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Abstract: Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction,
oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating
characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct
vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mito-
chondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis
is poorly understood. Here, we summarize evidence of the involvement of three interdependent
factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neu-
rodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge
on the well-established role of inflammation and immunity, the emerging interest in the contribution
of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their
tight association as an important aspect of the disease merits detailed investigation. Consequences of
related injuries are discussed in the context of aging and the interaction of different brain cell types,
in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in
the substantia nigra. A special focus is put on the identification of current knowledge gaps and we
emphasize the importance of related insights from other research fields, such as cancer research and
immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidi-
fication and inflammation is likely also of relevance for other neurodegenerative diseases, despite
disease-specific biochemical and metabolic alterations.
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1. Parkinson’s Disease—A Very Brief Background

The second most common neurodegenerative disease, Parkinson’s Disease (PD), is
characterized by the degeneration of dopaminergic (especially neuromelanin-containing [1])
neurons of the substantia nigra pars compacta that elicits the characteristic motor-symptoms,
including bradykinesia, tremor and rigidity [2]. There are also other neuronal populations
that degenerate in PD, including cholinergic neurons of the pedunculopontine nucleus
and dorsal motor nucleus of the vagus, some glutamatergic neuronal populations in the
intralaminar nuclei of the thalamus and basolateral amygdala, noradrenergic neurons of
the locus coeruleus or serotonergic neurons of the raphe nuclei (summarized in detail
in [3]). The particular vulnerability of specific neuronal populations in PD, however, is
still enigmatic.

Non-motor symptoms are common as well in PD and may precede motor symptoms
by decades [4]. Like in other neurodegenerative diseases, mitochondrial dysfunction [5,6],
oxidative stress [7], neuroinflammation [8] and pathological protein aggregation [9] are
involved in PD pathogenesis but their causative contributions are poorly understood. PD is
classified as an α-synucleinopathy, together with related diseases, such as multiple systems
atrophy (MSA) and dementia with Lewy bodies. The defining feature of this group of
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diseases is the aggregation of the protein α-synuclein. While mutations and multiplications
of the α-synuclein-encoding gene, SNCA, can cause PD—as reviewed in [10] —most PD
cases (about 90%) cannot be clearly linked to genetic factors. The main risk factor to develop
such idiopathic PD is age [11].

The aim of this review is to highlight a possible role of the interplay of a set of
specific cell-environmental alterations—that is at least partially modulated by aging—in
PD pathogenesis. These alterations are characterized by deficiencies in cellular oxygen
supply (hypoxia) and its interplay with acidification of the cellular milieu, as well as
with inflammation. While much evidence indicates involvement of these factors, their
mechanistic roles in PD etiopathogenesis are poorly understood. We argue that these
conditions contribute to the initiation of neurodegenerative processes in vulnerable neurons.
Some of the main knowledge gaps are emphasized in order to better understand the
metabolic and biochemical alterations of the cellular milieu that render specific neuronal
populations vulnerable to neurodegeneration. Such understanding is necessary to promote
the development of novel therapeutic strategies able to target and prevent or even reverse
these alterations.

2. Regulation of Oxygen Levels and Acidity in the Brain

The regulation of both oxygen levels and pH is critical in the brain and their per-
turbation may be even more critical in cells vulnerable to neurodegeneration, such as
dopaminergic neurons of the substantia nigra in PD. A brief outline on how such regula-
tion is effectuated and how it may be impaired in PD is given below.

2.1. Oxygen-Sensing and Consumption in PD Brain

The brain is one of the major oxygen-consuming organs. This is due to the heavy
reliance of neurons in general on oxidative energy metabolism; neurons consume around
80% of the oxygen delivered to the brain [12,13], although the number of non-neuronal
cells in the brain is similar to that of neurons [14]. Certain structural and functional fea-
tures of neurons even increase their dependence on adequate energy levels—and thus
on oxygen—as is the case for, e.g., dopaminergic projection neurons. The few (around
300,000–600,000) dopaminergic neurons in the human ventral midbrain (substantia nigra
and ventral tegmental area) project and innervate the striatum by means of an estimated
75,000–200,000 presynaptic terminals per dopaminergic neuron [15–18]. For this purpose,
these neurons rely on long, poorly myelinated and highly branched axons [19]. In conjunc-
tion with their numerous dendrites, this results in cell body volumes of less than 1% of the
whole cell [20] and is associated with a high demand of ATP and oxygen, mitochondrial
strain and oxidative stress, as excellently outlined in [3]. Together with pronounced ATP
demands for unusually high Na+/K+ ATPase (which maintains the neuronal membrane
potential) activities [21] and their general electrophysiological properties [3,20] these fea-
tures likely contribute to the vulnerability of dopaminergic neurons of the substantia nigra
pars compacta in PD.

