of proteins [162], so it is strategic to characterize the native 

protein conformation. With the advance in THz technologies, research on proteins and 

their conformation in the THz spectral region has been extensively carried out 

[163,164,165,166]. All findings demonstrated that the collective vibration mode related to 

the protein molecular conformation is optically active in the THz range [167,168]. Markelz 

and co-authors collected the THz spectrum of lyophilized powder bovine serum albumin 

(BSA) of pressed pellets in the range between 0.06 and 2.00 THz (2–66.6 cm−1). Paciaroni 

et al. focused the attention on vibrational collective dynamics of a dry perdeuterated 

maltose-binding protein in the THz domain [169]. Sun et al. used THz spectroscopy to 

study the binding of hemagglutinin protein and broadly neutralizing monoclonal 

antibodies in the liquid environment [170]. 

THz spectroscopy is, among others, a convenient method for probing conformational 

changes in photoactive proteins [171,172,173]. Castro–Camus and Johnston [171] 

investigated conformational changes in photoactive yellow protein (PYP) suspended in a 

physiological buffer solution. The sample was uniformly illuminated by high-intensity 

blue (450 nm) light emitting diodes to trigger a conformational change from the ground 

state of the photoactive yellow protein (called pG) to the photo-intermediate (pB). 

Changes in the protein structure were probed by THz radiation, which is far from 

triggering any modifications in the protein itself. Absorption differences were observed, 

such as an increase in the absorption of the pB configuration compared to that in the pG 

state in the range 0.25–2 THz (8–66.6 cm−1). 

An interesting study was conducted by Han et al. using both THz spectroscopy and 

imaging [174]. These attempted to identify proteins and quantify their content. The 

frequency-dependent refractive index of six proteins (rn21, rn22, rn28, n42, n43 and n53 

with concentration of 2.0 μg/μL and quantity of 8 μg) were initially evaluated with THz-

TDS in the spectral region 0.1–3.5 THz (3.33–117 cm−1). In Figure 3, the refractive index of 

these six proteins is reported in the sub-frequency band. 

Tyrosine (Tyr)

0.95, 1.92, 2.06, 2.65, 2.82, 3.31, 3.48, 3.96, 4.32, 4.75, 5.13, 6.22
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study the binding of hemagglutinin protein and broadly neutralizing monoclonal 
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changes in photoactive proteins [171,172,173]. Castro–Camus and Johnston [171] 

investigated conformational changes in photoactive yellow protein (PYP) suspended in a 

physiological buffer solution. The sample was uniformly illuminated by high-intensity 

blue (450 nm) light emitting diodes to trigger a conformational change from the ground 

state of the photoactive yellow protein (called pG) to the photo-intermediate (pB). 

Changes in the protein structure were probed by THz radiation, which is far from 

triggering any modifications in the protein itself. Absorption differences were observed, 

such as an increase in the absorption of the pB configuration compared to that in the pG 

state in the range 0.25–2 THz (8–66.6 cm−1). 
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imaging [174]. These attempted to identify proteins and quantify their content. The 

frequency-dependent refractive index of six proteins (rn21, rn22, rn28, n42, n43 and n53 
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Valine (Val)

