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Abstract: Apolipoprotein E (APOE) has three different isoforms, with APOE4 carriers representing a
major risk factor for the development of Alzheimer’s disease (AD). AD is the most common form of
dementia, and is a relentlessly progressive disorder that afflicts the aged, characterized by severe
memory loss. Presently, AD does not have a cure, increasing the urgency for the development of
novel therapeutics for the prevention/treatment of AD. The APOE4 isoform is associated with many
pathological mechanisms, such as increased neuroinflammation and a reduction in β-amyloid (Aβ)
clearance. The accumulation of Aβ plaques in the brain is a hallmark of AD. The presence of APOE4
can increase neuroinflammation via overactivation of the nuclear factor kappa B (NF-κB) pathway.
The NF-κB pathway is a family of transcription factors involved with regulating over 400 genes
involved with inflammation. AD is associated with sustained inflammation and an overactivation of
the NF-κB pathway. Therefore, targeting the APOE4 isoform and suppressing the NF-κB pathway
using anti-inflammatory compounds may result in the development of novel therapeutics for the
prevention/treatment of AD.
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1. Introduction

The global population is reaching unprecedented levels of advanced age, generating
a large demographic vulnerable to brain insults, thus creating enormous healthcare, eco-
nomic and social impacts. Alzheimer’s disease (AD) is a relentlessly progressive disorder
that afflicts the aged, and is the sixth leading cause of death in the United States (Centers
for Disease Control and Prevention). Two hallmarks of AD include β-amyloid (Aβ) pep-
tides that are extracellularly deposited, and neurofibrillary tangles (NFTs), composed of
intracellular filamentous aggregates of hyperphosphorylated tau protein [1–4]. In June
2021, Aducanumab was approved as a disease-modifying therapeutic via the removal of
Aβ plaques in the brain [5]. However, the presence of Aβ plaques does not always result
in AD, which has led to controversy over the use of aducanumab. Other therapeutics used
for AD do not alter the course of the disease, which increases the urgency of developing
novel therapeutics for AD.

Apolipoprotein E (APOE) has emerged as a therapeutic target for the treatment of
AD. APOE is a cholesterol carrier that is involved with lipid transportation and repair in
the brain [6]. APOE is a polymorphic protein with three isoforms, APOE4, APOE3, and
APOE2, which differ from each other by two amino acid substitutions (arg/arg, cys/arg,
and cys/cys, respectively), resulting in different tertiary structures and likely altering APOE
function. Despite the similarity among the isoforms, they present major differences in the
risk of developing AD, with APOE4 being a strong risk factor for the development of AD.
APOE3 is the most common isoform and does not affect risk of developing AD, and APOE2
is associated with a decreased risk of the development of AD. The worldwide frequency of
APOE4 is 13.7%, that of APOE3 is 77.9%, and that of APOE2 is 8.4% [7]. The frequency of
APOE4 in AD is approximately 40% [7]. Genome-wide association studies have shown
that APOE4 is the strongest genetic risk factor for early-onset AD and late-onset AD [8,9].
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2. Neuroinflammation and Alzheimer’s Disease

Immunological processes in the brain contribute to AD progression and severity [10].
Microglia are the resident macrophages of the central nervous system (CNS) that detect the
presence of pathogens and cellular debris while providing tissue maintenance. In addition,
microglia contribute to synaptic plasticity through phagocytosis, which removes select
synapses [11]. Therefore, sustained inflammation may cause synaptic dysfunction. The
depletion of microglia is associated with learning and memory impairments [12]. Mi-
croglia become active once exposed to pathogen-associated molecular patterns (PAMPs) or
damage-associated molecular patterns (DAMPs). Microglia bind to soluble and fibrillar
forms of Aβ in different ways [13]. Microglia bind to soluble forms of Aβ via endocytosis
and the low-density lipoprotein (LDL) receptor-related protein pathway. The fibrillar form
of Aβ binds to the cell surface of the innate immune receptor complex, which results in
phagocytosis. Other reviews have examined the role of microglia in AD in more detail [10].

Nuclear factor kappa B (NF-κB) is a family of transcription factors involved with
the regulation of inflammation [14,15]. The NF-κB family includes NF-κBp50/105, NF-
κBp52/100 (RelB), NF-κBp65 (RelA), and NF-κBp75 (c-Rel), with dimers bound by the
inhibitory protein IκB. The NF-κB proteins are often located in the cytoplasm in an inactive
state [16]. The activation of NF-κB results in two signaling pathways, the canonical and
nonconical pathways, which are both important for the modulation of inflammatory and
immune responses [17,18]. The canonical NF-κB pathway is activated when binding occurs
with immune receptors, including tumor necrosis factor receptor (TNFR), interlukin-1
receptor (IL-1R), toll-like receptors (TLR), and lipopolysaccharide (LPS), which activates the
IκB kinase (IKK) trimeric complex (IKKα, IKKβ, and IKKγ (NEMO)) and phosphorylates
IκBα [19]. The NF-κB p50/RelA dimers translocate from the cytoplasm into the nucleus
and bind to IκB, which regulates NF-κB-associated genes [20]. The noncanonical NF-κB
pathway is activated by the B-cell activating factor belonging to the TNF family receptor
(BAFFR) and the receptor activator for NF-κB (RANK), which involves interactions with
IKKα and the phosphorylation of NF-κB p100. Once NF-κB p100 is degraded, NF-κB
p52/RelB dimers translocate from the cytoplasm into the nucleus to modulate NF-κB
genes [19].

