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Abstract: Endometrial cancer (EC) represents one of the most newly diagnosed cancers across
gynecological malignancies. In particular, a plethora of risk factors (both biological and lifestyle-
related) drastically impact the incidence rate of novel diagnosis accounting for 8300 cases/year. In
the recent era of precision medicine EC molecular classification, integrating ESGO/ESTRO/ESP
guidelines, four distinct diagnostic groups have been established including POLE-mutant (POLE-
pos); High-instability MSI (H-MSI)–MMR-deficient (MMR-d); p53-abnormal (p53abn); and non-
specific molecular profile (NSMP), also known as p53-wild-type EC patients on the basis of clinically
relevant emerging biomarkers. In addition, molecular testing also plays a pivotal role in defining
the best therapeutical option. In this scenario, the European Society for Medical Oncology (ESMO)
recommended d-MMR/MSI-H status evaluation in the diagnostic workflow of Lynch syndrome
or selecting EC patients that could benefit from immune checkpoint inhibitors (ICIs). Although
immunohistochemistry (IHC) is considered the gold standard approach for d-MMR profiling, a series
of molecular PCR-based techniques have rapidly developed to integrate H-MSI status in routine
practice. Here, we technically overviewed the most relevant commercially available diagnostic assays
for the determination of the H-MSI/dMMR status in EC patients.