1.11, 1.68, 2.12, 2.22, 2.52, 2.64, 2.84, 3.53, 4.39

Yi et al. [133] employed THz-TDS and IR spectroscopy to study all 20 amino acids,
accurately collecting their spectra over a wide range from 0.2 to 6 THz (6.67 to 200 cm−1).
Mixtures in different proportions of amino acids with polyethylene powder, transparent
to THz radiation, were made. Their absorbance spectra were characterized to evaluate
the optimal proportion for each amino acid. Among the fifteen aliphatic amino acids, L-
glycine (L-gly), L-alanine (L-ala), L-valine (L-val), L-isoleucine (L-iso) and L-leucine (L-leu)
have a similar structure, the only structural difference being the side chain. Nevertheless,
they exhibit differences in the THz absorption spectra: L-val has prominent absorption
at 1.11 THz and 4.39 THz; for L-iso, the main absorption peaks were shifted to lower
frequencies at 0.85 and 4.27 THz; and finally for L-leu, at 0.66 and 3.68 THz. The authors
correlated the differences due to the longer side chains that shift the absorption peaks to
lower frequencies [133]. Moreover, the aromatic L-Tyrosine (L-tyr), L-phenylalanine (L-phe)
and L-tryptophan (L-try) present a phenyl group on the side chain, and although they have
similar structures, the THz spectra are different. A broad absorption band at 3.22 THz
is observed in the L-try spectrum, and three absorption bands at 2.02, 2.76 and 4.16 THz
appear in the L-phe absorption spectrum. L-tyr includes two symmetric peaks around
them, with splitting attributable to the –OH group of L-tyr. For L-ala and L-threonine
(L-thr) the main absorption peaks are located at 2.91 THz and 3.33 THz, respectively. The
accurate study by Yi et al. is in a good agreement with previous works [118–125,127–131]
ranging between 0.1 and 3 THz. Thus, they established an absorption spectral database of
protein constituents in the solid phase and demonstrated that THz spectroscopy is able to
distinguish different spectral features of amino acids with a very similar structure.

Another interesting aspect regards enantiomers, chiral molecules which are non-
superimposable mirror images of each other, isotopologues and polymorphism [134]. In
this context, THz spectroscopy is sensitive to crystalline structures. In pharmaceutical and
pharmacological science, the use of amino acids and small peptide chains is required; the
knowledge of their crystallinity is a topic issue from studies of changes in medicinal aging
and to the detection of illegal substances. In particular, drugs bind to the human body
thanks to receptors which are protein complexes [135]. In addition, the THz spectra of
DL-leu and the two polymorphs of DL-val have been measured, and computer calcula-
tions have been implemented to reliably distinguish the nuances of THz spectra similar
to solid-state systems [136,137]. Yamaguchi et al. [92] demonstrated THz sensitivity in
enantiomers recognition, showing how the THz absorption spectra of L-(D-) and DL-ala are
quite different; L- and D-ala show two absorption bands located at 74.4 and 85.7 cm−1 [92],



Radiation 2022, 2 108

and racemic compound DL-ala exhibits one absorption band at 41.8 cm−1. Therefore, THz
spectroscopy is considered an off-line tool for assessing crystallinity, also in co-lyophilized
amino acid/gelatin mixtures (L-ala, serine and valine) [128]. The physical/chemical con-
ditions are critical for amino acids, and in particular, amino acid medicine is strongly
susceptible to the storage and transportation states. Herein, the induced changes affect
several properties of amino acids, e.g., stability, solubility, mechanical and physic-chemical
properties, and alter the protein dynamics. Several experimental as well as theoretical
studies carried out addressing those issues [138–143]. Aqueous solutions of amino acids
have been extensively studied through different experimental techniques [144–149] and
molecular dynamics simulations [150]. On the other side, there have been a few dielectric
relaxation (DR) studies, covering MHz-GHz frequency domain, to probe the behavior of
hydrated amino acids [151–153].

One of the amino acids extremely susceptible to change is Lysine (Lys), which has a
key role in human metabolism and various physiological functions, such as promotion of
human growth and enhancement of immunity. With the addition of water molecules, the
surrounding environment of Lys is changed, affecting its collective molecular vibrations.
Exploring the molecular collective modes at low frequency, Bian et al. [154] found that Lys
and Lys·H2O have distinct spectral features in the range between 0.3 and 2.5 THz. The
interpretation of the results was entrusted by theoretical calculations based on Density
Function Theory (DFT) [155,156]; the water molecule is recognized to locate the carboxyl
group and the amino group of hydrated Lys molecule, while its vibrational modes are
produced by a dihedral torsion or bond angle bend of molecular chains. An equivalent
description was also achieved for differences shown in THz spectral features of L-phe and
for L-phe·H2O [157], associating them to different crystalline structures and to the presence
of hydrogen bond interaction in the case of L-phe·H2O.

