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Abstract: Glioblastoma (GBM) is considered the most aggressive primary brain tumor. Recurrence
after treatment is a significant problem with a failed response to optimal therapies. The recurrence
of GBM is linked to different cellular and molecular pathways. Not only genetics are involved
in gliomagenesis, but also epigenetics. Histone modulation through acetylation, phosphorylation,
ubiquitination, and methylation can regulate gene expression and may play a role in the pathogenesis
of GBM. Preclinical and clinical studies currently target epigenetic enzymes in gliomas, including a
new generation of histone deacetylase (HDAC) inhibitors. Herein, I tried to highlight current research
in glioma epigenetics, focusing on the culprit of histone modifications and the use of HDAC target
therapies as a possible treatment line for glioblastoma.
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1. Introduction

Glioblastoma (GBM) is considered the most aggressive primary brain tumor. Recurrence
after treatment is a significant problem, with a survival rate about 39.7% for one year [1,2]. The
recurrence of GBM is linked to different cellular pathways and molecular signaling. Glioma
genetic features are complex, as evidenced by multi-omics studies from the landscape of
GBM in the Cancer Genome Atlas Research Network (TCGA), the Chinese Glioma Genome
Atlas (CGGA), and other databases [2]. 1p and 19q co-deletions, IDH gene mutations, PTEN
(Phosphatase and tensin homolog) gene mutations, TP53 mutations, TERT (Telomerase re-
verse transcriptase) gene promoter mutations, ATRX (Alpha thalassemia/mental retardation
syndrome X-linked) gene mutations, and EGFR (Epithelial growth factor receptor) gene ampli-
fication are different diagnostic biomarkers for glioma [2–4]. Not only is genetic deregulation
involved in gliomagenesis, but also epigenetics. Most clinical trials failed to promote pro-
longed survival of glioblastoma. The only trial with the best noticeable outcome was the
European Organization for Research and Treatment of Cancer (EORTC) and National Cancer
Institute of Canada (NCIC) clinical trial in 2005 [5].

Histone modulation through acetylation, phosphorylation, ubiquitination, and methy-
lation controls gene expression. Histones can be modified through acetylation and deacety-
lation, affecting several physiological and pathological processes [6,7]. Histone acetylation
is usually associated with gene activation. On the contrary, histone deacetylation is mainly
associated with gene suppression Figure 1 [7,8]. The detailed general characterization
of how histone modifications affect gene expression is out of the scope of this review.
Abnormally activated HDACs have been investigated in the molecular pathogenesis of
glioma. Therefore, inhibitors of that enzyme can be a therapeutic option controlling apop-
tosis and cellular proliferation [9,10]. HDAC inhibitors are of particular importance in
glioma targeted therapy as they can pass the blood–brain barrier at variable extents [11].
We tried to highlight the advances in histone-targeting therapies over the last 10 years.
This review will simply explain the available pre-clinical and clinical studies and describe
the current status of development of these drugs pertaining to glioblastoma therapy. By
fully understanding the possible underlying molecular mechanisms, we can translate these
findings into effective clinical anti-cancer strategies.
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Figure 1. Histone undergoes certain post-translational modifications that control gene expression.
Histone acetylation promotes relaxation of the DNA, while deacetylation makes histones more com-
pact with resulting gene repression. Methylation of CpG islands is associated with more condensed
heterochromatin, while demethylation favors euchromatin and exposure of DNA to the action of
RNA-polymerases and transcription factors.

2. Histone Modifications in Glioma
2.1. Histone Deacetylation in Glioma

Abnormal HDAC activity was identified in some cancers, but the complete mech-
anisms involved have not been fully elucidated [12]. Some HDACs are upregulated in
certain tumors and downregulated in others [13]. HDACs have multiple types and func-
tions, which make them a prominent target for molecular therapy. Before we can discuss the
effective targeted therapy models, we should focus the light on categories of HDACs and
the suggested roles they have in GBM. HDACs are classified based on similarities to those
found in yeast, and they vary in the cellular locations and structure [12]. Classical HDACs
include the following: Class I (HDAC 1–3, 8), II (HDAC 4–7, 9–10), and IV (HDAC 11),
which are Zn2+ dependent, while class III is Zn2+ independent [14]. It is reported that
classes II and IV are expressed at high levels in a low-grade astrocytoma [13].

