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Abstract: The modern zoo has been associated with two major behavioral welfare advances: (a) the
use of training to increase voluntary husbandry care, and (b) the implementation of environmental
enrichment to promote naturalistic behaviors. Both practices have their roots in behavior analysis,
or the operant conditioning-centered, reward-based approach to behavioral psychology. Operant
conditioning served as the foundation for the development of reinforcement-based training methods
commonly used in zoos to make veterinary and husbandry procedures easier and safer for animals
and their caregivers. Likewise, operant conditioning, with its focus on arranging environmental
antecedents and consequences to change behavior, also provided a framework for successful environ-
mental enrichment practices. In this paper, we outline the key individuals and events that shaped
two of the cornerstones of the modern zoo: (1) the emergence of reward-based husbandry training
practices, and (2) the engineering of environmental enrichment. In addition, we (3) suggest ways
in which behavior analysis can continue to advance zoo welfare by (i) expanding the efficacy of
environmental enrichment, (ii) using within-subject methodology, and (iii) improving animal-visitor
interactions. Our goal is to provide a historical and contextual reference for future efforts to improve
the well-being of zoo animals.

Keywords: animal training; animal welfare; behavior analysis; behavioral engineering; environmen-
tal enrichment; operant conditioning; zoos

1. Introduction

Due to the many advancements in zoo animal welfare and management, those familiar
with modern, accredited zoos might expect to find diverse, enriched exhibits focused on
the needs of each species, knowledgeable zookeepers well-versed in animal welfare and
training, and visitor education experiences with an emphasis on the conservation of the zoo
animals. What is not as apparent is the important role behavior analysis, or the Skinnerian
operant conditioning-focused (e.g., reward- or reinforcement-based) approach to behav-
ioral psychology, played in the formation of the present-day zoo. The modern zoo itself can
be defined by two major behavioral advances focused on improving welfare: (1) the use
of animal training procedures to increase voluntary participation in husbandry or other
veterinary procedures by the zoo animals [1–3], and (2) the implementation of environmen-
tal enrichment to decrease detrimental and increase species-typical behaviors [4–6]. These
advances were developed through decades of research and practices that incorporated
behavioral principles to identify desirable outcomes for animals and visitors alike.

For those working with or in zoos, the influence of operant conditioning on animal
training may be obvious. In most cases, trainers or keepers deliver reinforcing conse-
quences to modify an animal’s behavior, often for husbandry purposes [7,8]. While the
connection between behavior analysis and environmental enrichment may be less appar-
ent, the practice of environmental enrichment also began as a set of consequence-focused
operant conditioning procedures in zoos. Early enrichment practices incorporated food
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delivered mechanically as a reinforcer for engaging in desired responses, such as primates
swinging from parts of their exhibit or felids chasing and catching artificial prey [9–11].
These procedures often incorporated visual or auditory stimuli that were meant to elicit or
set the occasion for those desired responses, thus functioning as conditional (respondent)
or discriminative (operant) stimuli, respectively. The advent of environmental enrichment
was therefore a behavioral engineering endeavor, meant to adjust environment-behavior
contingencies in the most optimal manner. From these modest beginnings, the practice
grew to its current use as the major tool to increase naturalistic behaviors of all the ani-
mals we see in the zoo, as well as now extended to other settings, like shelters, homes,
and farms [12–15].

The following paper examines the influence of behavior analysis on the modern
zoo. We do this in three parts, with the first two parts detailing (1) the emergence of
reward-based zoo husbandry training practices, and (2) the engineering of environmental
enrichment in zoos. Both will sufficiently detail how behavioral principles were involved,
with several photos to provide some context. For the final point, we discuss (3) the
future of behavior analysis in zoos, with attention to how behavior analysis can continue to
improve the lives of zoos animals by (i) expanding the efficacy of environmental enrichment,
(ii) using within-subject methodology, and (iii) improving animal-visitor interactions. Our
goal is to therefore detail the important role behavior analysis has had in the formation of
the modern zoo, as well as how such behavioral principles can guide continued welfare
progress in zoos and similar settings.