NF-κB dysregulation is associated with various neurological conditions, including
ischemic stroke, multiple sclerosis, AD, and other neurodegenerative disorders [21–25].
In AD, the transmembrane aspartic protease beta site amyloid precursor protein cleaving
enzyme 1 (BACE1) initiates the production of Aβ with gamma-secretase, which cleaves
a portion of the extracellular amyloid precursor protein (APP) [26]. This results in an
accumulation of Aβ that can form plaques between neurons, which disrupts the neuronal
signaling and leads to dysfunctional synaptic plasticity and neuroinflammation [27]. The
NF-κB pathway is involved with the modulation of BACE1 expression, and therefore
the production of Aβ. The inhibition of the functional binding site IkappaB kinase of
Nf-κB prevents Aβ-induced BACE1 promoter transactivation, suggesting that this path-
way could modulate an Aβ-associated phenotype [28]. NF-κB activation upregulates the
transcription of BACE1 and increases the expression of Aβ [29,30]. Aβ infusions into mice
brains and nonhuman primates increased IKKβ/NF-κB signaling in the hypothalamus [31].
In drosophila, the genetic overexpression of NF-κB in neurons and glial leads to an AD
phenotype with increased neurodegeneration [32]. AD is associated with sustained inflam-
mation, which in part may be due to the Receptor for Advanced Glycation End-Products
(RAGE)/NF-κB axis, which activates an autoregulatory loop that further amplifies neu-
roinflammation [33]. The Advanced Glycation End-Products (AGEs)/RAGE complex
upregulates BACE1 via the activation of the NF-κB pathway [34]. The immunoreactivity
of p65 was increased near Aβ plaques in AD patients, suggesting that NF-κB is active in
neurons surrounding Aβ plaques [24]. The regulation of NF-κB by Aβ may result in glial
cell activation, as demonstrated by experiments showing that Aβ activated the NF- κB
pathway and increased nitric oxide in astrocytes [35]. Tanshinone I inhibits the NF-κB
pathway in LPS-induced microglia [36]. Phytochemicals inhibit the NF-κB pathway by
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preventing phosphorylation and ubiquitination, which inhibits the degradation of IκB,
thereby preventing the translocation of NF-κB into the nucleus [37]. Given the detrimental
effects that an overactive NF-κB pathway has on neurodegeneration, attenuating the NF-κB
pathway may improve neurodegenerative conditions, such as AD.

3. APOE and Inflammation

APOE and its receptors play important roles in inflammatory responses that modulate
the clearance of Aβ. APOE genotypes affect Aβ plaque deposition and can cause cerebral
amyloid angiopathy (CAA) [38]. APOE is deposited in the plaques of patients with AD,
and is more abundant in APOE4 carriers compared with non-APOE4 carriers [39–42]. PET
scanning using Pittsburgh compound B (PiB) showed that fibrillar aggregates of Aβ were
more common in people who are APOE4 carriers [43,44]. APOE4 carriers have high rates of
fibrillar Aβ in frontal, posterior cingulate-precuneus, temporal, parietal, and basal ganglia
regions of the brain [45]. Cognitively normal APOE4 carriers received PiB PET imaging
that indicated fibrillar aggregates of Aβ at approximately 56 years of age, compared to
approximately 76 years of age in non-APOE4 carriers [46]. These results have led to
speculation that increases in fibrillar Aβ in APOE4 carriers in cognitively normal people
may result in an increased risk of developing mild cognitive impairment (MCI) and/or AD
in the future [47].

Since the 1990s, transgenic mice have been used to model AD in the presence of
mouse APOE. As previously mentioned, APOE has three different isoforms; however, mice
express a single isoform, and it differs from the human APOE isoforms by approximately
100–300 amino acids [48]. The difference between human APOE and mouse APOE has
led researchers to investigate the role of transcription factors in the expression of APOE,
such as the LXRE consensus sequences in human and mouse APOE [49–51]. APOE knock-
out mice were crossed with a transgenic mouse model of AD overexpressing a human
mutant APP gene, resulting in PDAPP+/+; APOE −/− mice, which exhibited reduced Aβ

deposits compared to PDAPP+/+; APOE +/+ mice [52]. PDAPP+/+; APOE −/− mice
that expressed either human APOE2, APOE3, or APOE4 showed a reduction in Aβ40 in
plasma as they aged for each isoform [53]. However, levels of Aβ40 and Aβ42 increased in
the brain as the mice aged, regardless of the APOE isoform. Hippocampal insoluble Aβ40
and Aβ42 levels increased in an APOE isoform-dependent manner, with the highest levels
in the APOE4 mice and the lowest levels in APOE2 mice.