HDAC1 and HDAC2 have been reported to be highly expressed in GBM cell lines, and
HDAC2 knocking down increased the response to temozolomide therapy [15]. A higher
expression of HDAC3 is associated with a dismal prognosis and was reported in specific
aggressive phenotypes of glioma cell lines [16]. In a study by Wang and his colleagues,
HDAC6 was upregulated in GBM cell lines, and the response to TMZ treatment was en-
hanced as HDAC6 was knocked down [17]. Class III HDACs comprise a group of proteins
known as the sirtuin (SIRT) family [18]. Aberrant expression of class III HDACs was noticed
in GBM cell lines, and Feng et al. noticed that SIRT1 and SIRT6 were downregulated in
these cells [19] while other studies reported upregulation [20]. HDAC class IV has only one
type, which is HDAC 11 [21]. The expression of HDAC11 decreases in the more aggressive
GBM tumors and has a poor prognosis [13].

2.2. Histone Acetylation in Glioma

Histone acetylation leads to increased gene activity by allowing more DNA exposure for
transcription complexes [22]. Acetylation is accomplished using histone acetyltransferases
(HATs). HATs have a role in cellular signaling, DNA damage repair, and cell cycle regu-
lation [23,24]. HATs include the following: GNAT superfamily, MYST family, p300/CBP,
nuclear receptor coactivators (SRC-1, ACTR, TIF2), TAFII250, and TFIIIC [25]. The one that
was extensively studied in GBM is the p300/CBP known as KAT2B, EP300 [26]. P300 acts as
a tumor suppressor in GBM and an inhibitor for acetyltransferase P300 is highly expressed
in GBM and makes the prognosis worse [26]. A group of researchers found that PI3K/Akt
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signaling activation, a highly involved pathway in gliomagenesis and PIK3CA expression,
was recruited by H3K23 acetylation enhanced by a specific HAT called KAT6A, which belongs
to the MYST family [27]. Several studies investigated the role of HATs in GBM (Table 1).

Table 1. Studies involving HATs in glioma.

HAT Involved Mechanism Involved Reference

KAT6A/MYST3 Glioma cell-induced proliferation through
H3K23ac/TRIM24-PI3K/AKT pathway. [27]

KAT8

Manipulation of the H4K16 acetylation level
in microglia, using the intrinsic H4K16
acetyltransferase activities, adjusted the
microglia’s tumor-supporting function.

[28]

KAT3B
An inhibitor for KAT3B acetyltransferase is

highly expressed in GBM and correlates with
a dismal prognosis.

[26]

2.3. Histone Methylation in Glioma

Lysine and arginine are methylated on histones, mostly H3 and H4, by the two enzymes
lysine methyltransferase (KMTs) and arginine methyltransferase (PRMTs) (Table 2) [29]. Vari-
ous studies reported the clinical significance of aberrations related to methyltransferases
and their association with different cancers [30–32]. A study reported that the KMT G9a is
abnormally expressed in some brain tumors [33]. Moreover, a high expression rate of KMT
G9a is noted to be associated with more aggressive behavior in glioma [33]. Researchers
investigated the role of certain KMTs as SUV39H1 and SETDB1 in gliomagenesis, and they
observed the upregulated expression in malignant glioma cell lines. Moreover, knocking
down SUV39H1 and SETDB1 was associated with a high rate of apoptosis and a diminished
migratory capacity of cells [34]. The arginine methyltransferase 2 (PRMT 2) was highly ex-
pressed in GBM and linked to an unfavorable prognosis [35]. The proposed role of PRMT2
is thought to be through H3R8 methylation, whose function is associated with promoter
enhancement and active gene expression, suggesting its potential oncogenic activity [35].
In midline high-grade glioma and diffuse intrinsic brain stem glioma, the most commonly
reported mutation is that resulting in the substitution of lysine to methionine at amino acid
position 27 of the H3 histone variants (H3K27M), and less commonly in HIST1H3B/C and
HIST2H3C [36] H3K27M substitution occurs in most cases of these types of glioma and
carries a virulence advantage for these cells. The inhibition of the N-methyltransferase
enhancer of zeste homolog 2 (EZH2)—the catalytic subunit of PRC2polycomb repressive
complexesis the possible mechanism behind the loss of expression of H3K27me3 [37]. This
epigenetic remark is now considered a target for a possible therapeutic approach. Studies
that involve KMTs and PRMTs in GBM are listed in Table 3.