Keywords: endometrium; molecular pathology; point-of-care testing

1. Introduction

Endometrial cancer (EC) is the most prevalent gynecological tumor in Europe and in
the United States, with respectively 130,051 and 101,672 cases [1,2]. In Italy, it represents
the third most common cancer in women aged between 50 and 69 years, accounting for
approximately 8300 new cases each year [3]. The prevalence of endometrial cancer has
surged by 132.0% in the last three decades, mirroring the increasing occurrence of its
associated risk factors. In contrast, mortality rates have experienced a decline of 15.0%
over the same time [4]. Risk factors for endometrial cancer include extended exposure to
unopposed estrogen, often resulting from nulliparity and infertility associated with poly-
cystic ovarian syndrome or tamoxifen use, as well as obesity and hyperinsulinemia [5–7].
Particularly, among the 20 most common tumor types, endometrial cancer exhibits the
most significant correlation with obesity. For each 5 kg/m2 increase in BMI, there is a
54.0% higher risk of developing this type of cancer [8]. Obesity creates a hyper-estrogenic
condition as adipose tissue converts adrenal androgens into estrogen through peripheral
aromatization. Estrogen promotes the proliferation of the endometrium, while cyclical
progesterone and regular menstrual shedding maintain endometrial health during re-
productive years. In postmenopausal women, the deficiency of natural progesterone
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contributes to an unopposed estrogen excess [9]. Endometrial tumors originate from ep-
ithelial cells of Müllerian origin [10]. There are several histological types of endometrial
carcinomas with different incidences. Particularly, they were grouped into endometrioid
(Type I) and non-endometrioid (Type II) tumor types showing specific morphological and
clinical patterns [11]. Endometrioid adenocarcinoma represents the most common estrogen-
related histological types, accounting for 75–80% of cases [12]. Most patients develop
an early-stage tumor, confined to the uterus, usually with a favorable prognosis [13]. In
the era of precision medicine, rapidly emerging technical approaches comprehensively
encourage the molecular evaluation of the genetic basis of EC. The Cancer Genome At-
las (TCGA) identified four distinct EC subgroups with clinic-pathological and molecular
specific features. This effort has revolutionized the clinical administration of EC patients
in accordance with the molecular signature identifying molecular drivers of each histo-
logical subtype [14]. As a result, it has paved the way for precision oncology approaches
to clinically administrate EC patients. In clinical practice, TCGA molecular groups can
be accurately stratified by evaluating three molecular markers: POLE (Polymerase DNA)
Epsilon, Catalytic Subunit) hotspot mutations, p53 (Tumor Protein P53) expression level,
and mismatch repair (MMR) protein status. Approaching these biomarkers in clinical
practice, a novel diagnostic algorithm enables EC patients’ classification in four distinct
molecular groups: POLE-mutant (POLE-pos); MMR-deficient (MMR-d); p53-abnormal
(p53abn); and non-specific molecular profile (NSMP), also known as p53-wild-type [15].
This classification has been integrated into ESGO/ESTRO/ESP guidelines for the man-
agement of EC patients [16] establishing the clinical role of this novel approach available
in routine practice. In this scenario, Betella et al. proposed a novel strategical algorithm
based on ESGO/ESTRO/ESP 2020 guidelines that allows for the molecular stratification
of EC patients adopting optimized technical approaches [17]. Comparing the novel risk
stratification system with the approved guidelines, a discordance rate of 6.8% (;CI 4.2% to
10.5%; 19 out of 278 patients) was observed. Particularly, this novel algorithm decreased
the POLE sequencing analysis and p53 immunohistochemistry rate by 67.0% and 27.0,
respectively, optimizing the technical workflow routinely available for molecular analysis.
The mismatch repair (MMR) system is a well-preserved mechanism that plays a crucial
role in restoring mismatch errors. Genetic (somatic and germline) and epigenetic changes
result in a deficient MMR (dMMR) system promoting the activation of error-prone DNA
repair systems [18]. Among them, the vast majority of EC marked by the dMMR status is
sporadic, while a low percentage of dMMR EC patients (3.0%) highlight hereditary lineage,
associated with Lynch syndrome (LS), an autosomal dominant inherited disease, caused
by germline mutations in MMR genes: MLH1, MSH2, MSH6, and PMS2 [19,20]. The main
effect of dMMR status occurs in microsatellite sequences. Microsatellites are short tandem
mono or dinucleotide repeated sequences found in coding and non-coding genomic regions.
These sequences may be affected by a variation of the number of repetitions during DNA
replication. In the instance of a dysfunctional MMR complex, microsatellite sequences may
not be restored. This event is considered indirect evidence of a dMMR status resulting in
microsatellite instability (MSI) [21]. Of note, EC patients are diagnosed with severe MSI
status (H-MSI) in 20–30% of cases. Recently, d-MMR/MSI-H status was approved to elect
EC patients that could benefit from immune checkpoint inhibitors (dostarlimab) [22,23]. In
2019, the European Society for Medical Oncology (ESMO) recommended d-MMR/MSI-H
evaluation as diagnostic tool in Lynch syndrome patients adopting immunohistochemistry
(IHC) or molecular Polymerase chain reaction-based (PCR-based) tests to detect d-MMR
and MSI-H status, respectively [24]. As a matter of fact, MSI status evaluation has been
routinely carried out in microfluidic systems after approaching PCR-based techniques
for the amplification of loci of the Bethesda panel (BAT-25, BAT26, D2S123, D5S346, and
D17S250) [25]. Although there is a widespread diffusion in clinical practice of PCR-based
approaches built on the Bethesda panel, MSI testing in EC patients highlighted several
technical limitations in terms of the MSI-H status detection rate. In this scenario, optimized
panels including mononucleotide repetitions have been developed for improving the de-
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tection rate of MSI-H status in EC patients [26]. Currently, several commercially available
panels, like LMR MSI Analysis System (Promega), able to improve technical sensitivity and
specificity in detecting mononucleotide markers in EC patients, have been developed [27].
Of note, these approaches are affected by their extensive time-consuming nature as well
as necessitate the availability of both normal and tumor tissues to compare molecular
profiles for MSI status detection. Here, our aim consists of the technical analysis of several
commercially available kits for the determination of MSI/dMMR status evaluation in the
diagnostic practice of EC patients (Table 1).

Table 1. Technical evaluation of MSI/dMMR testing strategies routinely available for EC patients’
stratification.

