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Abstract: Under pathological conditions such as multiple sclerosis (MS), leukocytes infiltrate the
central nervous system where they, in concert with activated microglia, promote inflammatory
demyelination resulting in a broad spectrum of symptoms, including paralysis. Therefore, all cur-
rent therapeutic approaches to MS target the immune system, blocking inflammation and paralysis
progression, but may compromise the immune system. In this focused review, we present an under-
estimated compartment, the blood–brain barrier, which is compromised during MS and becomes
permeable to leukocytes infiltrating the central nervous system. This barrier has the potential to
offer new therapeutic strategies and is easily accessible for drugs. We highlight this paradigm using
the example of the therapeutic anti-Reelin strategy we have developed. Reelin is a plasma protein
that regulates the expression of adhesion markers on the endothelial surface, thus promoting the
infiltration of inflammatory cells and propagating inflammation. Building Back a Better Blood–Brain
Barrier (the “6B” strategy) may have advantages compared to actual immunosuppressive drugs
because it restores a physiological function rather than suppressing the immune system.

Keywords: multiple sclerosis; EAE; blood-brain barrier; endothelium; endothelial cell; leukocyte;
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1. Introduction

Chronic inflammation and excessive recruitment of circulating leukocytes is an early
event and a key mechanism in several pathologies, including autoimmune diseases. Mul-
tiple sclerosis (MS) is a typical example of this disorder when unbalanced recruitment
and activation of circulating immune cells lead them into the central nervous system
(CNS) where they attack the myelin sheath that insulates nerve fibers, eventually caus-
ing paralysis [1–6]. Approximately 85% of patients affected by MS present a relapsing–
remitting disease form, characterized by alternating episodes of neurological disability (re-
lapses or attacks) followed by complete or partial recovery of symptoms [7]. Approximately
two-thirds of these patients will eventually make a transition to secondary progressive MS
within two decades after initial onset [8]. On the other hand, approximately 10% of MS
patients present a primary progressive MS form with gradual worsening of the neurological
disability [7]. Although substantial progress has been made in the development of effective
treatments over the past two decades for relapsing–remitting MS [9], no convincingly
effective therapies exist for progressive forms of MS (primary and secondary) [10,11].

With an immune system going out of control and attacking healthy tissue, logically, all
the available MS therapies directly target this immune response (Figure 1) to dampen neu-
roinflammation and associated adverse effects [5]. As expected, these immune-suppressing
therapies have yielded tremendous progress for relapsing–remitting MS, slowing down the
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relapses, but it appears that they are reaching a glass ceiling. Despite the approval of almost
twenty drugs targeting the cellular immune system, three challenges remain: (i) paralysis
can hardly be reversed, (ii) effective therapies are lacking for progressive forms of MS, and
(iii) immunotherapeutic interventions may compromise the immune system [12,13]. For
example, Natalizumab is an antibody widely used in clinics that binds to all leukocytes via
α4-integrin and prevents their interaction with receptors on the endothelium such as vas-
cular cell adhesion molecule 1 (VCAM-1) [14,15]. Natalizumab appears to indiscriminately
abolish the ability of leukocytes to adhere and access the CNS. While this drug has striking
results in decreasing the number of relapses, it also blocks physiological diapedesis and
is associated with a high risk for progressive multifocal leukoencephalopathy caused by
reactivation of the John Cunningham (JC) virus, resulting in a fatal viral infection of the
brain [16]. Therefore, identifying optimal, non-immunosuppressive therapies for all forms
of MS continues to constitute a major unmet need for patients [17].
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MS drugs that target the immune system while therapeutic opportunities of targeting the blood–brain
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endothelial adhesion proteins via activation of its receptor ApoER2, which induces NF-κB signaling.

2. Targeting the Endothelial Function to Block Inflammation

To identify new targets, it may appear counterintuitive, but innovative, to step back
from immunotherapies and explore other MS components. While the CNS is difficult to
access for drugs due to the blood–brain barrier (BBB), the vascular barrier itself is the
last key compartment for neuroinflammation. Under normal conditions, this endothe-
lial wall effectively regulates the passage of immune cells into the CNS. However, under
inflammatory conditions such as MS, this barrier is compromised, becoming more ad-
hesive and permeable, which dramatically increases leukocyte rolling, adhesion, and
infiltration [1,18]. This BBB breakdown hypothesis is supported by a substantial body of
radiological and pathological clinical evidence. BBB leakage has been observed in MS
patients by Gadolinium-enhancing lesions on MRI as well as by fibrinogen (a plasma
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protein) deposition in developing lesions [19,20]. On the cellular level, tight-junction ab-
normalities are also seen in endothelial cells around active lesions, which is a hallmark
of a permeable endothelium [20]. This results in increased infiltration of leukocytes into
the CNS as demonstrated in the postmortem MS brain [20]. Based on this new paradigm,
restoring this BBB would prevent leukocyte infiltration into the CNS without targeting and
dampening the immune system.