Table 2. Lysine and arginine methyltransferases subtypes.

Methyltransferases

KAMTS PRMTS

Type 1 Type 2

SET1 PRMT1 PRMT5

SET2 PRMT2 PRMT7

SMYD PRMT3 PRMT9

SUV4-20 PRMT6

SET7/9 PRMT8

SUV39 PRMT4
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Table 3. Studies involving methyltransferases in glioma.

Methyltransferases Cell Line Used Effect Reference

KMT1A Glioma cell lines (GOS-3, 1321N1,
T98G, U87MG) Positive correlation with aggressive tumors [34]

KMT2A Cell lines isolated from primary
human GBM Glioma stem cells were blunted following silencing of KMT2A [38]

KMT3A Patient-derived tumor cells Expressed in high-grade pediatric glioma [39]

KMT4 Xenograft models Inhibition of KMT4 reduced stem cell expression of stemness markers [40]

KMT6 Patient-derived GBM cultures Reduced expression levels of KMT6 are associated with low
expression of oncogenes as c-myc. [41]

PRMT1 T98G, U87MG, and A172 cell lines
and mouse xenografts Highly expressed in glioma cell lines [42]

PRMT2 U87 and T98G cell lines Expressed in high-grade gliomas and associated with poor prognosis. [35]

PRMT5 U373MG and LN229 cell lines The expression is high in the high-grade glioma [43]

2.4. Histone Demethylation in Glioma

There is increasing interest in the enzyme N-methyl-lysine demethylase (KDM1, also
known as LSD1, AOF2, or BHC110) as a possible target for therapy in cancer [44]. Methylation
and demethylation of histone’s arginine side chains are of equal scientific importance as
acetylation, phosphorylation, and ubiquitination. Demethylation of histone contributes to
cellular development, and its dysregulation may result in disorganized cellular development
and tumorigenesis [44]. Work is promoted to further study histone demethylases because
of the evident success of demethylase inhibitors in the field of cancer [44]. Several histone
demethylases are overexpressed in GBM and may have a role in TMZ resistance [45]. Sareddy
et al. reported that KDM1A is expressed at a high rate in glioma cell lines, and pargyline
(KDM1A inhibitor) reduced cellular proliferation [46]. Targeting KDM2A by microRNA-3666
halted the migration of glioma cells [47]. Moreover, knocking down KDM2B blunted the
numbers of glioma stem cells in primary GBM cultures suggesting that KDM2B is fundamental
for GBM cell survival. [48]. A significant increase in acidic vesicular organs and autophagy-
related proteins was noticed following inhibition of KDM4A using siRNA, suggesting a
therapeutic role [49]. Synthetic pharmacological inhibitors against KDM4B are effective in
TMZ-resistant glioma cells, suggesting a role of KDM4B in resistance to therapy [50].

2.5. Histone Ubiquitination in Glioma

Histone ubiquitination frequently happens in two regions of histone, H2A at lysine 119
(H2AK119ub1) and H2B at lysine 120 (H2BK120ub1) [51]. Abnormal histone ubiquitination
could alter tumor suppressors and oncogenes [52]. Many deregulated ubiquitination
enzymes were studied in different cancer types making ubiquitination an exciting item to
target cancer [53]. Certain deubiquitinating enzymes regulate that process and include 2A-
DUB, USP21, USP16, and BRCA1, and their deregulation could have a role in carcinogenesis
Table 4 [52]. Ubiquitin-specific proteases as USP1,3,4,10,13 are expressed at a higher rate in
GBM cells than in normal brain tissues and are linked to poor survival [53–55].

Table 4. Studies involving ubiquitin-specific enzymes in glioma.

Ubiquitin Specific
Enzymes Preclinical Study Reference

USP1 USP1 is overexpressed in glioma stem cells. Inhibition of USP1
increased radiosensitivity of GBM cells. [56]

USP3 USP3 is highly expressed in GBM and correlates with poor prognosis. [57]

USP4 USP4 is highly expressed in GBM cells. [55]

USP10 USP 10 is overexpressed and linked to poor survival in GBM patients. [58]
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Table 4. Cont.

