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Abstract: Inflammation is a key factor in cancer promotion. Tumor-associated macrophages (TAMs),
as part of the tumor microenvironment, are often associated with the progression of tumors and a
worse prognosis in many cancers, namely on cervical cancer. This work exhaustively summarizes
the conclusions of the different studies published concerning TAMs function in cervical cancer, from
in vitro studies using cancer cell lines to the clinical perspective (histological samples-based studies).
Most studies have led to the conclusion that TAMs increased density is directly related to increased
severity of a malignant cervical lesion. Additionally, TAMs are normally polarized into an M2
phenotype, benefiting and promoting tumor progression, resulting in a worse disease outcome. The
tumor microenvironment is also a highly critical contributor that not only influences tumor natural
history but also modulates the specific immune response.
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1. Introduction

Cervical cancer is one of the most commonly diagnosed types of tumor in women in
the world [1], being the most relevant cause for the development of this specific type of
cancer is the persistent infection carried out by the Human Papilloma Virus (HPV) [1,2]. If
the immune system is unable to prevent a persistent infection, HPV can transform normal
cells into malignant cells, promoting, also, chronic inflammation and the development of
advanced precursor lesions [3].

Evidence suggests that inflammation is a central key in cancer initiation and promo-
tion [4]. It is responsible for tumor development, invasion [5], and angiogenesis [6]. The fact
is that solid tumors are infiltrated by cells of the immune system indicates that a significant
percentage of cancer cases are associated with chronic infection or inflammation [7,8].

Macrophages are immune cells whose function is to carry phagocytosis and immune
surveillance [9]. They are frequently present in the tumor microenvironment, being referred
to as tumor-associated macrophages (TAMs) and are known for their antitumor activity [10].
Plasticity is a characteristic of TAMs, and therefore they can be influenced and polarized in
response to an environmental stimulus [11]. Its role in cancer is not yet fully established [12],
but convincing evidence shows that TAMs can promote and sustain cancer malignancy [13].

Most of the published studies resembling the presence of TAMs on the tumor microen-
vironment report its association with the progression of the tumor and a worse disease
outcome [11,14]. The same seems to happen in cervical cancer [15]. However, different
deductions arise based on the macrophage phenotypes [16] or lesions [17].
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Many publications have explored and suggested a crucial role for TAMs in the pro-
gression of many types of cancer. Recently, a study focused on the macrophage’s role
in gynecological cancers but briefly approached its role in cervical cancer [18]. Addi-
tionally, more works reviewed the role of TAMs and inflammation in cervical cancer
development [19,20].

The main goal of this review paper is to summarize the overall remarks of several
published studies concerning TAMs implications for cervical cancer, either by analyzing
their role in tumor promotion or disease prognosis. For this purpose, studies were col-
lected and exhaustively analyzed from a clinical and research perspective, including both
histological samples and in vitro assays on cell lines, respectively, to clarify a relationship
between TAMs and the occurrence and development of cervical cancer.

2. Materials and Methods

The literature search was performed in PubMed, Elsevier, Science Direct, and Google
Scholar for all studies using terms related to cervical cancer (e.g., cervical cancer, cervix,
etc.) and tumor-associated macrophages (e.g., tumor-associated macrophages, TAMs, M1,
M2, etc.). Preliminary reading and analysis allowed the selection of 26 studies, which
were subsequently exhaustively analyzed. Among the ones referred to before the scientific
articles which focus on macrophages and their relation with cervical cancer and that have
results obtained using in vitro studies with macrophages and cervical cancer cell lines were
used in the revision (Figure 1).
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Figure 1. Study development step-by-step. Stage 1 and 2 consisted in an initial search using cervical
cancer related keywords. In stage 3 occurred the selection of studies relating macrophages and
cervical cancer. Stage 4 comprised the analysis of such studies and the compiling of information.

3. Tumor-Associated Macrophages

Macrophages differentiate from bone marrow monocytes and can adopt different
phenotypes that differentially express specific markers [21,22].

As previously stated, macrophages can be induced to adopt different polarization
states, known as inflammatory states, with different cytokines expression profiles [23].
Classically activated macrophages, known as M1, have antitumor activity in established
tumors [24]. However, an M1 phenotype dysfunction in a chronic inflammation can result
in cancer promotion, due to the release of oxidation products [25]. Alternatively, activated
macrophages, also known as M2, have tissue repair and remodeling properties and can
enhance angiogenesis [26], tumor invasion [27], and development [28]. The cluster of
differentiation 68 (CD68) is a generic macrophage marker, and CD163, a member of the
scavenger receptor cysteine-rich (SRCR), is mainly expressed in the M2 phenotype and
associated with tumor enhancement [16,28]. So, being Macrophages recognized for their
cytotoxic and antitumor activity; they can act as tumor promoters by secreting factors that
will enhance tumor invasion and metastasization [29].

