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Abstract: Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by
abnormal progressive involuntary movements, cognitive deficits, sleep disturbances, and psychiatric
symptoms. The onset and progression of the clinical symptoms have been linked to impaired adult
neurogenesis in the brains of subjects with HD, due to the reduced neurogenic potential of neural stem
cells (NSCs). Among various pathogenic determinants, an altered clock pathway appears to induce
the dysregulation of neurogenesis in neurodegenerative disorders. Notably, gamma-aminobutyric
acid (GABA)-ergic neurons that express the vasoactive intestinal peptide (VIP) in the brain play a key
role in the regulation of circadian rhythm and neuroplasticity. While an abnormal clock gene pathway
has been associated with the inactivation of GABAergic VIP neurons, recent studies suggest the
activation of this neuronal population in the brain positively contributes to neuroplasticity. Thus, the
activation of GABAergic VIP neurons in the brain might help rectify the irregular circadian rhythm
in HD. Chemogenetics refers to the incorporation of genetically engineered receptors or ion channels
into a specific cell population followed by its activation using desired chemical ligands. The recent
advancement of chemogenetic-based approaches represents a potential scientific tool to rectify the
aberrant circadian clock pathways. Considering the facts, the defects in the circadian rhythm can be
rectified by the activation of VIP-expressing GABAergic neurons using chemogenetics approaches.
Thus, the chemogenetic-based rectification of an abnormal circadian rhythm may facilitate the
neurogenic potentials of NSCs to restore the neuroregenerative plasticity in HD. Eventually, the
increased neurogenesis in the brain can be expected to mitigate neuronal loss and functional deficits.
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1. Introduction

Huntington’s disease (HD) is an autosomal dominant hereditary neurodegenerative
disorder that affects the structure and functions of the basal ganglia of the brain [1]. The
progressive degeneration of gamma-aminobutyric acid (GABA)-ergic medium spiny (MSN)
neurons in the brains of subjects with HD has been attributed to the expansion of polyg-
lutamine (poly Q) segments in the huntingtin (HTT) protein resulting from more than
40 CAG repeats in the exon1 of the HTT gene [2–4]. Clinically, HD has been character-
ized by abnormal involuntary movements, neurocognitive impairments, and psychiatric
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disturbances [5]. In addition, abnormal sleep–wake cycles accounting for the abnormal
circadian rhythm have been identified as non-motor clinical symptoms of HD [6]. Around
90% of HD subjects have been reported to suffer from sleep disturbances [7]. Chronic sleep
disturbances appear to be detrimental to the neuroplasticity responsible for neurocogni-
tive functions [8]. Ample research reports indicate that the occurrence of neurogenesis in
the hippocampus in the brains of healthy subjects contributes to learning, memory, and
mood [9]. Whereas neurogenic failure in the hippocampus has been considered an underly-
ing cellular basis of neurocognitive decline in many neurodegenerative disorders, including
HD [10,11]. While the expression of mutant HTT gene causes aberrant gliogenic events,
the neurogenic potential of neural stem cells (NSCs) and survival of new-born neurons in
different brain regions including the hippocampus have been reported to be drastically
impaired in experimental models of HD and post-mortem human HD brains [12–17]. The
underlying molecular mechanism for the impaired proliferative and differentiation poten-
tials of NSCs in HD brains remains obscure. In a physiological state, circadian clock genes
play important roles in the regulation of NSC-derived neurogenesis, whereas impairment
in the neurogenic process has been linked to the irregular circadian clock pathway [18,19].
The expression of the mutant HTT gene interrupts the regulation and functions of the clock
genes, thereby leading to the aberrant circadian rhythm in HD [7,20,21]. Therefore, the
abnormal regulation of hippocampal neurogenesis and an irregular circadian rhythm may
overlap and can collectively contribute to intertwining pathogenicity leading to psychiatric
disturbances and cognitive deficits in HD. Considering the facts, it can be proposed that
the reversal of an irregular circadian rhythm might contribute to repair mechanisms of
the brain and regenerative plasticity in HD. Therefore, the identification of the prominent
molecular pathway and cellular system involved in the regulation of circadian rhythm
could serve as a potential therapeutic target in HD.