Ubiquitin Specific
Enzymes Preclinical Study Reference

USP13 USP13 is highly expressed in GBM and is required by glioma stem
cells to maintain its stemness features. [53]

USP15 USP15 attenuates the WNT pathway mediated by stabilization of
HECTD1, supporting a tumor-suppressing role of USP15 in GBM cells. [54]

USP28 USP 28 is overexpressed in GBM cell lines and is associated with a
high grade of glioma. [59]

2.6. Histone Sumoylation and Glioma

Sumoylation is a type of post-translational modification attaching ubiquitin-related
modifier (SUMO) groups to histones [60]. Sumoylation is reported to be involved in differ-
ent cellular processes as apoptosis and signal transduction [61]. Four isoforms of SUMO
have been identified and include SUMO1,2,3,4 [62]. E1 enzyme (SAE1 and SAE2/UBA2)
and E2 enzyme are involved in SUMO modification [63]. SUMO-1 and SUMO-2/3 proteins
were found to be expressed in both low- and high-grade gliomas [64]. A study observed
that SAE1 enhances glioma cells’ growth via the Akt signaling pathway, which is a major
pathway involved in gliomagenesis [65].

2.7. Histone Phosphorylation and Glioma

Histone phosphorylation is one of the post-translational modifications that may play
a role in cell division, apoptosis, and gene expression. However, little is known about the
prognostic implication of histone phosphorylation in human cancer. Histone phosphoryla-
tion importantly occurs when DNA damage repair ensues as the phosphorylated histone
H2A functions to localize the sites of DNA repair [66]. The phosphorylation of specific
proteins was also linked to regulation of proliferative genes such as serine 10 and 28 of H3
and serine 32 of H2B phosphorylation which has been involved in EGF-responsive gene
regulation [67]. Specific phosphorylated histones’ proteins are reported to be associated
with certain proto-oncogenes such as c-fos, c-jun, and c-myc [68]. Research investigating
phosphorylated histones’ roles in GBM is limited in the literature. The phosphorylation
level of H3T3, T6, S10, S28, Y41, and T45 was analyzed in 42 GBM samples. That analysis
depicted a high level of pH3T6, pH3S10, or pH3Y41 linked to poor survival [69]. Moreover,
pharmacological inhibition of the phosphorylation process using enzastaurin increased
GBM cells’ sensitivity to irradiation/TMZ treatment [70].

2.8. Targeting Histone-Modifying Enzymes in Glioma

Despite the significant advances in molecular research focusing on GBM, the hallmark
treatment proven to be the best is the classical radical surgical resection plus TMZ and
radiotherapy [71]. Total excision of GBM is almost impossible due to microscopic infiltration
of cells beyond radiological tumor borders, making complementary treatments a valuable
tool in therapy. What complicates treatment is the diffuse heterogeneity of the GBM
microenvironment that makes GBM notorious for therapy failure. Glioma stem cells
also reduce the efficacy of targeted therapies as they have an inherent capacity of self-
renewal, initiating and recurring new tumor cell pool [70]. Preclinical trials testing different
targeted therapies related to histone enzymes have been reported, but some only have
well-established outcomes and are promoted for clinical trials (Table 5). Most GBM research
uses different glioma cell lines such as U87 and U251 as models for experimental trials. To
some extent, GBM cell lines are different from human primary tissue samples, especially
in the case of studying signaling and genetic profiling, and that eventually leads to some
discrepancy in the results of experimental animals, preclinical, and clinical trials [72].
Moreover, the ability of these agents to cross the BBB and reach a high intratumoral
concentration is variable and represents a challenge for their clinical application.
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Table 5. Certain clinical trials involving HDACi in glioma therapy.

HDAC Inhibitor Combination Therapy Tumor Type BBB Cross Rate Result Sponsor Reference

Vorinostat Temozolomide +
Isotretinoin, bortezomib

Bevacizumab

Temozolomide +
Bevacizumab

Bevacizumab +
Irinotecan, Temsirolimus

Radiotherapy

Recurrent GBM

Recurrent GBM

Recurrent GBM

Diffuse intrinsic pontine glioma

High-grade glioma and
anaplastic astrocytoma

Low Still active

No change in overall survival or
progression-free survival
compared to bevacizumab
therapy.

Progression-free survival for six
months was not affected.

Active

Active

Duke University
Durham

Duke University
Durham

National Cancer Institute

[73]

[74]

Valproic acid VPA, temozolomide, and
radiotherapy

Newly diagnosed GBM
in adults

Good Active National Cancer Institute

Romidepsin Recurrent GBM Low Completed and showed that
romidepsin is ineffective in the
treatment of recurrent GBM.