2. The Emergence of Reward-Based Zoo Husbandry Training Practices

Contemporary animal training procedures are often associated with clicker training or
similar uses of conditioned reinforcers paired with positive reinforcement [16–18]. These
procedures and other behavior analytic principles to train animals are tied to two major
events: (1) Skinner’s discovery of shaping, or the use of differentially reinforcing successive
approximations to a target response [19–21], and (2) the creation of a field of Applied
Animal Psychology by Keller and Marian Breland, two of Professor Skinner’s graduate
students at the University of Minnesota [22,23]. Both events were also directly connected
to Project Pelican (also known as “Project Pigeon”), a wartime effort in the early 1940s
that involved training pigeons (Columba livia) to guide bombs [24–27]. The project was
sponsored by government contracts and through General Mills, Inc., with much of the
research conducted within the top floor of the General Mills flour mill building (see
Figure 1) in downtown Minneapolis, Minnesota [19,26].

Until Project Pelican, most of Skinner’s research involved the use of laboratory rats
(Rattus norvegicus), with all the research published in The Behavior of Organisms [28]
using rats as subjects. It was through Project Pelican that Skinner and his colleagues
first began examining behavioral principles with pigeons, as well as his first experience
training animals outside of an operant chamber, or “by hand” [24,29], for a review, see [19].
These events resulted in the discovery of shaping, which was so profound that by 1943,
Keller and Marian Breland, having worked with Dr. Skinner as University of Minnesota
Psychology graduate students on Project Pelican, left academia and began Animal Behavior
Enterprises (ABE), an organization dedicated to the training of animals for a variety of
applied, profit-driven purposes, including commercials and coin-operated acts [30–34].

By the 1950s, the Brelands moved their business to Hot Springs, Arkansas, where
they held a tourist attraction known as “IQ Zoo”, intended as both an entertaining and
educational experience [25,35]. The Brelands also continued to train animals for coin-
operated acts and other revenue-generating ventures (see Figure 2), as well as suggesting
the use of naturalistic exhibits and visitor-focused learning opportunities within zoos and
similar settings [36–39].
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Figure 1. Colorized photo of Keller Breland (left) and B. F. Skinner on top of the General Mills
building in Minneapolis, MN, USA, circa 1943. (Photo courtesy of Robert E. Bailey).

Figure 2. Colorized photo of Keller and Marian Breland training IQ Zoo’s Professor Punch, late 1950s.
(Photo courtesy of Robert E. Bailey).
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By 1955, the Brelands also began working with marine mammal parks to establish
some of the first cetacean training shows [22,40]. Originally begun with the training of
bottlenose dolphins (Tursiops truncates) at Marine Studios (now Marineland of Florida, see
Figure 3), the use of operant conditioning procedures to train marine mammals would soon
spread to other parks, including Marineland of the Pacific, Sea Life Park, and SeaWorld
(for a review, see [40]).

Figure 3. Colorized photo of Keller Breland training a dolphin at Marine Studios/Marineland of
Florida, circa 1957. (Reproduced from [40] with permission of John Wiley and Sons, 2014).

Eventually, the success of operant conditioning to shape the behaviors of marine
mammals would be popularized by books such as Karen Pryor’s Lads before the Wind [41]
and Don’t Shoot the Dog! [17]. At the same time, zoos began to see the benefits of using such
procedures to produce voluntary participation in veterinary husbandry practices [7,42].
For instance, San Diego Zoo implemented a shaping protocol that allowed a diabetic drill
(Mandrillus leucophaeus) to choose to receive insulin injections [43]. Denver Zoo trained
nyala (Tragelaphus angasi) and bongo (Tragelaphus eurycerus) to willingly enter crates to
receive blood draws or other veterinary procedures [44,45]. Bloomsmith, Stone, and
Laule [46] successfully used reward-based methods to train large groups of chimpanzees
(Pan troglodytes) to elect to move (i.e., “shift”) from outdoor areas to an indoor portion of
their enclosures. The use of reinforcement-based training procedures is now commonplace
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for many species within most accredited zoos, with some organizations requiring facilities
to establish and use such protocols to receive accreditation [47–50].