Assay Analyzed Loci Advantages Disadvantages

IHC 4 MMR proteins
(MLH1/MSH2/MSH6/PMS2)

- High specificity and sensitivity
- Rapid turnaround time (4–6 h)
- Feasible in samples with less
than 20% neoplastic cell content
- Not expensive

- Requires individual processing
of four slides for MMR protein
staining
- Requires experienced pathologist
for result interpretation
- Heterogeneous
MMR protein expression
- Possible false positive results due
to pre-analytic issues or absence
of evident loss of expression due
to intact immunoreactivity

PENTAPLEX
BETHESDA

PANEL ASSAY

5 microsatellite markers
(BAT25, BAT26, D2S123,
D5S346, and D17S250)

- Low-cost analysis
- Fast turnaround time (<5 h)
- High reproducibility

- Requires samples with at least
20% neoplastic cellularity
- No provided indication about
MMR genes to investigate
- Selectivity for few
cancer types due to limited
number of targets investigated
- Possibility of detecting
occasional false positive results,
owed to microsatellite
polymorphisms

TITANO MSI

10 microsatellite markers
(BAT25, BAT26, D2S123,

D17S250, D5S346, BAT40,
D18S58, NR21, NR24, and

TGFβRII)

- Multiplexed PCR assays
- Low-cost analysis
- Fast turnaround time for result
(<5 h)

- Required matched normal tissue
- Not designed for EC

OncoMateTM MSI Dx
ANALYSIS SYSTEM

7 microsatellite markers
(BAT-25, BAT-26, NR-21,

NR-24 and MONO-27, Penta
C, and Penta D)

- Multiplexed PCR assays
- Rapid turnaround time (<5 h)
- Low-cost analysis
- Better sensitivity than PentaPlex
Bethesda panel assay

- No provided indication about
MMR genes to investigate
- Required a matched normal
tissue
- Not designed for EC

LMR MSI ANALYSIS
SYSTEM

8 microsatellite markers
(BAT-25, BAT-26, MONO-27,

NR-21, BAT-52, BAT-56,
BAT-59, and BAT-60)

- Multiplexed PCR assays
- Turnaround time (<5 h)
- Low-cost analysis
- Better sensitivity than PentaPlex
Bethesda panel assay and
OncoMateTM MSI Dx Analysis
System
- LMR markers are more sensitive
in EC

- No provided indication about
MMR genes to investigate
- Required matched normal tissue
- Not designed for EC
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Table 1. Cont.

Assay Analyzed Loci Advantages Disadvantages

EasyPGX® ready MSI
KIT

8 microsatellite markers
(BAT-25, BAT-26, NR-21,

NR-22, NR-24, NR-27, CAT-25,
and MONO-27)

- No requirement of paired
normal tissue for MSI analysis
- Analysis can be performed using
FFPE tissue samples or blood
samples
- Highly reproducible
- High sensitivity
- Turnaround time for result (<4 h)
- Hands-on time is less than
15 min

- No provided indication about
MMR genes to investigate

Idylla®MSI TEST

7 microsatellite markers
(ACVR2A, BTBD7, DIDO1,

MRE11, RYR3, SEC31A, and
SULF2)

- Multiplexed PCR assays
- Low-cost analysis
- Highly reproducible
- Turnaround time 150 min
- Hands-on time is less than 5 min
- No required previous DNA
extraction
- No required paired normal
tissue for MSI analysis

- No provided indication about
MMR genes to investigate
- Required at least 20% neoplastic
cells

ddPCR MSI KIT
Bio-Rad®

5 microsatellite markers
(BAT25, BAT26, Mono27,

NR21, and NR24)

- Low-cost analysis
- No required paired normal
tissue for MSI analysis
- Analysis can be also performed
on liquid biopsy
- Turnaround time (<5 h)

- No provided indication about
MMR genes to investigate
- Lack of standardization for
results’
interpretation

2. Immunohistochemistry

IHC represents the most available assay in routine practice for dMMR analysis thanks
to a sustainable technical cost [28]. Basically, IHC workflow comprises utilizing a staining
evaluation of four proteins of the MMR complex (MLH1, MSH3, MSH6, PMS2). The
positive signal is inspected by an expert pathologist able to interpret the expression level
of each target. A crucial point of IHC analysis is represented by the positive signal of the
internal control expressed in lymphocytes and other non-neoplastic cells. IHC may be
considered a challenging approach in terms of artifacts’ signal and intra-operator variabil-
ity. Controversial results are literally reported on the concordance rate between IHC and
PCR-based testing strategies. Previous studies highlighted a concordance rate of 95.0%
between IHC and PCR-based MSI testing [29]. Stelloo et al. also demonstrated a not
negligible (41.6%) rate of ambiguous cases not adequately interpretable with IHC [30].
In this scenario, Malapelle et al. evaluated several technical parameters of diagnostic
samples simultaneously elected to molecular test and IHC analysis. Among them, the
DNA fragmentation index drastically impacted the concordance rate between amplicon-
based approaches and the IHC system [31]. At the sight of these aspects, some laborato-
ries implemented a combined diagnostic approach integrating gold standard IHC with
novel molecular testing strategies in order to improve the number of diagnostic cases
correctly stratified [32].