NM [75]
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Table 5. Cont.

HDAC Inhibitor Combination Therapy Tumor Type BBB Cross Rate Result Sponsor Reference

Panobinostat

Bevacizumab

Convection-enhanced
delivery (CED)

Pediatric intrinsic
pontine glioma

Recurrent GBM

Diffuse pontine glioma

Good Active

Adding this agent to
bevacizumab did not improve
the outcome compared to
bevacizumab alone.

Active

[76]

Belinostat (PXD101) Belinostat Adults with newly
diagnosed GBM

Good Phase I NM [77]

Belinostat (PXD101) TMZ and Radiation Adults with newly
diagnosed GBM

Good Phase II Emory University NCT02137759
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3. HDAC Inhibitors (HDACi)

HDACi have been investigated as a therapy for many cancers, and candidates of this
family have shown promising results in certain tumors as vorinostat for primary cutaneous
T-cell lymphoma [78]. Most of the HDACi used in preclinical and clinical trials are specific
for each enzyme class and are usually used as a combination therapy with other targeted
therapies. HDACi works through different mechanisms as an anti-cancer therapy. HDACi
can untwist chromatin’s condensation, allowing TMZ and other chemotherapeutics to gain
more access to DNA [79]. They may initiate autophagy through the production of complex
immunomodulatory cytokines [80]. HDACi are reported to reduce the effect of VEGF,
which plays a master role in hypoxia-induced angiogenesis in GBM [81]. Apoptosis can
be achieved through different mechanisms using HDACi [82]. A famous HDACi called
vorinostat was reported to induce DNA damage and double-strand breaks [83]. HDACi
can also produce reactive oxygen species, which help destroy tumor cells [84,85]. We will
focus on the most prominent candidates of HDACi that were used in clinical trials.

3.1. Vorinostat

This agent was used in stage I and II clinical trials to treat different cancers with
tolerable side effects [86,87]. Vorinostat was used in a phase II trial of North Central
Cancer Treatment Group (NCCTG) in patients with recurrent GBM [88]. In this study,
the patients receiving vorinostat showed a progression-free survival at six months of
about 15.2% and median overall survival of 5.7 months [88]. A combination therapy
of vorinostat, bevacizumab anti-VEGF (erlotinib), a tyrosine kinase receptor inhibitor,
bortezomib, a proteasome inhibitor, and isotretinoin with or without TMZ was used. This
combination aims at blocking all possible routes for resistance to therapy [73,74,89]. In
a study conducted by the Adult Brain Tumor Consortium (ABTC), vorinostat combined
with TMZ was used in patients with malignant gliomas who had previously received
radiotherapy [90]. Results from this trial encouraged the ABTC and NCCTG to start a
phase II trial of vorinostat with radiotherapy and TMZ in newly diagnosed GBM patients.
Vorinostat combination with bevacizumab plus irinotecan was published as a phase I
clinical trial [91]. HDAC inhibitors’ ability to enhance the anti-tumor activity of both
bevacizumab and topoisomerase I inhibitors was also supported by the preclinical data
published in different studies [92–94]. In patients with recurrent GBM, a proteasome
inhibitor bortezomib was added to vorinostat as a part of a phase II clinical trial conducted
by NCCTG. The median time of progression was about 1.4 months (range 0.5–5.6 months),
and the median overall survival was about 2.4 months [94]. Vorinostat to suppress TCF4
transcription factor TCF4 (TCF7L2) which is responsible for aggressive features of glioma
stem cells. Vorinostat was found to increase the sensitivity of stem cells to TMZ [95].

3.2. Valproic Acid

The European Organization for Research and Treatment of Cancer (EORTC) and Na-
tional Cancer Institute of Canada (NCIC) trials found exciting results regarding using
the antiepileptic valproic acid with a distinguished effect on outcome [96]. Valproic acid
(VPA) is considered a class I selective HDAC inhibitor [97]. Valproic acid is known for
its antiepileptic properties, but it also has an HDAC inhibiting activity. A better survival
with TMZ and radiotherapy was observed in patients receiving VPA as the only antiepilep-
tic drug [97]. The mechanism behind the effect of VPA in prolongation of survival in
GBM patients is still not fully explained. Some researchers suggested that VPA increases
the bioavailability of TMZ by diminishing its clearance [98]. A phase II trial study was
conducted to investigate the effect of VPA in GBM patients who are on chemo and ra-
diotherapy [99]. This study showed a progression-free survival of about 10.5 months. In
another study conducted by Deepthi Valiyaveettil et al., VPA with combined chemo and
radiotherapy in GBM patients, the PFS was about ten months, and overall survival was
about 16 months [99].
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3.3. Romidepsin (FK228)