3. The Engineering of Environmental Enrichment in Zoos

The implementation of environmental enrichment in zoos can be traced to Hal
Markowitz, who served as Director of the Oregon Zoological Research Center, Asso-
ciate Director of the Portland/Washington Park Zoo (now the Oregon Zoo), and Professor
of Biological Science at San Francisco State University. While prior work in zoos and
similar settings described the need for promoting the well-being of captive animals [51–54],
Markowitz and his colleagues were among the first to promote a systematic, functional ap-
proach to the behavior of zoo animals through behavioral engineering [9,55–59]. The term
“behavioral engineering” itself was taken directly from the application of Skinner’s operant
conditioning procedures, or the field of Applied Behavior Analysis (ABA) [24,60,61]. The
term, “engineer,” emphasizes the real-world application of a science. In the same way that
mechanical engineers apply basic physics principles to better society, behavioral engineers
apply the science of respondent and operant conditioning to bring about positive change in
the world and, in this case, zoos. Through the creation of contrived, reinforcement-based
learning contingencies, Markowitz and his colleagues were able to produce mechanical
levers that would allow white-handed gibbons (Hylobates lar) to swing across their en-
closure to activate the levers and receive a food reward, mandrills (Mandrillus sphinx) to
compete against zoo visitors in a computerized arcade-like reaction game, and polar bears
(Ursus maritimus) to vocalize into a voice-operated relay system that would result in a
frozen fish being launched into their exhibit (see Figure 4) [62–64]. All the above was
carried out to produce desired behaviors (e.g., foraging) or reduce undesired responses
(e.g., pacing) as a form of artificial, mechanized occupational therapy for the zoo animals.

Figure 4. Colorized photo of a polar bear chasing a frozen fish catapulted into their pool at the
Portland (Oregon) Zoo, circa mid-1970s. (Reproduced from [63] with permission of American
Veterinary Medical Association, 1977).

Among the criticisms of such applications were the artificiality of the procedures
involved, as well as the arbitrary distinction of what constituted ‘desired’ responses to be
increased [65–67]. These critics argued that, rather than engineering environments through
contrived contingencies, zoos should focus on creating naturalistic exhibits that increased



J. Zool. Bot. Gard. 2021, 2 536

spatial and temporal complexity, for instance, the exhibit arrangement or timing of feeding
events [68,69]. Markowitz [70] responded to some of these criticisms by noting that, “the
best interests of captive animals may not be served by making their state as ‘wild’ as
possible.” (p. 12). Markowitz’s argument was that artificial and mechanical contingencies,
such as those provided by enabling an elephant to pull a chain to receive part of their diet
(see Figure 5), could improve the lives of exhibited animals. “Behavioral enrichment”, a
term Markowitz began using synonymously with behavioral engineering, could benefit
exhibited animals by giving the animals ‘something to do’ [10,70].

Figure 5. Colorized photo of an Asian elephant pulling a ring to obtain fruit at the Honolulu Zoo,
circa late-1970s. (Reproduced from [10] with permission of John Wiley & Sons Limited, 1982).

The term “enrichment” appeared to come directly from psychobiological and devel-
opmental neuroscience research, where comparisons were often made between animals
raised in enriched versus impoverished environments (for a review, see [71]). Regard-
less, both the ideas of enriching and engineering environments were now being used
interchangeably, with other authors arguing that these and the naturalistic/complexity
concepts could be integrated to benefit the behavioral welfare of zoo animals [72]. Likewise,
some of Markowitz and colleagues’ later efforts focused on naturalistic implementations
of behavioral engineering endeavors, such as Asian small-clawed otters (Aonyx cinereus)
hunting live crickets (Acheta domesticus) that visitors mechanically assisted in releasing
into different parts of their exhibit, servals (Leptailurus serval) chasing artificial prey run
through clear tubes in their enclosure (see Figure 6), and an African leopard (Panthera
pardus) chasing bird sounds along a tree limb to receive a food reward [73–75].
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Figure 6. Colorized photo of a serval chasing artificial prey at the San Francisco Zoo, circa 1984.
(Reproduced from [74] with permission of Elsevier, 1982).