Conversely, the main source of energy of many non-neuronal brain cells, such as
astrocytes and oligodendrocytes, is glycolysis [13]. The energy metabolism of several other
cell types in the brain is less understood, but—for example, in the resident immune cells of
the brain, microglia—often involves a change in the reliance on metabolic pathways upon
activation. Microglia become activated in inflammatory conditions; reduced mitochondrial
respiration then is accompanied by increased rates of glycolysis [22]. Increased microglial
activation has been shown in PD patients’ brains [23] and the metabolic consequences
likely contribute to adverse alterations of the brain environment. Over-activation of
microglia can be directly damaging to neurons but also indirectly by influencing other
cell types (e.g., by inducing a conversion of normally neuroprotective astrocytes into a
neurotoxic phenotype [24]).
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Severe oxygen deficiency (hypoxia) is detrimental for the brain, as neurons have to
satisfy their high energy demands via oxidative phosphorylation in order to maintain
their characteristic energy-intensive functions, such as regulation of action potentials and
trans-synaptic signaling. These functions require even more energy in the case of neurons
with long projection axons and numerous pre-synaptic terminals, which is the case for
the vulnerable neurons in PD. While many other brain cell types are able to dynamically
upregulate glycolysis [13] and thus partially compensate for decreased oxygen availability,
this does not apply to neurons due to their lack of the positive glycolysis-modulator 6
phosphofructose 2 kinase, fructose 2,6 bisphosphatase 3 (Pfkfb3) [25]. Instead of using glu-
cose for glycolysis, neurons primarily process it through the pentose phosphate pathway,
which results in the generation of reduced nicotinamide adenine dinucleotide phosphate
(NADPH) that can regenerate glutathione disulfide (HSSG) to glutathione, an important
reactive oxygen species (ROS) scavenger [13]. The importance of this anti-oxidant defense
mechanism is illustrated by the observation that Pfkfb3 stabilization, and thus the redirec-
tion of glucose processing towards glycolysis, results in oxidative stress and cell death [25].
The neuronal vulnerability to oxidative stress is a key aspect of neurodegenerative pro-
cesses [5]. Therefore, hypoxia and reoxygenation, due to their capacity to induce oxidative
stress, are also risk factors from this point of view [26]. With regard to the specific vul-
nerability of dopaminergic neurons of the substantia nigra, dopamine metabolism is also
associated with high ROS and reactive dopamine quinone formation [27,28] that may in-
duce oxidative stress, which is increased in the substantia nigra of the PD patient brain [29].
In line with this observation, the antioxidant glutathione is reduced in the substantia nigra
of the PD brain [30]. Altogether, these features may predispose dopaminergic neurons
of the substantia nigra to oxidative damage. Indeed, oxidatively modified derivatives of
dopamine are formed in the substantia nigra and can react with proteins and lipids, which
become constituents of neuromelanin. Notably, this happens to a lower extent in the (less
vulnerable) dopaminergic neurons of the ventral tegmental area [20] and is thus maybe
one of the distinguishing neuronal vulnerability factors in PD.

The potential key role of hypoxia in PD pathogenesis has been recently outlined [31]
and is supported by common respiratory deficits of PD patients [32,33] as well as potentially
impaired hypoxia sensing [34]. Interestingly, neuronal loss of potentially chemosensitive
respiratory neurons has been demonstrated for another α-synucleinopathy, MSA [35].
Central modulators of adaptations to hypoxia are hypoxia inducible factors (HIF) [36].
An upregulation of HIFs was recently reported in MSA and PD brains [37]. Together
with reports on beneficial pharmacological modulation of HIFs in preclinical PD-models
(e.g., [38–40]) and polymorphisms of HIFs as potential risk factors to develop PD [41], these
results further substantiate the role of impaired hypoxia responses in α-synucleinopathy
and PD pathogenesis.