GABAergic vasoactive intestinal peptide (VIP)-expressing neurons in the suprachi-
asmatic nucleus (SCN) of the hypothalamus play a key role in the regulation of circadian
rhythm. Neuropathogenic events mediated degeneration or functional defects in the VIP
neurons of SCN and improper sensory inputs can trigger abnormal circadian rhythmicity
in various brain diseases [22–24]. These VIP neurons play an important role in the con-
trol of GABAergic transmission responsible for the synaptic plasticity of the pyramidal
neurons in the hippocampus [25,26]. Thus, the dysregulation of GABAergic transmission
resulting from the mutant HTT protein might overlap with the altered expression and
functions of VIP leading to neuroregenerative failure in HD. Therefore, the implementa-
tion of therapeutic strategies that aid in the restoration or activation of VIP neurons in
the brain could contribute to rectifying sleep disorder in HD. Chemogenetics has been
established as a potent molecular tool to specifically regulate the intracellular-signaling
pathways in tissue and organs [27,28]. The chemogenetic-based approaches provide hope
to mitigate the abnormal circadian clock pathways which may be coupled with improving
neuroregeneration in the brain [29]. Therefore, this article describes the potential overlap
between the pathogenicity responsible for altered sleep–wake patterns and aberrant neu-
rogenesis noticed in the brains of subjects with HD, and emphasizes the chemogenetic
activation of VIP-positive GABAergic neurons in the brain as a therapeutic strategy to rec-
tify the aberrant clock gene pathways by which neurodegenerative failure is expected to be
reversed in HD.

2. Regulation of Circadian Rhythm in Physiological State

Circadian rhythm represents a biological chronometer of the living system that regu-
lates, intertwines, overlaps, and synchronizes various physiological, biochemical, cellular,
and genetic events, in response to the gut–brain axis, atmospheric temperature, and dif-
ferent sensory inputs from light and dark conditions [30–32]. In mammals, the periodic
modulation of circadian rhythm has been tightly linked to both photic and non-photic
stimuli [33]. In the eyes, retinal ganglion cells (RGCs) express the photopigment known
as melanopsin, a key photoreceptor that mediates the non-image-forming functions of the
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light and pupillary light reflexes [34]. Similarly, to rod and cone cells, RGCs are also intrinsi-
cally photosensitive units that play a key role in transmitting photic signals from the eyes to
the SCN through optic chiasma [35] (Figure 1). In mammals. the master clock for circadian
rhythm is positioned in the SCN that synchronizes the regulation of neuroplasticity with the
daily variation of the photic signals and nonphotic inputs. The SCN is compartmentalized
into the dorsal shell and ventral core subdivisions and receives inputs from three afferent
pathways, namely the retinohypothalamic tract (RHT), the genicular-hypothalamic tract
(GHT), and a compact serotonergic plexus of the raphe nucleus (RN) [36] (Figure 1).
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Figure 1. Photic and non-photic input of circadian rhythm in the healthy brain.

The digital diagram represents the photic and non-photic inputs from the retina to
the brain and neural pathways among the hypothalamus, pineal gland, and raphe nucleus
(RN) that regulate circadian rhythm in a healthy brain. The straight line represents the
photic inputs and the dotted line represents the non-photic inputs. The photic information
is generally transmitted to the suprachiasmatic nucleus (SCN) both directly, as well as indi-
rectly from the retina. While the retinohypothalamic tract (RHT) is directly involved in the
transfer of light-based input from the retina to the SCN, the retinorecipient intergeniculate
leaflet (IGL) and geniculohypothalamic tract (GHT) play an indirect role in the regulation
of circadian rhythm.