The result has been the introduction of environmental enrichment as an approach that
is both pragmatically focused and attends to the species-typical needs of the organisms
involved. The use of enrichment is one of those rare events that requires simultaneous
attention to both evolutionary and learning histories to be optimally implemented, which
necessarily requires an integration between naturalistic and engineered exhibits [14,76].
Equally important for the zoo is how the visitor behaves in response to enriched animals,
therefore driving the need for naturalistic devices and responses for and from the animals
being enriched, respectively [77,78]. Environmental enrichment, because of its behavior
analytic underpinnings, is now an animal welfare endeavor where all features of how an
animal interacts with its environment are examined for their behavioral benefits [5,79].

4. The Future of Behavior Analysis in Zoos

Behavior analysis has had a profound influence on shaping the modern zoo; however,
we have only begun to realize its full potential in animal settings. There have been many
calls for the adoption of a behavior analytic framework to improve animal care [7,61,80–86].
While the science of behavior analysis grew out of basic animal studies, recent advances
in applied behavior analysis have been developed and implemented primarily in human
clinical settings. However, coming full circle, researchers are now successfully adapting
and using behavioral protocols developed for use with people to impact animal welfare.
For example, functional analysis protocols have been used to assess and treat problem
behaviors in animals [87–96], and this function-based approach that emphasizes the identi-
fication and modification of existing behavior-environment relationships may help provide
a framework that allows animal caregivers both a deeper understanding of behavior and
the ability to move beyond the reliance of artificial reinforcers when modifying behav-
ior [61]. In addition, empirical preference assessments have been successfully used in a
variety of species [97–111] with promise for improving training effectiveness. By using a
behavior analytic lens, adapting existing behavioral technologies, and developing new,
animal-specific, behavioral protocols and methodologies, behavior analysts could play a
considerable role in guiding the next advances in modern zoos. We outline just a few of
the possibilities below, including (i) expanding the efficacy of environmental enrichment,
(ii) using within-subject methodology, and (iii) improving animal-visitor interactions.
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Applied behavior analysts have a long history with increasing behavioral repertoires
to the benefit of the participants involved, and zoo animals should be no exception to this
approach. Using both antecedent and consequence manipulations, behavior analysts in
clinical settings have developed effective protocols to increase social and occupational skills
with people [112,113]. While zoos use environmental enrichment to increase an animal’s
behavioral repertoire, its application is often void of an underlying theoretical framework
and is based on factors like appearance, novelty, cost, or availability/convenience [14,76].
A zoo-based behavior analyst could increase the effectiveness of these enrichment practices
by learning theory-focused implementations that incorporate factors such as schedules of
reinforcement, habituation, preference, variation, and choice (e.g., [86,109,111,114–116]).
In doing so, they could help to solve issues such as animals who are unusually inactive,
not using existing enrichment options, or not utilizing all areas of a habitat. Furthermore,
training practices could be combined with environmental enrichment (e.g., [1]) to shape
more complex behaviors that allow for increased engagement with enrichment devices.
Enrichment could also play a key role in training adaptive behaviors that would aid in
conservation and re-release programs (e.g., [117,118]). In addition to increasing an animal’s
behavioral repertoire, another goal of enrichment is to decrease maladaptive behaviors,
and behavior analysis likewise can provide guidance in this area. The competing stimuli
framework is used in ABA to identify which items or activities effectively reduce problem
behaviors by offering alternative sources of reinforcement [118,119]. By monitoring an
individual animal’s (or group’s) enrichment use and problem behavior across different
enrichment conditions using within-subjects designs, behavior analysts could make data-
driven decisions regarding the best implementation of a variety of different types of
potential enrichment items or events [75,80,82,117,120,121].