Although it is clear that PD is associated with respiratory deficits, reduced tolerance to
hypoxia or impaired adaptations to hypoxic stress, and that the vulnerable neurons in PD
are particularly sensitive to reduced oxygen levels, it is unclear how these deficiencies are
related to PD pathology and symptoms, at which time they appear during pathogenesis
or whether they characterize sub-forms of PD. Additional knowledge gaps concern the
interaction, metabolic alterations and consequential contributions to PD pathogenesis of
different brain cell types that cooperate closely in the response to hypoxia and may promote
neuroprotection or neurodegeneration depending on their activation status.

2.2. pH in PD Brain

The acid/base balance is essential for cellular functions and needs to be tightly con-
trolled, in particular in conditions of metabolic stress. In the brain, tissue acidification by
an increase in partial pressure of CO2 or of acidic metabolites can cause brain acidosis and
severe brain damage [42]. Acidity/basicity, expressed as the potential of hydrogen (pH), in
tissue mainly depends on the glycolytic rate and the generation of CO2 [43] and is regulated
on the systemic and cellular level by sophisticated buffer systems [44]. Proteins are one
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example of pH-sensitive cellular components. Based on their H+ affinity (KH), the ambient
pH determines protein protonation—and thus the interaction with other molecules and
post-translational modifications—and protein structure and function. The systemic, local
extracellular and intracellular pH defines cellular programs (e.g., proliferation and cell
death) and therefore is decisive for the cellular fate and homeostasis [45,46]. Unsurprisingly,
the cellular pH also influences protein aggregation: a lower pH enhances the aggregation
of α-synuclein [47]. Furthermore, a tight control of vesicular pH has been demonstrated
to be necessary for the regulation of dopamine auto-oxidation [48] and low pH has been
shown to increase formation of the toxic 6-hydroxydopamine [49]. The regulation of the
pH specifically in the brain furthermore is a requirement for neuronal signaling and is
controlled by various transporter proteins and acid-sensing ion channels (ASICs) [44,50].
ASICs are responsive to extracellular acids and exhibit a varying degree of permeability
for cations. The ASIC1A subunit provides a sufficient permeability to Ca2+ to confer the
threat of neuronal damage upon activation. ASIC1A has also been demonstrated to be the
crucial ASIC subunit for acid-sensing in rodent neurons and it is a putative key component
of synaptic physiology [51].

Acidification of the extracellular milieu in the context of neurodegenerative disease is
associated with an over-activation of ASICs. This at least partially mediates acid-induced
toxicity in the brain due to impaired regulation of intracellular Ca2+ levels, which may be
aggravated by ASIC-mediated modulation of Ca2+ translocation via the Ca2+ permeable
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-
D-aspartate) receptors, as reviewed in [51]. The pace-making function of dopaminergic
neurons in the substantia nigra (summarized by [3]) is associated with an unusual reliance
on L-type Cav1.3 Ca2+ channels [52] and relatively high Ca2+ fluxes [53] concomitant
with low Ca2+ buffering capacity [54]. High levels of Ca2+, which can initiate apopto-
sis (reviewed in [55]), are obviously dangerous for neurons and Ca2+ also enhances the
aggregation and toxicity of α-synuclein (summarized in [3]). pH alterations and the result-
ing impairments of Ca2+ homeostasis may aggravate these endogenous vulnerabilities of
degenerating dopaminergic neurons in PD.

A role of ASICs has indeed been found in several models of neurodegenerative dis-
eases [51], including in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse
model of PD, in which pharmacological ASICs inhibition by amiloride was neuroprotec-
tive [56]. ASIC1A deficiency in mice, however, did not confer protection in the same model,
indicating that the reported amiloride effects may not be related to its pharmacological
action on ASICs [57].

Impaired pH regulation is directly implicated in PD by reducing the cellular capacity
of lysosome acidification [58]. Additionally, intracellular acidification may contribute
to α-synuclein pathology in PD by favoring α-synuclein fibrillization [59], α-synuclein
liquid–liquid phase separation [60] and α-synuclein–mitochondria interactions [61]. This
latter process might aggravate toxic α-synuclein pathology formation [31].