Eventually, the efferent projections of the SCN target the pineal gland through the
VIP [37]. VIP is a major neuropeptide that is widely expressed in the gut, pancreas,
and brain [38]. In particular, VIP neurons are highly present in various regions of the
brain, including the cerebral cortex, amygdala, septum, hippocampus, thalamus, and hy-
pothalamus [39,40]. VIP acts through VPAC1 and 2 receptors to stimulate the secondary
messengers Cyclic adenosine 3′,5′-monophosphate (cAMP), and protein kinase A (PKA)
signaling cascade, and presynaptically enhance gamma-aminobutyric acid (GABA) release
in the neuronal population brain [40]. VIP receptors are widely present in the GABAergic
interneurons of the hippocampus and VIP-mediated enhancement of synaptic transmission
to cornu Ammonis (CA) 1 pyramidal cells involves the inhibition of GABAergic interneu-
rons that controls the synaptic plasticity of the pyramidal neurons [40]. In the SCN, VIP
neurons present contribute an important role in synchronizing the circadian cycle [41]. VIP-
secreting neurons are mainly located in the ventrolateral area of the SCN, which receives
the environmental input from the optic chiasm through the retinohypothalamic tract and
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plays a vital role in regulating the circadian cycle [23,42,43]. The release of VIP from the
neurons of the SCN regulates the biosynthesis of melatonin in the pineal gland [44]. The
synergistic coactivation of VIP and GABAergic pathways in the brain has been identified
as a key step in priming the molecular oscillation responsible for the circadian rhythm [22].
Thus, inactivation or defects in the VIP neuronal pathway appears to be a key determinant
of the circadian rhythm dysfunction seen in many pathogenic conditions resulting from
GABAergic dysfunction, including HD.

3. Neuropathogenic Input of Abnormal Regulation of Clock Genes in HD

HD patients have been found to display decreased activity during the day time as
they show increased activity during the night-time [6]. Polysomnographic and actigraphic
findings in HD patients indicate frequent eye and leg movements during sleep [45]. Several
neuroimaging studies of the hypothalamus have revealed prominent neuropathologi-
cal alterations in the SCN in corroboration with abnormal sleep–wake cycles in HD [6].
Aziz NA et al. reported that there is a delay in the release of melatonin from the pineal
gland in HD patients due to abnormal neurotransmission in the SCN [46]. The drosophila
model of HD has been seen to exhibit sedentary behaviors as a reflection of impaired
circadian rhythm [47]. Experimental data gathered from the sheep model of HD reveals
that the sleep disorder resulting from abnormal circadian rhythm is an early sign of the
onset of the disease [7]. Kuljis DA et al. indicated that the expression of the mutant HTT
gene in the brain is responsible for sleep disorder in a bacterial artificial chromosome-based
transgenic mouse model of HD [48,49]. In addition, the R6/2 mouse model of HD exhibits
progressive disruption in the circadian rhythm leading to reduced physical activity and
sluggish behavior [50]. Loh DH et al. observed the progressive deterioration of motor
function in association with altered sleep patterns due to defects in the circadian rhythm in
the Q175 mouse model of HD [19]. Furthermore, experimental subjects with HD have been
reported to display depression and progressive forms of memory deficit resulting from an
abnormal circadian rhythm [51]. Considering the aforementioned facts, insights into the
mutant HTT protein-mediated dysregulation of circadian clock genes pathway in HD has
become an important scientific quest.