APOE4 mice had increased levels of microglia, astrocytes, and invading T-cells after
a brain infusion of LPS. In addition, the APOE4 mice had increased cytokine responses
compared with APOE2 and APOE3 mice [54,55]. Cortical levels of IL-1β and the microglial
reactivity in cortical plaques of APOE4 mice were increased compared to APOE3 mice [56].
Experimental autoimmune encephalomyelitis impaired learning and memory in APOE4
knock-in mice, suggesting that neuroinflammation affects learning and memory in APOE4
carriers [57]. Intravenous LPS administration increased pro-inflammatory cytokines, TNFα,
and IL-6 in APOE4 mice compared to APOE3 mice [58]. Additionally, the administra-
tion of APOE mimetic peptide from the receptor-binding region decreased systemic and
brain pro-inflammatory responses after administration with LPS. The APOE peptide was
associated with the decreased activation of c-Jun N-terminal kinase (JNK) signaling [59].
The microglial lipoprotein receptors regulate JNK activity, and are necessary for APOE’s
regulation of inflammation. The APOE mimetic peptide crosses the blood–brain barrier
(BBB), and using peptides that can cross the BBB may be a novel therapeutic strategy for
the treatment of AD [60].

While there is mounting evidence that APOE4 is associated with pro-inflammatory
responses, an in vitro study using cultured rat glia found that APOE4 decreased the
oligomeric Aβ production of nitric oxide synthase and cyclo-oxygenase-2, suggesting that
APOE4 has anti-inflammatory properties [61]. APOE has anti-inflammatory effects in
isolated macrophages via the APOE receptor-2, which result in macrophage conversion
from pro-inflammatory M1 to the anti-inflammatory M2 [62]. Endogenous APOE from glial



Immuno 2021, 1 394

cell cultures inhibits microglial nitric oxide production [63]. The inhibition of inflammatory
signaling increased APOE expression, which indicates that inflammation and APOE levels
are involved in a negative feedback loop [64]. APOE deletion upregulates TLR4 and
TLR2, and increases TLR activation [65,66]. The APOE protein is involved with an anti-
inflammatory state, with APOE4 being the least anti-inflammatory, APOE2 being the most
anti-inflammatory, and APOE3 being in the middle of the anti-inflammatory scale [67].

4. APOE and NF-κB

APOE is shown to modulate neuroinflammation via the NF-κB pathway. APOE4 mice
showed increased NF-κB-regulated genes compared to APOE3 mice [68]. However, another
study found that both APOE3 and APOE4 downregulated the NF-κB pathway [69]. These
discrepant results may be due to the differences in methodology used between the two
studies, with the in vivo experiment showing an increase in NF-κB activity and the in vitro
experiment showing a decrease in NF- κB activity. APOE knock-out mice had increased
inflammation and oxidative stress via activation of the NF-κB pathway [70]. PDAPP+/+;
APOE −/− mice have reduced Aβ deposits in the cortex and hippocampus, and future
studies should examine the NF-κB pathway in PDAPP+/+; APOE −/− mice [52]. Ad-
ministration of the anti-inflammatory compounds Tanshinone IIA and Astragaloside IV
in APOE knock-out mice suppressed the TLR4/NF-κB signaling pathway in vivo and
in vitro [71]. Brain infusions of LPS in APOE4 mice were associated with the increased
activation of the NF-κB pathway compared to APOE3 mice [72]. APOE4 mice showed
increased nuclear translocation of NF-κB and increased IL-1β. The activation of the NF-κB
pathway was increased after traumatic brain injury (TBI) in APOE4 mice compared to
APOE3 mice [73]. APOE3 may inhibit the NF-κB pathway after TBI to alleviate BBB impair-
ment. Schwann cells from APOE4 and APOE2 mice showed impaired cytokine production,
which may have resulted from activation of the NF-κB pathway [74]. APOE activates the
NF-κB pathway, inducing the expression of immunosuppressive chemokines Cxcl1 and
Cxcl5 in tumor cells [75].