This agent was studied in a trial conducted by the North American Brain Tumor
Consortium in patients with recurrent glioma who are on enzyme-inducing antiepileptic
drugs (EIAEDs) and evaluate the antitumor efficacy of romidepsin in patients with re-
current glioblastoma who were not receiving EIAED. The resulting median PFS was only
six weeks [75]. Mice treated with both romidepsin and TMZ drugs significantly reduced
tumor weights and volumes compared to each drug alone [100]. Our results suggested that
FK228 augmented temozolomide sensitivity in human glioma cells partially by blocking
PI3K/AKT/mTOR signal pathways [100]. A study by Nguyen et al. reported the combined
inhibition of TRAP1 by gamitrinib and romidepsin or panobinostat caused the synergis-
tic growth reduction of established and patient-derived xenograft (PDX) glioblastoma
cells [101,102].

3.4. Panobinostat

FDA approved this HDACi in the treatment of multiple myeloma. It is still under
investigation in an active clinical trial in children with diffuse intrinsic pontine glioma
with marizomib, a proteasome inhibitor. (Source: https://clinicaltrials.gov (accessed on 1
May 2023)).

3.5. Targeting the Ubiquitin–Proteasome System in GBM

The development of UPS small molecule inhibitors is a new source of therapeutics. The
intracellular existence of the components of UPS make it difficult to target these elements
with small molecular inhibitors [103]. Moreover, E2–E3 substrate binding has a rapid
dissociation rate and is very difficult to determine using high through output techniques.
Accordingly, the advances in targeting UPS are very slow and not well-defined.

3.5.1. Controlling Proteasome

Proteasome inhibitors involve several categories such as peptide aldehydes, peptide
vinyl sulfones, peptide epoxyketone, peptide boronates and lactacystin [104]. Bortezomib
(PS-341, Velcade), Carfilzomib (PR-171, Kyprolis) and Ninlaro (Ixazomib, Takeda, Tokyo,
Japan) are FDA-approved proteasome inhibitors for the treatment of hematological malig-
nancies [105,106]. Wang et al. used bortezomib intracranially in the treatment of mouse
glioma and the mice showed increased survival [107]. A major drawback of proteasome
inhibitors is the undifferentiated killing; they act on rapidly proliferating normal and cancer
cells. Targeted delivery methods can help in avoiding this therapeutic problem.

3.5.2. Controlling Ubiquitination Enzymes

E3-ubiquitin ligase plays a fundamental role in the ubiquitination process. It is a highly
specific enzyme for this process making it target for inhibition. GDC-199 (venetoclax) is
a FDA-approved ubiquitin ligase inhibitor used in the treatment of chronic lymphocytic
leukemia (CLL) and small lymphocytic lymphoma (SLL) [108].

P35 is a prominent regulator of cancer cell proliferation with a marked role in GBM.
MDM2 is a regulator of P53 that helps in P53 ubiquitination and degradation [109]. Im-
idazoline analogues can block the binding of MDM2 to P53 enhancing its stability and
inhibiting its ubiquitination [110]. Nutlins are reported to interrupt the interactions be-
tween MDM2 and P53. Nutlin-3a treatment of glioma cell lines and primary grown GBM
cells showed a p53-dependent cell cycle arrest and apoptosis [111].

RG7112 (RO5045337) a nutlin derivative interrupts the p53–MDM2 interaction by
binding to the p53 pocket on MDM2 [112]. Idasanutlin (RG7388) is another derivative that
has the same action of RG7112 with more pronounced efficacy [113]. Combined trametinib
and RG7388 reduced the proliferation rate of P53 GBM cells and also reduced the resistance
to RG7112 [114]. Navtemadlin (KRT-232/AMG-232) increased the P53 concentration in
tested tumor tissues to a larger extent than RG7112 [115]. Navtemadlin is currently tested

https://clinicaltrials.gov
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in a clinical trial for the treatment of recurrent GBM and patients with newly diagnosed
GBM with wild-type p53 and unmethylated MGMT promoters (NCT03107780).