A reported increased lactate accumulation in the PD patient brain (if associated with
dementia) [62]—indicating a potential role of pH dysregulation in PD—is debated [63]
and requires confirmation. The potentially higher PD incidence after use of proton pump
inhibitors [64,65] may be a further indication of a role of pH dysregulation in PD progres-
sion. However, no causal implications can be derived from these studies. For example,
proton pump inhibitors are sometimes prescribed for mood disorders, which are common
prodromal symptoms in PD [4]. This suggests that there may be indirect associations
between the incidence of PD and the use of proton pump inhibitors.

Notably, acidosis has also been linked to neurodegenerative processes in various other
neurodegenerative diseases, such as Alzheimer’s disease [66,67] or amyotrophic lateral
sclerosis (ALS) [68].
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Taken together, one may assume that a dysregulation of pH is involved in PD patho-
genesis, although this notion is not yet well established. More research is needed to
understand the development of such deficiencies in PD and whether rescuing them can
disrupt adverse pathological cascades. The conflicting results from targeting the pH buffer
(e.g., ASICs) systems in the PD model brain also deserve further clarification.

3. Inflammation and pH Alterations in Brain Aging

Age is the main risk factor for the development of idiopathic neurodegenerative dis-
eases [11], including PD [69,70]. Normal metabolic alterations in the aging brain support
the assumption of an important interplay between hypoxia, pH alterations and inflam-
mation constituting a vulnerability for age-related neurological diseases. Mitochondrial
dysfunction and associated oxidative and inflammatory stress are positively correlated
with age [71]. Hypoxia is also an important modulator of aging. However, the direction-
ality of its effects can vary. This mainly depends on the severity of the hypoxic stimulus.
Severe intermittent (shown, for example, in human white preadipocytes [72]) and sus-
tained [73] hypoxia can promote cellular senescence and hormonal aging (shown in rodents
in [74]). There is also some evidence that the HIF system becomes downregulated during
aging [75,76], indicating that the cellular management of hypoxia is impaired in older
individuals. In contrast, mild reductions in oxygen supply are associated with increased
lifespans in various non-vertebrate [77–80] and vertebrate [81,82] organisms. Moreover,
mild intermittent hypoxia (i.e., hypoxia conditioning, which improves the tolerance to
hypoxic insults) may be protective in neurodegenerative diseases, including PD [31,83].

Increasing lysosomal membrane damage with aging has recently been reported to
contribute to more acidic cellular environments [84]. Johmura et al. demonstrated that
activation of glutaminase 1 protected senescent cells from acidification-induced clearance
with detrimental consequences on organ function [84]. Therefore, by implication, cellular
acidification may promote neurodegeneration-related pathology but, on the other hand,
could also be protective by contributing to senescent cell clearance. This may be particularly
relevant in PD, as lysosomal damage can promote diseases with protein aggregation pathol-
ogy and is a characteristic of the PD brain [85,86]. Indeed, the activity of the lysosomal
enzyme glucocerebrosidase decreases not only with aging but is also negatively correlated
with PD pathology [87].

Senescence of different cell types in the brain may be an important factor in the devel-
opment of neurodegenerative diseases in general. One example is astrocyte senescence,
which has been prominently linked to neurodegeneration (reviewed recently by [88]).
Senescence of these cells is thought to facilitate neurodegeneration both by gain of function
(i.e., release of senescence-associated substances and the induction of neuroinflammation)
and by loss of function effects. The latter comprises, for example, impairments in the
regulation of the blood–brain barrier, the glymphatic system (a waste clearance system of
the brain) and metabolic support for other cells (e.g., neurons by the provision of lactate).
Astrocyte senescence has been directly linked to glutamate toxicity [89] and has been
suggested as a contributor to PD pathogenesis [90].

In summary, cellular hypoxia, pH regulation and the inflammatory status of cells
are modulated by increasing age. A reduced cellular capacity to deal with these stressors
might facilitate PD pathogenesis. They may be “permissive” factors for the development
of neurodegeneration, as discussed by Majdi et al. for acidification [91]. Senescence of
different cell types in the brain likely contributes to hypoxic conditions, impaired pH
regulation and inflammation and reduces the tolerance of neurons to these conditions.