Circadian rhythms have been known to be regulated by key clock genes such as
Period1 and 2 (Per1/2), Cryptochrome1/2 (Cry1/2), Brain and muscle Arnt-like protein
1 (Bmal1), and Circadian Locomotor Output Cycle Kaput (CLOCK) [52–54]. Bmal1 functions
as a transcriptional activator in heterodimeric form in the cytoplasm and it enters the nu-
cleus and binds with the promoter region of Per and Cry, called the enhancer box (E-box),
to regulate the expression of various genes [55,56]. Recently, a gene knockout study in em-
bryonic stem cells (ESCs) indicates that the Bmal1/CLOCK gene regulates the transcription
of REV-ERBα/β, which plays an important role in neuronal growth, lipid metabolism, and
inflammatory processes [57]. Cry1 and Bmal1/CLOCK also modulate the feedback loop of
D-box binding protein and interleukin-3-regulated protein which is also important for the
regulation of neuroplasticity [58,59]. Clock genes have also been involved in non-circadian
phenotypes such as the regulation of immune cells, metabolic pathways, and their loss of
function which leads to abnormal aging and the progression of malignant disorders [52].
Notably, the genetic ablation of the Per gene in the drosophila model has been reported to
induce mitochondrial dysfunction and oxidative stress, leading to prominent neurodegenera-
tion in the brain [60]. In addition, the Per mutant mouse model has been reported to display
abnormal mitotic events due to defects in tumor suppressor genes, thereby indicating the
roles of circadian clock genes in cell-cycle control [61]. In addition, an experimental mouse
model with the conditional deletion of the Bmal1 gene in the excitatory forebrain neurons
has been reported to exhibit cognitive impairments [62]. Furthermore, several experimental
studies reported that the aberrant expression or dysfunction of clock genes leads to cognitive
impairment, movement, and mood-related disorders in many neurodegenerative conditions,
including HD [63]. Circadian rhythm abnormalities following sleep disruption appear to be
the prominent clinical manifestation of human subjects, as well as many experimental models
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of Alzheimer’s disease (AD) and Parkinson’s disease (PD) [64]. In addition, the abnormal
regulation of clock genes has been identified to be associated with various neuropsychiatric
manifestations observed in autism spectrum disorder (ASD), attention-deficit/hyperactivity
disorder (ADHD), major depressive disorder (MDD), bipolar disorder (BP) and schizophrenia
(SCZ) [53].

Ample reports indicate that expression of mutant HTT gene alters the circadian
rhythms often before the appearance of involuntary movements in HD [6]. Sleep during
night time appears to be progressively reduced and fragmented as neurological symptoms
of HD progress [7]. Moreover, abnormal circadian rhythms have been reported to aggra-
vate the progression of the clinical symptoms of HD [65]. HD has been characterized by
dysfunctions in the transcriptional regulation of clock genes, which in turn are considered
to be an initial trigger for various neuropathogenic changes and mental illnesses [6,51,66].
During the early stage of pathogenesis, HD displays various neuropsychiatric symptoms
such as depression, anxiety, stress aggression, psychosis, apathy, obsessive-compulsive
behaviors, and psychosis [67,68]. These neuropsychiatric symptoms are multifactorial
in origin and are known to be associated with sleep disruption resulting from abnormal
circadian rhythmicity [67]. Thus, it can be speculated that the dysregulation of clock genes
might be an early pathogenic molecular event prior to the obvious motor and behavioral
manifestation of HD. However, the initiation of the abnormalities in the regulation of clock
genes upon the pathogenic onset in HD, and the molecular mechanisms by which mutant
HTT proteins impair their functions, remain largely unknown.

The abnormal sleep patterns noticed in the fly model of HD have been reported to be
linked with an alteration in the transcription of clock genes [18]. Abnormal sleep–wake
disorders noticed in the R6/2 mouse model of HD have been reported to be associated
with aberrant expressions of Per2 and Bmal1 in the striatum and SCN [50,51]. Moreover,
R6/2 mouse models have also been characterized by low levels of VIP expression and its
receptor VIPR2 in the brain [69]. Alteration in the metabolic events in the liver of R6/2
mice has been reported to be associated with the abnormal expression of Cry1, D site of
albumin promoter binding protein (DBP), and Per2 [50]. Further, the Bmal1 knockout
mouse has been characterized by gliosis, neuronal loss, the degeneration of presynaptic
terminals, and decreased neural connectivity upon the 3-nitropropionic acid-induced acute
HD condition [70,71]. Notably, the supplement of sleeping pills in the R6/2 mouse has been
reported to revert the function of Per2 resulting in a significant improvement in cognitive
performance [72,73]. While the involvement of clock genes in neuroplasticity has been
increasingly noticed, prolonged sleep disruption and the expression of the mutant HTT
gene have been known to interfere with the regulation of neuroregenerative plasticity [74]
(Figure 2). Therefore, regulation of neurogenesis in stem cell niches of the brain can be
expected to be linked with the expression of the clock genes.