SAR405838 is another MDM2 inhibitor that was used in clinical trials involving differ-
ent solid tumors [116]. SAR405838 showed inefficacy in the management of GBM due to
the poor ability to cross the BBB [117].

BI-907828 is another potent MDM2 inhibitor that extended the survival rates among
orthotopic xenograft mouse models of GBM and also when combined with TMZ [118]. An
ongoing clinical trial investigates the distribution of BI-907828 in different regions of GBM
in combination with radiotherapy (NCT05376800) (Table 6).

Table 6. Clinical trials involving the ubiquitination enzymes.

Title MDM2 Inhibitor Status Type of Cancer NCT Number Reference

Testing the Ability of
AMG 232 (KRT 232) to

Reach Into the Tumor in
Patients With Brain

Cancer

Navtemadlin Suspended

Recurrent GBM
Newly Diagnosed

Glioblastoma
MGMT-

unmethylated
Glioblastoma
Gliosarcoma

NCT03107780 [119]

NCT Neuro Master
Match—N2M2

(NOA-20) (N2M2)
Idasanutlin Active recruiting GBM NCT03158389 [120]

A Study to Determine
How BI 907828 is Taken
up in the Tumor and to
Determine the Highest
Dose of BI 907828 That
Could be Tolerated in

Combination With
Radiation Therapy in
People With a Brain

Tumor Called
Glioblastoma

BI 907828 Active recruiting GBM NCT05376800 [121]

3.6. Targeting SUMOylation in GBM

SUMOylation is a common posttranslational modification occurring in GBM. About a
30-times increase in the level of SUMO-- and SUMO-2/3-associated proteins was observed
in patient-derived GBM tissues [122]. New small molecule inhibitors targeting sumoylation-
related enzymes were recently described [123–125]. Topotecan is a famous candidate that
can control the SUMOylation status in several cancers [126,127]. Bernstock et al., found that
topotecan can affect the GBM cellular progression and reduce the levels of HIF in glioma
cells [128]. Other candidate drugs inhibiting SUMOylation were also identified but there is
no data regarding their potential experimental use in GBM. Further research is needed to
investigate the possible use of small molecule inhibitors targeting SUMOylation in GBM
based on the critical role played by SUMOylation in gliomagenesis.

3.7. Targeting Epigenetic Modifiers of H3K27me3

Selective inhibition of H3K27me3 demethylases (KDM6) is a promising therapeutic
strategy to increase the repressive feature of H3K27me3. Compound GSK-J4 specifically
inhibits KDM6 and has a great effect on cell proliferation and cell cycle arrest [129]. panobi-
nostat with GSK-J4 were tried as a combination for the treatment of diffuse intrinsic pontine
glioma [130]. However, GSK-J4 is of limited use in clinical trials due to poor BBB penetration.
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3.8. Limitations of HDACi in Clinical Practice

Some side effects were reported using HDACi which include neutropenia and throm-
bocytopenia [131]. Cardiotoxicity was noticed, which is potentially hazardous [132]. Re-
sistance to therapy was observed in several studies, and the mechanisms of resistance are
variable. One proposed mechanism is the activation of anti-apoptotic transcription factor
NF-κB and other anti-apoptotic proteins [133]. A weak BBB permeability was noticed with
most of HDACi [134]. The potential benefits that HDACi might offer in CNS disorders
encouraged researchers to explore the brain uptake of HDAC inhibitors as potential models
for developing HDAC inhibitors fully penetrating the BBB. Brain uptake of trichostatin A
(TSA)-like hydroxamates and (KB631) in the baboon brain was negligible [135,136]. On
the contrary, five patients post-treatment with vorinostat exhibited an increase in histone
acetylation in their post-surgical specimens, proving that vorinostat reached a sufficient
concentration in the tumor [88].

4. Conclusions and Future Perspectives

There is a compelling need for new studies exploring epigenetics in GBM. Therapies
to prolong survival in GBM are still limited, although new molecular therapies have
emerged. Some virulent features characterizing glioblastoma can be targeted using different
histone deacetylase inhibitors. Recent clinical trials have demonstrated potentially effective
models of therapies targeting epigenetics but failed to achieve maximum intratumoral
concentration levels. Research should be directed at managing how to achieve a high CNS
level of those therapies. Discovering more about the epigenetics of glioma may establish
new GBM classifications that will be epigenetically based and help with the proper selection
of the targeted therapy.
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