Within- or single-subject research designs such as some of the research mentioned
above form the methodological foundation of behavior analysis [122–124]. These individual-
focused designs allow researchers to experimentally determine the functional relationship
between variables and effectively monitor a subject’s response to interventions using as
few as one subject. In ABA, the goal is to make a meaningful change in the behavior of
a particular individual in a specific circumstance or setting, and within-subject designs
allow for this flexibility and specificity [123]. Similarly, every attempt to provide proper
behavioral welfare for any zoo animal is ultimately a study with a sample size (n) = 1. Even
if it is possible to find enough similar subjects to conduct a robust group study, knowing
that the average animal responds to a particular reinforcer or treatment is of limited use
when focusing on the treatment of an individual animal. For example, knowing that 60% of
a sample of a particular species will forage for a particular food item will not aide a facility
if the animal in an exhibit is in the 40% who will not. Animals’ responses to stimuli are
based on both their species and individual histories as well as their current environment,
so assessing and monitoring behavior at the level of the individual level is key. Behavior
analytic methodologies and their focus on the overt behaviors of individuals is ideally
suited for improving the lives of zoo animals [80,82,125].

Finally, zoos have become increasingly interested in understanding both direct and in-
direct animal-visitor interactions, with particular emphasis in minimizing adverse impacts
that visitors may have on animals while also increasing visitor education and entertain-
ment [77,126,127]. Factors that increase visitor engagement with conservation efforts are
also of interest (see [128] for review). Zoo visitors respond favorably to animal interactions,
training demonstrations, and environmental enrichment activities [128], and a zoo-based
behavior analyst could optimize these events. For example, more interactive elements
in the spirit of some of Markowitz’s early behavioral engineering endeavors (see ‘The
Engineering of Environment Enrichment in Zoos’ section) could be developed and up-
graded with modern technology (e.g., [129–132]) so that visitors could introduce interactive
elements (e.g., movement, sound, or food) into animal exhibits. This would require careful
arrangements and monitoring, of course, and behavior analysts have the expertise and
tools to ensure its success. A large component of understanding these interactions should
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come from simultaneously observing the overt behaviors of both animals and visitors, an
exercise all too common for many applied behavior analysts when equally working with
caregivers and clients. While zoos have a primary responsibility to promote the welfare
of the animals in their care, by focusing on learning contingencies involved for both the
animals and the visitors, ABA practitioners in zoos could effectively provide win-win
solutions that mutually improve the welfare of animals and the education/enjoyment of
the visitor.

5. Conclusions

Many of the behavioral practices found in modern zoos can be traced back to pioneers
in operant conditioning such as B. F. Skinner, Keller Breland, Marian Breland Bailey, and
Hal Markowitz. Behavior analytic-driven advances in animal training and environmental
enrichment have improved the welfare of zoo animals and have benefited animal care
workers and zoo visitors. Nonetheless, behavior analysis still has untapped potential in this
setting. While some operant-based techniques, such as clicker training and environmental
enrichment, have become commonplace in zoos, these practices have in some instances
become disconnected from their underlying learning principles. Further advancement of
behavior analysis in animal settings necessitates individuals who are well-trained in the
fundamentals of respondent and operant conditioning and can combine this theoretical
background with practical knowledge of animal behavior to design habitats and arrange
behavioral contingencies to optimize welfare [61]. This will require more animal care
professionals with advanced training in behavior analysis and more collaborations between
zoos and behavior analysts working in other settings, such as human clinical settings or
academic institutions [82,84,85,133]. Integrative approaches to behavior analysis and
animal behavior are rapidly increasing. We hope that this historical recognition of such
work in zoos, as well as a potential guide for future research, helps foster such practices.
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