In a healthy brain, the normal secretion of melatonin and serotonin takes place to
ensure the proper sleep–wake cycle and neuroplasticity. In the HD brain, an imbalance in
secretions of melatonin and serotonin is responsible for abnormal circadian rhythms and
leads to depression, cognitive deficits, and impaired neurogenesis.
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4. Potential Overlap between Altered Clock Gene Pathway and Dysregulation of
Neuroregenerative Plasticity in HD

Experimental evidence indicates that mitosis of NSCs in the adult brain mostly occurs
at night in experimental animals due to their nocturnal behavior [21,75]. HD has exten-
sively been characterized by aberrant neurogenesis in the hippocampus, striatum, and
olfactory bulb (OB) [11–13,15,76]. Abnormal neurogenic events such as stem cell quiescence,
reactive neuroblastosis, and defect in maturation and integration of new-born neurons
have been well documented in the experimental models of HD [11–15]. The occurrence of
adult neurogenesis has also been recognized in other brain regions including the cortex,
striatum, amygdala, spinal cord, hypothalamus, and the brain stem [77,78]. Among them,
understanding the regulation and functional roles of neurogenesis in the hypothalamus
has become increasingly important as it appears to take part in many neurophysiological
pathways that overlap with many physiological functions [79]. However, direct evidence
for the regulation of neurogenesis in the hypothalamus in HD remains limited. While
regulation of neurogenesis in the hippocampus has been known to be drastically affected
by many neurodegenerative diseases including HD, reports on the modulation of neuroge-
nesis in the hypothalamus under the influence of pathogenic conditions remain limited.
An immunohistochemical study by Gabery S et al. revealed that the decline in the num-
ber of vasopressin- and oxytocin-expressing neurons noticed in the hypothalamus of the
post-mortem human HD brain might be due to mutant HTT-mediated impaired neurogene-
sis [80]. Depression and anxiety-like behaviors have been reported to occur in subjects with
HD due to the dysregulation of neurogenesis and abnormal neuroplasticity in the hypotha-
lamus [81,82]. Hypothalamic neurogenesis has been noticed to be controlled indirectly
by clock genes such as Bmal1, Per1, and Per2, while the glial differentiation was found to
be high in neurospheres derived from mice lacking Cry1 and Cry2 genes [21]. The Bmal1
deficient mice show premature aging, neurodegeneration, and cognitive deficits along
with a reduced level of NSC proliferation and the impaired migration of neuroblasts in the
brain [83]. Reduced cell proliferation and a lower number of secondary neurospheres have
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also been observed from the NSC isolate with the absence of both Cry1 and Cry2 circadian
clock proteins [21]. Moreover, the deletion of Per2 has also been reported to induce the
cell cycle exit of NSCs [84]. Thus, defects in the regulation of the clock gene pathway seen
in HD can be attributed to aberrant neurogenesis in different brain regions, including the
hypothalamus. Therefore, correcting the defective clock gene pathway could be one of
the valid strategies to boost neuroregenerative plasticity, thereby compensating for neu-
rodegeneration in HD. Recently, optogenetics and chemogenetics-based technologies have
been considered to have an advantage to modulate the aberrant clock gene pathways in
the brain [85]. Therefore, the implementation of tailored scientific strategies that rectify
the clock gene pathway and promote neuroregenerative plasticity might provide a valid
treatment option for HD (Figure 3).
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Figure 3. Optogenetic modulation of neurons in experimental brains.

The graphical illustration describes various optogenetic approaches to modulate neu-
rons in experimental brains. A magneto-mechano-triboelectric nanogenerator (MMTENG)
is inserted into the mouse to stimulate neurons. Channelrhodopsin (ChR)-2 viral vector
injected into the brain which is modulated by blue light led to neuronal excitation. The
introduction of quantum dots (QDs) and upconversion nanoparticles (UCNPs), which
are illuminated by near-infrared spectroscopy (NIR) lights into the deep brain region, can
stimulate neuronal activity.
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5. An Overview and Significance of Optogenetics and Chemogenetics-Based
Experimental Interventions for Neuronal Activities