4. The Interplay between Hypoxia, Acidification and Inflammation

Hypoxia and alterations in the pH of the cellular milieu are known to be strongly
associated with inflammatory processes [26]. Brain hypoxia is also clearly linked to tissue
pH via resulting lactate accumulation [92,93] and both affect inflammation. Hypoxia has
been causally linked to neuroinflammatory diseases [94] and pH alterations are gener-
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ally intimately associated with inflammatory responses [95]. Thus, as a consequence of
an initial brain insult or infection (hypothetic causative trigger), hypoxia, pH alterations
and/or inflammation may ensue. Under permissive conditions, these factors then might
aggravate each other. Mechanistically, hypoxia [96] and cellular acidification [97] have been
demonstrated to activate the nucleotide-binding domain leucine-rich repeat-containing
family, pyrin domain-containing 3 (NLRP3) inflammasome. Like hypoxia and reoxygena-
tion, acidification furthermore induces the production of reactive oxygen species [98]. In
addition, hypoxic and acidic conditions are associated with the formation of mitochondria-
derived damage-associated molecular patterns that can trigger inflammation and neuronal
death [96,98]. Conversely, increased levels of reactive oxygen species also trigger intra-
cellular acidification by various mechanisms, as summarized by Majdi et al. [91].

While still insufficiently understood, much evidence supports an association of im-
munity, infection and inflammation with PD and the related α-synuclein pathology. The
involvement of immune system dysfunctions in PD has been summarized in an excellent re-
view [24]. Recently, influenza virus infection has been demonstrated to induce α-synuclein
aggregation by impairing autophagy [99]. An impairment of lysosome acidification—and
thus of α-synuclein clearance—by pro-inflammatory cytokines [100] also is in line with
observations of increased infection burden in PD [101].

Aggregated α-synuclein has furthermore been shown to induce an inflammatory
response in PD patient blood [102]. This is in line with previous reports in rodent models
of PD, in which aggregated—but not monomeric—α-synuclein triggered inflammation,
including peripheral immune cell infiltration of the brain [103]. Furthermore, increased
levels of pro-inflammatory cytokines have been found in the PD patient brain and cere-
brospinal fluid, as reviewed in [104]. It is also possible that the dopaminergic neurons of the
substantia nigra are particularly vulnerable to inflammation. This assumption is supported
by upregulation of the proinflammatory cyclooxygenase 2 in the substantia nigra of the
PD brain (which further might promote the formation of toxic dopamine-quinones) [105]
and by high basal levels of other components of the immune response, such as major
histocompatibility complex class I heavy chain and β2-microglobulin mRNAs [106]. In
addition, the release of neuromelanin from dying neurons may induce microglial activation
and neuroinflammation [20].

It is increasingly acknowledged that HIFs are crucial, not only in the adaptation
to hypoxia, but that they are induced also under normoxia, for example in response to
acidification [107] or inflammation [108]. HIFs also exert complex effects on immune
responses [109] and hypoxia and inflammation likely exacerbate each other [110]. Lactate
levels also influence inflammation, however, possibly by reducing it [93]. One mechanism
for this effect is the capacity of lactate to bind mitochondrial antiviral signaling protein and
thereby to inhibit the cellular interferon response [111]. Lactate has also been demonstrated
to inhibit glutamate re-uptake by astrocytes [112], possibly contributing to NMDA receptor-
mediated glutamate excitotoxicity [113].

While our understanding of the inter-dependence of metabolism and inflammation in
response to hypoxia is rapidly expanding, these processes are insufficiently understood in
the context of neurodegeneration. Metabolic alterations (including in relation to lactate and
other metabolites at the crossroads of hypoxia-related adaptations and inflammation, such
as succinate, citrate and NAD+ [114]) of different cell types and the consequences on energy
availability, oxidative stress and inflammation are, however, likely of great relevance for
PD and other neurodegenerative diseases.