A high-fat diet and sedentary lifestyle can affect many medical conditions, including
AD. APOE knock-out mice fed a high-fat diet had hypothalamic inflammation, glial cells
activation, and cognition decline, which were reversed with diet control and exercise [76].
The diet control and exercise resulted in increased expressions of SIRT1 and the inhibition
of the NF-κB pathway. Chronic stress is another important lifestyle factor that can influence
various health conditions. Chronic unpredictable mild stress in APOE knock-out mice
upregulated TLR4/NF-κB expression [77], and the administration of an NF-κB inhibitor
downregulated the NF-κB pathway [78]. APOE knock-out mice that received AGEs via
injection displayed increased Aβ formation and NF-κB p65 expression [79]. The statin
medication atorvastatin decreased Aβ formation and suppressed AGEs-induced NF-κB p65
expression. PDAPP+/+; APOE −/− mice have decreased Aβ deposits, which contrasts
with the previously mentioned experiment with increased Aβ formation. PDAPP+/+ mice
are generated using a platelet-derived growth factor promoter with a human APP gene
mutation associated with AD. Modafinil is prescribed for narcolepsy patients to increase
wakefulness, and has anti-inflammatory effects. In APOE knock-out mice, modafinil
inhibited the NF-κB pathway [80].

Vascular defects occurred in APOE4 mice before the neurodegenerative impairments
occurred [81]. Astrocytes that secreted APOE3 and APOE2 but not APOE4 inhibited the
cyclophilin A (CypA)-NF-κB–matrix-metalloproteinase-9 (MMP-9) pathway in pericytes,
suggesting that APOE4 is a key target for the treatment of neurovascular conditions [82].
CypA has a variety of roles, including protein folding, trafficking and T cell activation,
and is secreted from cells in response to inflammation [83]. MMP-9 is a type of enzyme
in the zinc-metalloproteinases family involved with the breakdown of the extracellular
matrix in both normal and pathological processes, including neurodegeneration [84]. The
pro-inflammatory CypA–NF-κB–MMP-9 pathway causes BBB impairment via the MMP-9
degradation of tight junction proteins, which is associated with the onset of neurode-
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generative disorders [81]. Additionally, astrocytes that secrete APOE3 and APOE2 have
high binding affinities with lipoprotein receptor-related protein 1 (LRP1) [81]. However,
astrocytes that secrete APOE4 have a low binding affinity with LRP1. In pericytes, the weak
binding affinity of APOE4 to LRP1 leads to a reduction in Aβ clearance and a subsequent
Aβ accumulation, resulting in neurodegeneration (see Figure 1). The inhibition of the
CypA–NF-κB–MMP-9 pathway in APOE4 mice increased the coverage of tight junction
proteins, prevented the loss of neurons and axon density, and improved cognitive func-
tion [85]. However, the inhibition of the CypA–NF-κB–MMP-9 pathway does not protect
against Aβ accumulation.
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Figure 1. The proposed pathways involved with the interaction of apolipoprotein E (APOE) and nuclear factor kappa
B (NF-κB). APOE4 protein secreted from astrocytes has a low binding affinity with the low-density lipoprotein receptor-
related protein 1 (LRP1) and results in an increase in the cyclophilin A (CypA)–NF-κB–matrix metalloproteinase 9 (MMP-9)
pathway (as represented by the red line). This also results in blood–brain barrier (BBB) damage via degradation of tight
junctions. In contrast, the APOE3 and APOE2 (APOE3/2) protein has a high binding affinity to LRP1, which suppresses
the CypA–NF-κB–MMP-9 pathway as represented with the black line. Damage to the BBB is also associated with the
accumulation of β-amyloid (Aβ). The weak binding affinity of APOE4 to LRP1 results in reduced Aβ clearance. The high
binding affinity of APOE3/2 to LRP1 results in greater Aβ clearance.

5. Conclusions

APOE4 and the NF-κB pathway have emerged as targets for the prevention/treatment
of AD. Targeting the APOE4 isoform may suppress the NF-κB pathway, given that the
weak binding of APOE4 to LRP1 leads to increased NF-κB activity. Novel therapeu-
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tic approaches focus on removing APOE4 with antibodies and modifying the structure
of the APOE4 protein to shift to the APOE3 and APOE2 isoforms [86]. Using CRISPR
in cell culture showed that APOE4 can be converted into APOE3, and does not affect
the expression of APOE3 [87,88]. However, in vivo experiments converting APOE4 to
APOE3 have not been reported. The overexpression of the NF-κB pathway in AD has
gained increased recognition, making it a therapeutic target. The NF-κB pathway trig-
gers a cascade of pro-inflammatory cytokines and chemokines, and compounds includ-
ing resveratrol, indomethacin, quercetin, adiponectin, caffeic acid, aspirin, and sodium
salicylate may suppress the NF-κB pathway, leading to the development of a novel
therapeutic for AD [89]. Future research should examine the interactions among the
APOE–LRP1–CypA–NF-κB–MMP-9 pathway for the development of novel therapeutics
to prevent/treat AD.
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