Macrophages are characterized by their high plasticity and TAMs can be recruited
and influenced by tumors and end up aiding and promoting tumor proliferation [30]. The
tumor microenvironment, with its complex network of infiltrating cells, blood vessels,
and secreted factors, leads to the polarization of TAMs towards phenotypes expressing a
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characteristic cytokine profile [12]. TAMs contribute to inflammation and tumorigenesis,
taking part in the hallmarks of cancer (Figure 2). The direct interaction with T cells or
the release of immunosuppressive cytokines and proteases facilitate immunosuppression.
Thus, the tumor avoids immune destruction. Activation of invasion and metastasis occurs
by secretion of metalloproteinases, proteases, and cathepsins that take part in cell adhesion,
and the release of angiogenic factors, such as vascular endothelial growth factor (VEGF),
induces angiogenesis [30–32].
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Figure 2. Major role of tumor associated macrophages (TAMs) in the hallmarks of cancer.
Adapted [30] from Aras, S. & Zaidi, M. R. TAMeless traitors: macrophages in cancer progression and
metastasis. British Journal of Cancer 117, 1583, [2017], and [31] Hanahan, D. & Weinberg, Robert A.
Hallmarks of Cancer: The Next Generation. Cell 144, 646–674, [2011].

TAMs presence has been associated with a poor disease outcome as well as a poor
prognosis and a shorter survival for several types of cancer [15,33,34] being the high density
of TAMs related to a bad prognosis in 80 % of published studies [35].

Cytokines produced by TMAs, such as TNF-α, can be associated with a higher risk
of developing invasive cervical cancer [36]. Although studies usually focus on the effect
of macrophages and tumor progression, some demonstrate that some cytokines polymor-
phisms are related to an increased risk of developing cancer [37,38]. In addition, poly-
morphisms in endothelial cell-specific forms of nitric oxide synthases have been strongly
associated with advanced prostate cancer, as well as the development of prostate bone
metastasis [38]. However, TAMs density can be linked to a better prognosis in other types of
cancer [37,39] as colorectal cancer, for which the presence of TAMs might enhance survival
in patients [35].

Since macrophages can be present in the microenvironment and have an impact on
immunosuppression, recent strategies exploit TAMs characteristics. Blocking monocyte
recruitment into tumor tissue, decreasing TAMs density, targeting TAMs activation, or
even reprograming into displaying an antitumor phenotype, are examples of clinical trial
approaches [40–42].

3.1. TAMs and Cervical Cancer: Outcome

Whereas macrophages infiltration has been associated with tumor advanced stages
and a worse outcome, opposite conclusions were also observed [43].
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Overall, when compared to normal tissues, macrophage density was increased in both
precursor lesions and established cervical cancer (Figure 3). A higher density in TAMs
has been reported in invasive cervical cancer, which agrees with studies associating the
number/density of TAMs with a poor prognosis in cervical cancer cases [34], as well as in
other types of cancer, including breast, gastric, or head and neck cancer [44–46].
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org/licenses/by/3.0/ (accessed on 1 July 2022)).

Early on, a positive correlation was found between macrophage counts and disease
progression [47] as well as elevated counts of infiltrating macrophages in invasive carcino-
mas [48]. Later, superior macrophage counts where found in CIN (cervical intraepithelial
neoplasia) II, III and SCC (squamous cell cancer) when compared to normal tissue, reveal-
ing an association between macrophage infiltration and progression to malignancy [49].
Additional studies have also reported increased stromal macrophages in high-grade CIN
and cervical cancer [50].

Nonetheless, studies report exceptions where macrophage counts neither correlate
with tumor stage nor with survival [43]. While studying the clinical and functional signifi-
cance of TAMs, Ding et al. observed enrichment of macrophages in cancer nests compared
to less developed lesions and normal tissue but found no significant correlation with the
FIGO stage [17].

A higher density of TAMs was also found in carcinoma in situ and established cervical
cancer in Jiang et al. and Utrera-Barillas et al. works, respectively. Authors related the
interaction between TAMs and tumor cells to synergistically promote angiogenesis [51,52].
Ding et al. also highlighted the possibility that macrophages are actively involved in
lymphatic metastasis in the tumor stroma [17].

Contrarily, a relation seems to occur when a specific macrophage phenotype is consid-
ered and studied.

https://creativecommons.org/licenses/by/3.0/
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M2 TAMs were found to be elevated in neoplastic tissue [53] and a close correlation
between lesion severity and an increased density in M2 macrophages was reported [54].
Furthermore, CD163+ macrophages demonstrated a stronger correlation with the advanced
FIGO stage and lymphatic metastasis than CD68+ cells [16].

Another work identified a relationship between M2 TAMs and invasion patterns in
squamous cervical cancer, noticing a significant increase in M2 macrophage content in
tumor tissue arrays with diffuse infiltration patterns [53]. Furthermore, Petrillo et al. have
shown that differentiation of macrophages into M2 can lead to resistance to platinum
therapies, which is in line with the conclusion of studies for various types of cancer that
show evidence of a reduced effect of chemotherapy and radiotherapy [15,55]. Dijkgraaf
et al. corroborated their results by showing that chemotherapeutic agents induced the
proliferation of M2-type macrophages, which may lead to indirect resistance to anticancer
therapy [56].