The hydration process of amino acids is the basis for a further understanding of the
behavior of proteins in the aqueous environment. Samanta et al. [158] studied five amino
acids dissolved in phosphate buffers. The optical absorption parameters dependent on the
frequency, coefficient and refractive index were distinguished from the contribution of the
solute, solvent and water of hydration. The departure of the absorption coefficient from the
ideal behavior, ∆α, is associated with the section of the hydrated water molecules around
the amino acid molecules, which differ from the absorption of water in mass up to 5–7 Å
from a single solute molecule. Interaction with water molecules is mainly due to -COO- and
-NH3+. They found a negative value of ∆α for all amino acids, with the exception of Gly,
meaning this is a structure breaker. Arg, Ser, Trp, Lys and Asp are instead structure makers,
leading to the formation of an ordered water molecule network around single amino acids.
Furthermore, the anomalous behavior of Gly was described and explained. Fitting real
and imaginary parts of the solution dielectric constant with a multiple Debye model, three
time scales were obtained (8.7 ps, 80 and 200 fs). They were associated with cooperative
rearrangement of the hydrogen bonded network for 8.7 ps and to competitive quick jump
of under-coordinated water and small angular rotation preceding a large angle jump for
200 fs. Finally, the contribution at 80 fs was due to hydrogen-bond bending and the related
transverse acoustic phonons, which propagate in a direction normal to the hydrogen bonds
in between two neighboring water molecules. The first two are found to depend on both
hydrophobic and hydrophilic residues of the considered amino acid, and their trends were
analyzed for all molecules.

Low-frequency vibrational modes are strongly influenced by size and long-range
order of the molecule. As consequence, small biological molecules, such as amino acids,
tend to have distinct, relatively isolated features compared to polymers, such as short
chain of peptides, with a larger number of modes. Thus, the THz spectral characteristics of
the peptide reflect their amino acid composition, permutation sequence, intermolecular
hydrogen bond and crystal structure. For example, the simplest molecule with a peptide
bond, crystalline N-methyl acetamide, shows bands at 3.6 THz (120 cm−1) and 6.0 THz
(200 cm−1) [159]. Yamamoto et al. used THz-TDS to study the absorption coefficient and
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refractive index of simple amino acids structures, glycine and L-alanine, compared with
their corresponding polypeptides in the 0.21–1.65 THz (7–55 cm−1) domain [160]. Poly-
glycine was observed to have peaks at 1.365 THz (45.5 cm−1) induced by the interaction of
the chain different from the poly-L-alanine. The differences indicate that poly-glycine has a
longer-range, ordered structure of solid-state crystals than poly-L-alanine does.

Kutteruf et al. [107] also demonstrated the great potential of THz spectroscopy for
solid-phase short-chain peptide sequences, in the spectral region 1–15 THz. Pure solid
samples of low molecular weight protein fragments pressed into polyethylene pellets
were studied at 77 K and 298 K. Highly structured THz absorption spectra were typically
observed with sharp spectral features determined by molecular symmetries and structure.
In the same work, authors proved how quantum mechanical calculations, applied for
the isolated diglycine species, can match experimental results if the description includes
solid-state hydrogen-bonding and intermolecular interactions.

Likewise, Neu et al. [161] studied six polypeptide chains with very similar primary
and secondary structures in the low-frequency region up to 2.5 THz. The result modeled
with DFT calculations was used to calculate the dynamic motions of several peptides and
to visualize the corresponding displacements of the strongest resonances.

Notably, the difference is clear between amino acids and polypeptides existing in the
THz frequency dynamics range. The physical quantities show a different dependence by
the length of the peptide chain, indicating that they reflect different interactions.

5. Current Status of THz Spectroscopy for Protein Research

As mentioned above, it is clear that molecular conformation affects the biological
activity and functionality of proteins [162], so it is strategic to characterize the native
protein conformation. With the advance in THz technologies, research on proteins and their
conformation in the THz spectral region has been extensively carried out [163–166]. All
findings demonstrated that the collective vibration mode related to the protein molecular
conformation is optically active in the THz range [167,168]. Markelz and co-authors
collected the THz spectrum of lyophilized powder bovine serum albumin (BSA) of pressed
pellets in the range between 0.06 and 2.00 THz (2–66.6 cm−1). Paciaroni et al. focused
the attention on vibrational collective dynamics of a dry perdeuterated maltose-binding
protein in the THz domain [169]. Sun et al. used THz spectroscopy to study the binding
of hemagglutinin protein and broadly neutralizing monoclonal antibodies in the liquid
environment [170].