3. Idylla™ MSI Assay

The Idylla Biocartis MSI test (Biocartis NV, Mechelen, Belgium) consists of a fully
automatized system enabled to assess MSI analysis. Briefly, the Idylla Biocartis MSI
test is carried out analyzing seven different loci (ACVR2A, BTBD7, DIDO1, MRE11, RYR3,
SEC31A, and SULF2) [33]. A fluorescent signal deriving from optimized probes and primers
(MNAzymes PlexPrimers) allows for the detection of monomorphic variation in targeted
regions. In comparison with standardized primers, MNAzymes improves testing accuracy
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in terms of specificity and sensitivity [34]. This approach allows for molecular analysis
starting from extracted DNA or formalin-fixed, paraffin-embedded (FFPE) tissue specimens
decreasing laborious and time-consuming manual procedures [35,36]. These advantages
improve the test’s accuracy and reliability, enabling precise MSI status determination.
Previous studies focused on the technical evaluation of the Idylla MSI test in a retrospective
series of EC patients [37]. Of note, a technical sensitivity of 72.7% and specificity of 100%
were assessed in a series of n = 108 diagnostic routine samples from EC patients. In addition,
a concordance rate of 82.7% was also observed comparing the Idylla MSI test with the IHC
approach. Remarkably, by selecting samples with ≥30.0% of neoplastic cell percentage, the
concordance rate improved.

4. Pentaplex Bethesda Panel Assay

The Pentaplex Bethesda panel covers a set of five mono- and dinucleotide microsatellite
markers (BAT25, BAT26, D2S123, D5S346, and D17S250) developed by Bethesda consortium
for the analysis of MSI status in colorectal cancer patients (CRC) [25,38]. This approach
is set on the PCR amplification of the microsatellite loci followed by fragment length
analysis enabled to inspect the amplification profile and detect any changes in the lengths
of the repeated sequences. Unfortunately, this assay requires a simultaneous analysis of
non-tumoral tissue in order to compare the amplification profile with the tumor sample
inspecting variations in terms of length for amplified loci [39]. To date, the Bethesda panel is
a widely used diagnostic tool considered a referral method for MSI testing in CRC patients
thanks to diagnostic, prognostic, and guiding therapy obtained for diagnostic routine
cases. Conversely, technical limitations may occur when evaluating EC samples due to
dinucleotide repeated markers covered by this panel. Dinucleotide markers included in the
Bethesda panel (D2S123, D17S250, and D5S546) exhibit high polymorphic and not easily
interpretable alterations causing a high false negative rate in MSI analysis [25,40]. In this
scenario, optimized microsatellite panels, integrating mononucleotide repeated sequences,
may be considered a reliable diagnostic strategy to detect MSI-H in EC patients.

5. OncoMateTM MSI Dx Analysis System

The OncoMateTM MSI Dx Analysis System (Promega, Fitchburg, MA, USA) is a PCR-
based fragment-sizing test developed to evaluate MSI status from diagnostic routine speci-
mens [41]. This approach requires the PCR amplification of both tumor and non-tumor FFPE
tissue samples comparing the microsatellite profile on proprietary software. Briefly, the
diagnostic workflow is set on the quantitative PCR amplification of microsatellite markers
evaluated on the capillary electrophoresis system [37]. The OncoMateTM MSI Dx Analysis
System targets seven microsatellite markers: five mononucleotide repeat markers (BAT-25,
BAT-26, NR-21, NR-24, and MONO-27) and two pentanucleotide repeat markers (Penta C
and Penta D) showing a high sensitivity and specificity in clinical patients’ administration.
Instead, pentanucleotide repeat markers are examined to confirm the identity match between
DNA samples from the normal and tumor tissues [37]. In a multicenter trial, Gatius et al.
analyzed n = 242 FFPE EC samples collected by seven referral centers. They compared the
Idylla™ MSI assay, Promega™ MSI Analysis System, and IHC for MMR proteins in terms
of the MMR/MSI detection rate and technical costs supporting the analytical approach. The
results showed a concordance rate of 88.5% and 89.9% between IHC and the Promega™
MSI assay and Idylla™ and Promega™ MSI assays, respectively. Of note, Invalid results
were identified in 5.4% of cases adopting the Promega™ MSI assay in comparison with 7.0%
of the IHC approach. The concordance rate between the Idylla™ MSI assay and Promega™
MSI assay improved to 91.2% setting an instability cutoff of 0.3 [41].