The reported neuroprotective potential of lactate, for example in traumatic brain injury
(reviewed by [115]) or in ischemia [116], and their possible anti-inflammatory effects [93],
may contradict the assumption of a detrimental role of lactate in PD pathogenesis. However,
toxic effects of high levels of lactate have been reported in models in which low levels were
neuroprotective (e.g., [116]). This suggests a threshold of lactate levels, at which its actions
turn from beneficial to detrimental. It is also conceivable that certain neurons, which are
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vulnerable in neurodegeneration, are less capable of handling—and profiting from—high
lactate levels, in particular at a higher age.5. Conclusions and Implications

We here summarized evidence that hypoxia, brain acidification and inflammation
are involved in the pathogenesis of neurodegenerative diseases and specifically of PD.
These factors (apart from neuroinflammation) are still rather considered as consequences
or epiphenomena and not as potentially causative factors in disease development. The
many failures of clinical trials that have often targeted pathological protein aggregation and
oxidative stress, and were considered as more important factors in PD and other neurode-
generative diseases, necessitate the exploration of alternative target pathways and novel
therapeutic strategies. We hypothesize that the interplay of hypoxia, brain acidification
and inflammation represents a central parameter driving PD pathogenesis. Due to their
strong interdependence, the occurrence of any of these events in the brain has the potential
to aggravate the others. In the sense of the model proposed by Johnson et al. [117], acute
insults from hypoxia, pH dysregulation or inflammation may act to “trigger” neurodegen-
erative diseases, but may also contribute to a sustained impairment of cell metabolism and
biochemistry based on ion homeostasis dysregulation, energy deficiency, oxidative stress
and inflammation, thus “aggravating” pathogenesis. These conditions are influenced by
different cell types and may be particularly detrimental for dopaminergic neurons of the
substantia nigra and other vulnerable neurons in PD, based on their characteristically high
energy demands and oxidative stress potential (see Figure 1). These neurons rely on mito-
chondrial efficiency and an adequate supply of oxygen and nutrients but also on efficient
antioxidant defense systems. Hypoxia, pH alterations and inflammation may result in
mitochondrial failure (and consequential energy deficits). They can also disrupt vesicular
storage of dopamine and related cellular antioxidant defense mechanisms, proteostasis
(e.g., by inhibition of autophagy, the proteasome and chaperones) and Ca2+ buffering.
Consequently hypoxia, pH alterations and inflammation can initiate neurodegenerative
processes.

Considerable advancements in the understanding of metabolic alterations and cel-
lular vulnerabilities related to hypoxia and acidification come from cancer research, in
which their inter-dependent roles have been recognized as integral to the pathological
process [118]. The increasing knowledge on metabolic regulation of the immune system
and its effects on cellular/tissue pH and inflammation from the booming research field of
immunometabolism is also remarkable [119–121]. They provide a solid basis and a well of
inspiration to investigate the complex interplay of hypoxia, acidification and inflammation
in (models of) neurodegenerative diseases, and the derivation of related neuroprotective
strategies.

As one example to achieve an enhanced resistance of the brain to hypoxic insults and
inflammation, we recently provided rationales for the strengthening of brain resilience
by hypoxia conditioning to counteract hypoxia-related brain insults in dementias [122],
PD [31] and Huntington’s disease [123]. While these neurodegenerative diseases certainly
are characterized by distinct pathologies and metabolic abnormalities [124], the shared
outcomes of dysregulated proteostasis and REDOX homeostasis, as well as mitochondrial
deficits and neuroinflammation, suggest an involvement of the interplay of hypoxia,
impaired pH and inflammatory processes in many of them. The localization of related
insults within the brain and individual tolerance—in combination with other genetic and
environmental risk factors—may contribute to an explanation of the great pathological
and symptomatic variability also within heterogeneous neurodegenerative disease spectra,
such as PD or Alzheimer’s disease.
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the intracellular ion homeostasis, yielding acidification and Ca2+ toxicity. Together with associated mitochondrial damage,
oxidative stress and inflammation, they are prominent mechanisms leading to neurodegeneration. The cell-autonomous
features of dopaminergic projection neurons in the substantia nigra pars compacta (red ellipses) likely exacerbate the
detrimental effects of such cellular environments. NM: neuromelanin, OXPHOS: oxidative phosphorylation.
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