THz spectroscopy is, among others, a convenient method for probing conformational
changes in photoactive proteins [171–173]. Castro–Camus and Johnston [171] investigated
conformational changes in photoactive yellow protein (PYP) suspended in a physiological
buffer solution. The sample was uniformly illuminated by high-intensity blue (450 nm) light
emitting diodes to trigger a conformational change from the ground state of the photoactive
yellow protein (called pG) to the photo-intermediate (pB). Changes in the protein structure
were probed by THz radiation, which is far from triggering any modifications in the protein
itself. Absorption differences were observed, such as an increase in the absorption of the
pB configuration compared to that in the pG state in the range 0.25–2 THz (8–66.6 cm−1).

An interesting study was conducted by Han et al. using both THz spectroscopy
and imaging [174]. These attempted to identify proteins and quantify their content. The
frequency-dependent refractive index of six proteins (rn21, rn22, rn28, n42, n43 and n53
with concentration of 2.0 µg/µL and quantity of 8 µg) were initially evaluated with THz-
TDS in the spectral region 0.1–3.5 THz (3.33–117 cm−1). In Figure 3, the refractive index of
these six proteins is reported in the sub-frequency band.
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Figure 3. Refractive index of the proteins rn21, rn22, rn28, n42, n43 and n53 for samples with a
concentration of 2.0 µg/µL and a quantity of 8 µg. Reprinted from Ref. [174].

The refractive index vs. frequencies in the THz range of these six different species of
proteins are different and well-separated, allowing to distinguish each protein. Although
the error bars overlap, the curve trend points out that the protein with a higher molecular
mass has a stronger refraction capacity, namely a greater refractive index at every frequency.
Authors have investigated the ability of THz imaging to differentiate and quantify the
content of different kinds of specific proteins. The intensity or the level of shade of the
image is directly related to the number of proteins participating in the absorption, see
Figure 4. For this purpose, a nitrocellulose blotting membrane (NC) was dropped with
liquid solutions of the six proteins, formulated inside the five solutions with corresponding
concentrations of 2 µg/µL, 1 µg/µL, 0.5 µg/µL, 0.25 µg/µL and 0.125 µg/µL, dissolved
in solution of 1 × PBS at pH 7.2. Observing Figure 4b, a variation of the average color-
scale of proteins rn21, rn22 and n43 was evident; firstly, it increases at 0.5 µg, and then
it decreases at 1 µg, 2 µg, 4 µg and 8 µg as a function of protein quantity (except for the
8 µg of Protein n43). At variance, the average color scales of proteins rn28 and n42 exhibit
the opposite trend (see Figure 4b). For the six kinds of proteins with the same amount,
the intensity of gray levels behaves similarly to the refractive index absorption. The THz
experimental results of Han et al. match exactly the results of the dot blot (see Figure 4a)
method. Besides, the application of THz spectroscopy does not merely distinguish the
different proteins, it precisely acquires the protein quantity distribution, but it is able to
reduce the time procedure compared to conventional immunoassays in the label-free and
non-destructive mode.

Figure 4. The imaging of the membrane: (a) the dot blot result, (b) the pseudo-color image of gray
image formatted by the relative THz energy integration of transmission spectrum pixel by pixel.
Reprinted from Ref.[174].
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The structural flexibility of the protein allows to skillfully change its conformation
without modifying the function it has to perform [175]. The frequency dependence of
the density of the vibrational modes in the biological temperature range can quantify
flexibility [163]. One example involves the transfer of cytochrome c (CytC) protein electrons.
The CytC constituent amino acids have a covalently linked heme group with two oxidation
states, ferri-and ferro-CytC. Ferri-CytC is less thermally stable than ferro-CytC and has also
a higher hydrogen exchange and proteolytic digestion rate [169]. The THz spectroscopy
was revealed as a powerful investigation tool because the collective vibrational modes
fall into the THz domain, ranging from 0.03 to 6 THz (1–200 cm−1) [176]. Chen and co-
workers [175] examined the complex THz dielectric response of CytC films in the two
oxidation states and found that absorption and refractive indexes tend to increase with the
degree of oxidation. A sharp increase in the density of the vibrational modes and/or the
dipole coupling in the interval is observed in the range 0.15–2.4 THz (5–80 cm−1).