6. LMR MSI Analysis System

The LMR MSI Analysis System (Promega) represents a PCR-based technique able
to detect MSI status in diagnostic specimens from solid tumor patients [42,43]. This tool
is based on the analysis of four gold standard MSI markers (BAT-25, BAT-26, MONO-27
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and NR-21) integrated with long mononucleotide repeat (LMR) markers (BAT-52, BAT-56,
BAT-59, and BAT-60) improving analytical performance for the detection of MSI status.
These markers enhance the capability to detect MSI status, particularly, and they showed
greater sensitivity for detecting MSI in EC [27,43]. In a retrospective cohort of solid tumor
patients (including CRC, EC), Lin et al. compared the MSI-H detection rate by adopting
LMR MSI analysis with an IHC signal. Of note, the results showed a technical sensitivity
and specificity of 98.0% and 100.0%, respectively, in EC patients [44]. In another experience,
a technical sensitivity of 98.0% and 100.0%, respectively, was reached on a retrospective
series of EC patients [45].

7. Titano MSI Test

The Titano MSI kit enables the assessment of MSI status inspecting the fluorescent
signal of multiplex amplified loci on the Sanger sequencing platform [46]. This approach
has proven technical advantages in terms of the detection of small repeated sequences
across 10 distinct molecular targets (BAT25, BAT26, D2S123, D17S250, D5S346, BAT40,
D18S58, NR21, NR24, and TGFβRII) improving the detection rate of H-MSI cases in clinical
practice [46]. This tool requires an amplification profile of tumor and matched non-tumor
derived samples in order to evaluate MSI status. Starting from 20 ng of the extracted DNA,
this system accurately analyzed repeated sequences’ variations across different molecular
targets [31,33]. Of note, the Titano MSI kit was also approached to solve discordant cases
on a retrospective series of n = 20 EC patients evaluated by IHC, a microfluidic system, and
a semi-automatized RT-PCR system demonstrating a high concordance rate with molecular
systems [31,33].

8. EasyPGX® Ready MSI Kit

The EasyPGX® ready MSI kit represents a semi-automatized, analysis software in-
tegrated technical strategy for the determination of MSI status from several diagnostic
specimens. From a technical point of view, this platform directly analyzes n = 8 monomor-
phic and mononucleotide microsatellite markers (BAT-25, BAT-26, NR-21, NR-22, NR-24,
NR-27, CAT-25, and MONO-27) employing fluorescent labeled probes. The manufacturer’s
instructions assess that the minimal input required is 10–20 ng for blood and 10–100 ng for
FFPE tissue samples for the MSI status [47]. MSI status is determined by comparing the
melt curve of each marker with a respectively stable control sample. A dedicated analysis
software integrates a fluorescent signal in an easily managed report where the MSI score is
automatically calculated. Thanks to easily managing analytical procedures, the Easy PGX
MSI kit is routinely employed in the diagnostic workflow of Italian institutions (26.0%)
where it has been elected as a referral diagnostic tool for MSI analysis in EC patients as
shown by data of an Italian survey [48]. Several studies demonstrated that this approach is
suitable for MSI status evaluation in EC patients. As regards, Libera et al. identified MSI-H
and MSS status in 19 out of 31 (61.3%) and 25 out of 25 (100.0%) dMMR and pMMR EC
patients, respectively [37].