Heeren et al. investigated the effect of PD-L1 expression on immune cells in either
squamous cell carcinoma or adenocarcinoma of the cervix, identifying them as tumor-
associated macrophages, reportedly CD163+ and CD14+ representing the M2 phenotype.
The presence of these cells was associated with a poor-disease specific survival [57].

Regardless of the type of study, it is clear that an increase in TAMs is an indicator of
a worse prognosis [58] and that TAM infiltration correlates with cervical cancer progres-
sion [59]. Taken altogether, these findings suggest that TAMs favor the spread of cancer
and lymphatic invasion in an interplay with cancer cells [50].

Even so, some studies have the limitation of not discriminating macrophage pheno-
types [51,60]. In addition, M2 TAMs might also be causing a worse prognosis [61], revealing
tumor-promoting capacity demonstrated by several works [15,42,54]. A reduced M1/M2
ratio, as reported by Petrillo et al., might explain, at least to some extent, the severity [15]
and is propitious to tumor progression [25].

To the best of our knowledge, there is no study regarding the effect of the M1 phe-
notype on cervical cancer. However, this phenotype was associated with a higher ex-
pectance of survival in non-small cell lung cancer [62], highlighting the contrasting roles
of macrophages and the need to distinguish between their phenotypes because of their
distinct effects. A reduced M1/M2 ratio is of great importance to disease outcome and
implications [15] to the result, from M1 and M2 balance due to the antagonistic activities of
these phenotypes [15,30,54].

The variations observed between the results expressed in the literature, particularly
in the association between disease stages, increased TAMs, and prognosis, may reflect
differences related to sample size, antibodies used, tumor grade, or stage; even though the
same methodology has been applied to assess TAMs density in tumors.

3.2. TAMs Activity on Cervical Cancer Cell Lines

While in some studies analyzed cervical tissue samples [16,43,53], other tested cervical
cancer cell lines and studied changes on macrophage phenotype [49,56,63,64].

Pedraza-Brindis and coworkers investigated whether supernatants produced by cervi-
cal cancer cell lines could induce an M2 phenotype switch in THP-1 macrophages. Their
work revealed that factors secreted by cancer cells induced macrophages to express CD163
(an M2 tag) and a different cytokine profile production. The decrease in pro-inflammatory
cytokines resulted in cervical cancer proliferation, angiogenesis, and metastasis [63].

Sánchez-Reyes et al. evaluated the effect of cervical cancer cell lines in U937-derived
macrophages. In agreement with the previous study, macrophages under the influence of
cancer supernatants expressed CD163 and Interleukin-10 (IL-10), presuming a shift to an
M2 phenotype [64].

While investigating the impact of platinum-based chemotherapeutic agents on cervical
cancer cell lines and their ability to influence differentiation, Dijkgraaf et al. found that these
agents promote the expression of inflammatory factors such as IL-6 and prostaglandin E2
(PGE2), interfering with the normal nuclear factor-kB (NF-kB) signaling pathway. However,
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the tumor cell lines induced the expansion of IL-10-producing M2 macrophages, reflecting
a decrease in the immune potentiating response [56].

Heusinkveld et al. studied the effect of cervical cancer supernatants on monocyte
differentiation and function. The authors found that monocytes were changed to an M2-
type phenotype by tumor-produced IL-6 and PGE2. However, after interaction with T
helper 1 (Th1) cells, M2 macrophages could turn into activated M1 macrophages with
pro-inflammatory activity [65].

These studies highlight the importance of the microenvironment in carcinogenesis
and tumor development (Figure 4).
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Tumor-infiltrating macrophages can be recruited and polarized by factors secreted
by the tumor to induce macrophages into a phenotype that benefits its survival and
expansion [63], usually associated with an M2 phenotype and the expression of CD136 as
the principal marker [28].

Cytokines also play an indispensable role in tumor progression. Tumors can manip-
ulate immune cells, including TAMs, which, in return, produces specific cytokines that
enhance tumor growth, development, invasion, and metastasization [8].

4. Conclusions

Considering the different studies (in tumor tissue and cell lines), cervical cancer, like
many other cancers, is infiltrated by TAMs, and there is evidence that an increase in the
density of TAMs density is related to the severity of a lesion [54], a poor outcome of the
disease and poor response to treatment [14,15].

On its whole, the tumor microenvironment might be responsible for the polarization
of macrophages into an M2 phenotype, characterized by a low antitumor activity, which fa-
cilitates tumor development. Furthermore, experiences with cell lines corroborated the role
of M2 macrophages in suppressing the immune response, allowing tumor development.

The analysis of the different studies accessed suggests that the increase in TAMs in
the tumor environment is related to the augmentation in the degree of cervical lesions
(by the degree of lesions, the comparison between pre-malignant and neoplastic lesions
or/and grading/staging of neoplasms should be considered invasive). In addition, TAMs
may express an M2 phenotype, characterized by immunosuppression, tissue remodeling,
and tumor-promoting activities. This phenotype’s presence may also be a consequence of
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factors secreted by the tumor and an explanation for the poor prognosis observed in cases
of TAM infiltration.
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