The influence of various physical and/or chemical factors [177–182] can induce protein
denaturation with a relative change of the internal structure and properties of protein
molecules. The structural change induced in the protein consequently alters its functionality,
a delicate aspect in food processing, protein purification, nutrition, biomedicine and the
food industry. Several examples underlined the advantage of THz technology in the study
of protein denaturation and conformational changes. Studies with native sperm-whale
myoglobin indicated that loss of secondary and tertiary structures influences the far-IR
spectra as spectral changes in the region between 11.1 and 15.6 THz (370–520 cm−1) along
with broader changes around 6.0 THz (200 cm−1) [183]. Firstly, the denaturation of the
PsbO protein [184] and two photosynthesis chlorophyll proteins CP43 and CP47 [185–187]
were examined though THz-TDS. Recently, a consistent, strong increase in the <3 THz
(100 cm−1) absorbance was shown in the measurements of non-native hen egg white
lysozyme (HEWL) [188] and human serum albumin (HSA) [189]. Yoneyama et al. [162],
using THz spectroscopy, measured the thermal denaturation of BSA protein held in a
membrane device, observing a higher THz transmittance of the thermal denatured BSA
sample compared to that of the native-conformation sample. Temperature-dependent THz
analysis was also led by George et al. [190] on frozen-solution-phase samples of hen HEWL
and CytC proteins, in order to study temperature-dependent conformation of proteins. The
estimation of the imaginary part of the dielectric function as a function of T and fitting
with Arrhenius model activation energies explained the behavior of HEWL being free,
bonded to 3NAG and denatured; CytC was oxidized, reduced and denatured. The thermal
denaturation of HSA in an aqueous buffer solution revealed changes in the absorption
coefficient and refractive index as a function of the temperature [189].

Many of these experiments proved the feasibility of both protein and denaturation
detection, but on the other hand they drew attention to some problems such as low signal-
to-noise ratio and poor sensitivity, especially in the liquid environment because of water
absorption. To overcome these limitations, different approaches can be adopted to en-
hance the THz response of biological samples based on graphene [191], on microfluidic
chips [192,193], novel materials such as meta- and nano-materials [109,194–196], on gold
nanoparticles [197] and on nanoantennas [198].

A promising further step forward in development of THz technology was given
recently by Zhang’s group [199]. They utilized the reflective THz time-domain polarization
spectroscopy (THz-TDPS) method for protein sensing in the liquid environment in the
spectral region 0.1–2.5 THz (3.33–83.3 cm−1). The system, reported in Figure 5a,b, allows
to obtain a polarization sensing, measuring the reflective polarization spectra for a liquid-
phase sample. To this aim, a traditional transmission THz-TDS [97,98] was modified,
adding a reflection module (Figure 5b) to the bottom of the 3D printing sample cell and two
rotatable THz polarizers at the emitting end and detection ports of the spectroscopic system
(Figure 5a). The advantage is to measure the states of signals without the strong THz
water absorption in reflection mode. In addition, authors used a flexible twisted dual-layer
metasurface structure with geometric chirality (Figure 5c–e), as a sensor, to enhance the
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polarization response of three protein samples: BSA, whey protein (WP) and ovalbumin
(OVA).

Figure 5. (a) Schematic diagram of the THz experimental configuration. (b) Photograph of the THz
optical path of the experimental setup. (c) The geometry of the twisted dual-layer metasurface.
(d) The micrograph of the metasurface. (e) Photograph of double-layer metasurface with the flexible
PI substrate. (f) The appearance of BSA solution changes with temperature. Reprinted from Ref. [199].

Generally, circular polarization (CP) sensing shows an improvement in the sensitivity
and more information sensing, if compared with the traditional linear polarization (LP)
spectra. The influence of a double-layer metasurface sensor is proven to enhance also
the polarization response of the sample. In fact, nature-conformation proteins are clearly
distinguishable, and denaturation induced by temperature treatments can be detected
through variations of CP reflection spectra, both right- (RCP) and left-handed (LCP).
Compared with the traditional LP spectra, the CP sensing sensitivity is improved. The
detection sensitivity achieved with thermal denaturation measurements is established to
be Sd = 6.30 dB%, but THz-TDPS reaches a detection sensitivity of Sc = 52.9 dB mL/g for
concentration estimations, reported in Figures 6 and 7.