9. ddPCR Microsatellite Instability (MSI) Kit

Overall, the ddPCR Microsatellite Instability (MSI) Kit (Hercules, CA, USA) may be
considered a commercially available RT-PCR-based assay able to accurately detect MSI sta-
tus from 2 ng of extracted DNA inspecting deletions and insertions in five mononucleotide
microsatellite markers from plasma or tissue samples [49,50]. A previous validation study
on a series of n = 15 EC patients widely demonstrated that this approach is a technically
reliable diagnostic system that aimed for MSI status evaluation (a concordance rate of
100.0% in comparison with the IHC gold standard method) [46] (Figure 1).
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10. Advantages and Disadvantages

To date, MMR/MSI status has rapidly revolutionized the clinical landscape of EC
patients. In this scenario, dostarlimab (immune checkpoint inhibitor) was approved to
treat H-MSI/d-MMR EC patients thanks to a statistically significant benefit in terms
of progression-free survival at 24 months (61.4%, 95% confidence interval [CI], 46.3 to
73.4 versus 15.7% (95% CI, 7.2 to 27.0) and overall survival at 24 months (71.3% (95% CI,
64.5 to 77.1) with dostarlimab compared with 56.0% (95% CI, 48.9 to 62.5) of the placebo
group [51]. At the sight of these aspects, H-MSI/d-MMR became pivotal in the clinical
management of EC patients. Immunohistochemistry (IHC) and PCR-based assays carried
out on tumor tissue samples, including biopsies or surgical resections, are considered the
gold standard approach for determining MSI/dMMR status. Immunohistochemistry (IHC)
highlights a notable technical sensitivity and specificity in the predominant LS-associated
cancers, evaluating the expression of the four main MMR proteins [52,53]. Moreover, as a
reliable alternative to traditional IHC-based testing, MSI-PCR methods involving the PCR
amplification of microsatellite regions, followed by capillary electrophoresis, are routinely
adopted in diagnostic practice integrating IHC analysis [54]. To date, IHC and MSI-PCR
techniques exhibit a comparable detection rate inspecting H-MSI/dMMR status in colorec-
tal and endometrial cancers [55–58]. Despite the proven availability of traditional MSI-PCR
methods based on the Bethesda panel, several commercial PCR-based tests have gained
market prominence, distinguishing themselves from the older ones due to an extensive
reference range including monomorphic loci molecularly relevant in EC patients. IHC is
considered the gold standard testing strategy for identifying MSI in EC patients thanks
to easily managing analytical procedures, low TAT (about 4–6 h), and reduced technical
costs. Furthermore, IHC shows robust results even if the starting diagnostic sample is
featured by a neoplastic cell content of 20.0%. On the other hand, IHC requires correct
pre-analytical procedures decreasing artifacts at morphological analysis as well as an ex-
perienced pathologist for result interpretation [59]. Other limitations depending on the
biological mechanisms of the tumor concern heterogeneous MMR protein expression that
drastically impacts reproducible results. Remarkably, false positive results may also derive
from pre-analytic issues, while false negative results are caused by the absence of the
evident loss of expression due to the intact immunoreactivity signal [24]. The Pentaplex
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Bethesda panel is considered the first widely accepted PCR-based technique for the detec-
tion of MSI status. Similarly, PCR-based systems show the low TAT (less than 5 h), saving
cost approaches, and high reproducibility rate. Despite the evident benefits of the method,
PCR-based systems require samples with 20% neoplastic cells [60]. Both the OncoMateTM

MSI Dx Analysis System and the LMR MSI Analysis System tests demonstrated technical
advantages in terms of the rapid turnaround time (less than 5 h) and low analysis costs.
Furthermore, these assays show a decreasing rate of false positive results in comparison
with the Bethesda-based assays [61,62]. Like the Bethesda panel, they do not provide
indications regarding MMR genes to investigate. Moreover, they have not been certified
CE-IVD for microsatellite analysis in EC. Regardless, the LMR MSI Analysis System, owing
to the LMR markers, produces more pronounced fragment length changes, improving the
detection of microsatellite instability [27,63]. All these approaches need a normal tissue
profile to evaluate MSI status.