During inflammation, endothelial cells overexpress on their surface “rolling” proteins
such as E-selectin and adhesion proteins such as intercellular adhesion molecule 1 (ICAM-1)
or VCAM-1, massively increasing the number of leukocytes patrolling the vessel wall and
infiltrating the surrounding tissues [21–23]. Natalizumab has proven that total obliteration
of only one adhesion protein on leukocytes is very effective, but it also disrupts basic
diapedesis function [5,12,14,15]. Learning from this flaw to identify the next game changer
and to preserve this physiological function, dampening the expression of a large set of
adhesion molecules back to a physiologically normal baseline level may be a superior
strategy. In this respect, Reelin may be a potential target that fulfills these criteria. Initially
recognized only for its role in guiding neurons during brain development and as a synaptic
homeostatic regulator [24–28], it has recently been recognized for a previously unknown
non-neuronal function as an NF-κB activator in the vasculature.

3. Reelin Inhibition Protects the Endothelial Function and Presents Clinical Potential

In human aortic endothelial cells, adhesion and permeability are largely regulated
via NF-κB pathway activation [29]. NF-κB target genes include adhesion molecules such
as E-selectin, ICAM-1, or VCAM-1, but also cytokines and chemokines. Interestingly, it
has been demonstrated in human aortic endothelial cells that Reelin activates NF-κB and
thereby controls the expression of its target genes, especially adhesion molecules [30–32],
via its membrane receptor apolipoprotein E receptor 2 (ApoER2) [30], a member of the
LDLR family [33]. Accordingly, it has been shown that Reelin promotes leukocyte adhesion
to endothelial cells and that Reelin-blocking antibodies can prevent this adhesion, in vitro
using an adhesion assay with human aortic endothelial cells and human monocytes U937
and in vivo by intravital microscopy on mesenteric vessels [30–32]. Using autoimmune
encephalomyelitis (EAE) as a murine MS model, both genetic deletion of either Reelin or
its receptor ApoER2, as well as pharmacological (antibody-mediated) Reelin depletion
substantially reduce paralysis progression [32,34]. In all these models, Reelin or ApoER2
depletion normalizes the expression of vascular adhesion markers in the CNS, consequently
decreasing leukocyte infiltration, demyelination, and paralysis.

In a proof-of-concept study, we have demonstrated that administration of a Reelin-
neutralizing antibody given at the onset of EAE symptoms results in diminished neuroin-
flammation, paralysis, and improved recovery [32]. Importantly, the antibody depletes
Reelin from circulation, but not from the CNS due to the blood–brain barrier, thus preserv-
ing the neurophysiological functions of Reelin in the brain. In addition, there is considerable
genetic and biochemical evidence that supports the relevance of anti-Reelin therapy in hu-
mans. In two independent genomewide association studies [35,36], Reelin single-nucleotide
polymorphisms were found to be associated with MS severity score. Finally, in serum from
MS patients, Reelin concentration was increased during relapse but returned to baseline
levels during remission phases [32].

The discrimination of Reelin’s functions in the CNS versus circulation is a relatively
new finding and some uncertainties remain, requiring additional studies. For example,
the source of plasma Reelin expression is not well-understood. Reelin is expressed in the
CNS by the neurons; however, it is unlikely that it leaks from there (or the cerebrospinal
fluid) into circulation in significant amounts. To confirm this, we have previously shown
that we can deplete Reelin from plasma by injecting Reelinfl/fl mice through the tail vein
with an adenovirus expressing Cre recombinase (Ad-Cre) [30]. Immunoblot analysis
demonstrated efficient and specific ablation of Reelin from plasma but not from the brain.
In the literature, the liver and especially the hepatic stellate cells are believed to be the
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main source of peripheral Reelin [30,37–40]; we challenge this paradigm as we have not
observed an increased expression in hepatic Reelin mRNA expression matching plasma
Reelin accumulation during EAE (data not shown). In addition, Reelin expression has
been reported in lymphatic vessels [41] but remains unknown in the specific glymphatic
system. Therefore, plasma Reelin secretory cells during neuroinflammation remain to
be determined.

4. Conclusions and Perspectives

The “6B” strategy—an acronym for Building Back a Better Blood–Brain Barrier—that
we are proposing here stands out from previous approaches by restoring the endothelial
barrier and targeting a broad range of adhesion proteins. As illustrated in Figure 1, target-
ing plasma Reelin allows the regulation of vascular permeability to devise an alternative
endothelial-specific tunable approach for the treatment of MS. In addition, studying the
function of Reelin in the plasma unexpectedly revealed a novel mechanism and illustrated
how the organism reuses a neuronal guidance molecule (Reelin) crucial for normal brain de-
velopment to “guide” leukocytes into the perivascular space during inflammatory processes
by modulating extravasation. These recent findings establish a new paradigm for the role of
guidance molecules across different functions and cell types, with far-reaching implications
for several chronic inflammatory diseases aside from MS, such as Alzheimer’s disease,
arthritis, atherosclerosis [30,31], or potentially Crohn’s disease. Besides Reelin, other targets
can be used to modulate the BBB properties, either from the same LDLR ligand/receptor
family [33] such as the LDL receptor related protein 1 (LRP1) [42,43], or outside of this
family such as the peroxisome proliferator activated receptor γ (PPARγ) [44–49].
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