Figure 6. (a) The peak values of the RLCP and (b) RRCP of BSA, WP and OVA solutions change as a
function of the heat-treatment temperature. The temperatures, reported in these two figures, refer to
the temperature of the complete denaturation for a certain protein. Relationship of the peak value
change of (c) RLCP and (d) RRCP vs. the denaturation percentage. Reprinted from Ref. [199].
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Figure 7. Sensing results of the BSA solution with different concentrations. (a) LCP spectra RLCP

and (b) RRCP at 30 ◦C. (c) RLCP and (d) RRCP at 90 ◦C. The peak value (e) RLCP and (f) RRCP of BSA
solution change with sample concentration. Reprinted from Ref. [199].

Proteins require an environment as close as possible to the living environment, i.e.,
an aqueous solution. The role of water in protein dynamics has been, and still is, debated.
Although water is a limiting factor in THz spectroscopy due to strong absorption in the
spectral region of interest, this does not limit protein hydration studies. Combining THz
spectroscopy and molecular simulations, Meister’s group [200] looked at the behavior
of long-range protein–water dynamics in hyperactive insect antifreeze proteins. THz
measurements are highly dependent on relative humidity, as protein films have a high
affinity for adsorbed water [201]. Heyden and Havenith [202] engaged in both experimental
and theoretical study of protein-hydration coupling. Xu et al. [203] measured the absorption
spectrum of solvated BSA between 0.3 and 3.72 THz (10–124 cm−1) in order to monitor its
collective vibrational dynamics and obtain information in the low-frequency region. They
successfully estimated the THz molar absorption of solvated BSA from the much stronger
attenuation of water. They deduced that the vibrational modes of solvated proteins lead
to a dense and overlapping spectrum monotonously increasing with frequency. The lack
of a distinct and spectrally structured spectrum suggested the lack of a specific dominant
collective vibration foreseen by molecular dynamics simulations and normal mode analysis
of a series of small proteins.

Furthermore, the study of the protein–water interaction can be reported at the cellular
level, which turns out to be highly fashionable. In fact, membrane proteins are those that in
this context are most involved in the interaction with water, with possible changes in the
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structure and the ability to create a network of hydrogen bonds, which can be explored from
1 to 6 THz. Pal and Chattopadhyay [204] probably provided the first and accurate overview
of the potential of THz spectroscopy in this area. They demonstrated how THz-TDS and
some optical parameters (e.g., the dielectric constant) can describe specific changes in the
membrane microenvironment and lipid concentration. The references listed since up to
now only emphasize the potential of THz radiation in the field of protein biochemistry.
Specifically, the ability of THz spectroscopy to detect the presence of types of proteins, to
quantify their content and to be sensitive to protein conformation paves the way for its use
in the biomedical and bioclinical fields. Many pathologies are in fact due to an alteration of
the aminoacetic sequences and/or functional protein alterations. Recently, Wang et al. [205]
exploited time-resolved THz spectroscopy to analyze serum and cerebrospinal fluid (CSF)
extracted from rats at different times after blast-induced head injury (bTBI), from both the
hypothalamus and the hippocampus.

THz spectra change as a function of time, with different trends for proteins of the
hypothalamus and hippocampus. Specifically, Figure 8a,b shows the results of Wang
et al. [205], relating to absorption spectra and refractive index between 0.2 and 2.0 THz
(6.66–66.6 cm−1) of the total protein in the hypothalamus. The panels showed a magnified
area in the range 1–1.6 THz (33.3–53.3 cm−1). Overall, the absorption coefficient and
refractive index of total proteins in the hypothalamus rose and fell monotonously as a
function of frequency, respectively. To describe the temporal evolution in a clear way,
normalized values of optical parameters were selected at 1.6 THz, in Figure 8c. Differences
were observed just at 3 h from blast exposure; the absorption coefficients relative to mild
and moderate insults were significantly higher than those in the sham group. Subsequently,
increasing the time (6 h and 24 h), these values decreased gradually, returning to the normal
level, although differences persist between the two parameters also 24 h after the blast
exposure.