The Titano MSI kit is versatile and extensively adopted in diagnostic routine practice.
Although this assay has been not specifically optimized for EC analysis, it highlights con-
sistent agreement with other techniques [64]. Nevertheless, the Titano MSI test represents
a low-cost multiplexed analysis, with a clinical useful turnaround time (5 h). Unlike the
Titano MSI test, the EasyPGX® ready MSI kit does not require a paired normal tissue for
MSI analysis. The analysis can be performed using FFPE tissue samples or blood samples.
The turnaround time of this test from sample to result is less than 4 h and hands-on time is
no more than 15 min. As long as there is a presence of mononucleotide repeats, the assay
demonstrates high reproducibility and sensitivity [63]. The Idylla MSI test is a multiplexed,
highly reproducible, and low-cost method. This approach does not require a paired normal
tissue sample to successfully interpret molecular data. Furthermore, this assay is consid-
ered a rapid (from sample to result of 150 min) and minimal hands-on time of about 5 min
technical strategy. A limitation of the technique is the technical requirement of at least
20% neoplastic cellularity to validate molecular interpretation [50]. Although it has been
designed for colorectal cancer samples, the Idylla MSI test demonstrated high analytical
performance in EC cases [64]. Given the current inclination towards molecular tumor
diagnostics relying on ctDNA analysis and the multifaceted implications of MSI in cancer
management, there is an increasing demand for innovative methods for diagnosing MSI
in blood samples. A PCR-based method that allows for MSI analysis starting from blood
samples is represented by the ddPCR Microsatellite Instability (MSI) Kit. It represents a
cost-effective solution with a fast turnaround time of less than 5 h. The Idylla MSI test and
the EasyPGX® ready MSI kit do not require a matched normal sample and exhibit high
sensitivity and an elevated accuracy of MSI evaluation in EC liquid biopsy samples. Also
in this case, it does not provide information about altered MMR genes. In addition, there is
a lack of standardization for the results’ interpretation. In terms of saving technical costs,
Orellana et al. highlighted that the molecular testing strategy is cost-effective in comparison
with the no testing approach (USD 100,000/QALY) including in this statistical evaluation
all clinically promising biomarkers for EC patients. Particularly, the IHC-based approach,
routinely adopted in diagnostic routine practice, represents a cost-effective testing strategy
compared with molecular techniques, whereas molecular testing approaches are sustain-
able setting a willingness-to-pay threshold of USD 100,000/QALY [65]. At the sight of
these critical aspects, the College of American Pathologists established a consensus panel
able to overcome pre-analytical and analytical bias in H-MSI/dMMR profile evaluation
for EC patients. Particularly, EC patients eligible to ICIs in accordance with MSI status
should be tested adopting an integrated workflow based on MMR-IHC MSI by PCR or
next-generation sequencing (NGS) for the detection of DNA mismatch repair defects [66].
Taking into account technical opening challenges in detecting MSI status, NGS platforms
enable the simultaneous analysis of several loci potentially reflecting genomic instability
among different tumor types. As shown by Bartels et al., a technical sensitivity and speci-
ficity of 88.6% and 95.2%, respectively, were calculated on a series of EC patients previously
tested with standardized approaches [67]. Although this comprehensive approach allows
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for the detection of H-MSI status across several types of histological tumors; optimized
bioinformatic pipelines are required to implement NGS based on the diagnostic routine
practice of EC patients [68].

11. Conclusions

Assessing MSI status in EC holds significant clinical relevance due to its diagnostic,
prognostic, and therapeutic implications. IHC and canonical PCR-based methods are
considered the gold standard for determining MSI/dMMR status in EC patients. Never-
theless, alternative strategies, like ddPCR assays, show potential clinical implementation
determining MSI/dMMR status. A plethora of commercially available PCR-based assays
are available in diagnostic routine practice. Among these ones, different pre-analytical and
analytical manufacturer procedures may be observed. The latest point clearly demonstrates
that harmonized trials should be approached to solve open challenges about the imple-
mentation of these assays in clinical practice. Since the sensitivity of PCR-based assays is
greater in colorectal cancers compared to endometrial cancers, an integrated diagnostic
algorithm combining IHC and molecular testing strategies increases the successful rate in
the clinical stratification of solid tumor patients.
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