Figure 8. THz spectra of total protein in the hypothalamus. (a) Absorption coefficient spectra;
(b) refractive index spectra; (c) the normalized absorption coefficient and refractive index values at
1.6 THz. Reprinted from Ref. [205].
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In the same way, THz spectra of the total protein in the hippocampus and its temporal
changes are evaluated and are shown in Figure 9a,c. Both the THz absorption and refractive
index showed no significant changes 3 h after blast exposure, unlike what happens for the
hypothalamus. However, after an additional 3 h, the THz absorption coefficient of the total
protein in the hippocampus increases accompanied by a decrease in the refractive index
THz, with the increase in the traumatic degree. These changes were more noticeable with
the increase in traumatic degree. The bTBI caused some changes in both the hypothalamus
and hippocampus total proteins of rats, a behavior associated with the decrease or the
increase in the number of some biomolecules with effects on the functioning of brain areas
and symptoms of neurological damage. THz technology then appears as a powerful tool
for early recognition and diagnosis of bTBI.

Figure 9. THz spectra of total protein in the hippocampus. (a) Absorption coefficient; (b) refractive
index; (c) the normalized absorption coefficient and refractive index values at 1.6 THz. Reprinted
from Ref. [205].

6. Conclusions

Proteins play a fundamental role in biology and, in particular, in living systems. The
study of the dynamics of proteins provides information on their functionality, catalysis and
potential alteration towards pathological diseases and, therefore, are of interest for various
research fields.

Various techniques are currently used for their quantification, identification and
evolutionary study; still, the demand of new techniques to complement the existing ones is
growing. Although various techniques for protein investigation are currently used in the
industrial, pharmaceutical and diagnostic fields, limitations, complexity and cost represent
serious drawbacks. In this framework, emerging spectroscopic analytical methods, based
on the use of THz radiation in the range 0.1–15 THz, are now competitive methods in the
biochemical community. Thanks to new technology, the potential of THz spectroscopy has



Radiation 2022, 2 116

been affirmed in the analysis of both simple structures, such as polyamide molecules, and
complex structures, such as protein complexes.

This short review highlights the possibility of identifying amino acids and proteins
and revealing protein dynamics. In the first part we recalled the most common and used
techniques from those for the evaluation of protein concentration, the differentiation of
proteins and the study of conformational dynamics and modifications. In the second part
we focused on THz radiation opportunities outlining issues and applications in which it
offers real advantages.

THz spectroscopy provides a unique perspective on the chemical structure, rota-
tional and vibrational molecule modes and intermolecular vibrations, such as hydrogen
bonds [102,103]. Furthermore, it is sensitive to the crystalline structure, therefore able to
distinguish enantiomers, isotopologists and polymorphisms [134]. Most amino acids have
a chiral shape, and THz spectroscopy supports their detection, being particularly useful
in the field of pharmaceuticals, where it is able to clearly differentiate between the amino
acids and the polypeptide and to monitor protein–ligand interactions.

Protein dynamics analysis shows great potentialities, although there are many studies
on the spectral change associated with spontaneous and physico-chemical-induced con-
formational changes. Some caution must be considered in interpretation of these results.
The use of chemical simulations and theoretical approaches based on DFT calculations
have limitations, but learning algorithms, neural models and deep learning approaches
are viable future approaches, as showed by Sun et al., 2018 [206], which combine machine
learning and THz analysis for quantitative protein analysis of BSA, deposited at different
concentrations on thin films. The information content of the THz absorption spectra was
analyzed with principal component analysis (PCA), spectrum regression analysis (SVR)
and maximal information coefficient (MIC) to discriminate frequencies, and machine learn-
ing methods proved efficient for the recognition of spectral features. Although different
applications of this technology showed great potential, scientific and technological issues
still need to be addressed, such as the methodological approach to the analysis of samples in
aqueous solutions and the need to increase the sensitivity of the THz signal in the presence
of weakly active THz materials.
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