Optogenetics refers to the cutting-edge technology of implementing light to exam-
ine and regulate gene expression, as well as desired cellular functions in intact living
systems [86]. A specific wavelength of light has been used to activate or deactivate a
subset of neuronal populations that are genetically modified to produce light-responsive
proteins called opsins [87]. In particular, the primary light-sensitive opsins such as chan-
nel rhodopsin and halorhodopsin have extensively been implemented for experimental
exploitation in animals, for which the implantation of a regulatable light delivery device
in a specific brain area is mandatory to attain high spatiotemporal resolution [88]. While
degeneration of GABAergic medium spiny neurons has been ascertained as the unique
underlying cause of HD, selective optogenetic stimulation provoked GABAergic trans-
mission in the somatostatin-positive striatal interneurons in R6/2 mice [89]. Using the
optogenetic method, Cepeda et al. revealed that abnormal GABAergic transmission in
the striatum of the transgenic animal models of HD occurs due to defects in multiple
neuronal populations [90]. Another study found that wireless optogenetic stimulation of
GABAergic neurons upon electrographic detection of spontaneous hippocampal seizures
resulted in shorter seizure durations in patients with temporal lobe epilepsy [91]. Though
optogenetics can be proposed to correct the abnormal GABAergic transmission in HD,
optogenetic methods have been associated with certain practical difficulties when it comes
to an implication in humans as it involves neuro-invasive experimental procedures, such
as the implantation of optical fiber into the brain. The effective operation of the optical
fiber generates heat that could be detrimental to the tissue [92]. Eventually, penetration of
light to the region located deep in the brain tissue is limited by the scattering effect and this
issue may be overcome by using longer wavelengths of light [93] (Figure 3). Yet another
limitation of optogenetics is the non-specific transfection of optogenes in neurons and the
fact that implantation of optrodes requires prolonged anaesthesia that could also lead to
some adverse effects [94]. Therefore, the recent advancement in scientific strategies such as
chemogenetics appears to have offer alternative to optogenetics as it overcomes the key
limitations associated with conventional invasive neurosurgeries.

Chemogenetics involves the administration of inert exogenous ligands that selectively
target the non-immunogenic synthetic receptors or enter through ion channels to influence
the desired signaling pathways in a given cell type [95]. Unlike optogenetics, chemogenetics
does not require the invasive implantation of a light device. Different types of synthetic ge-
netic adducts, cytoplasmic enzymes, and membrane-spanning receptors have been utilized
for the operation of chemogenetics [96]. Genetically engineered proteins, such as receptors
activated solely by a synthetic ligand (RASSL) and designer receptors exclusively activated
by designer drugs (DREADDs), are modified forms of G protein-coupled “designer” re-
ceptors that have low affinity for their endogenous ligand, but a high affinity for selective
exogenous ligands, such as clozapine-N-oxide (CNO) or salvinorin B (SALB) [95,97,98].
Deschloroclozapine (DCZ) is highly selective for hM3Dq and hM4Di DREADDS with good
brain concentration profiles, thus providing good chances for multiplexed/bimodal control
of physiological systems along with side-effect-free brain theranostics. These exogenous
ligands can be administered locally or systemically to induce or deactivate cellular activities,
metabolism, and downstream signalling cascades through the modulation of the activities
of DREADDs and RASSL [95]. In particular, the efficacy of different types of DREADDs
is currently being pursued to identify the neural pathways related to cognition, motor
functions, emotions, drug addiction, and drug abuse in various experimental models,
including non-human primates [95,98,99]. For the modulation of neurotransmission in the
brain, mutant forms of human muscarinic acetylcholine receptors, such as Gq-coupled
human M3 muscarinic DREADD (hM3Dq), human M4 muscarinic DREADD (hM4Di),
Gs-DREADD (GsD), Rq (R165L), and kappa-opioid-receptors (KORD), have been used as
DREADDs which can be regulated by respective exogenous ligands [100].
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Chemogenetics-mediated neuromodulation by stereotactic delivery of adeno-associated
virus (AAV) vectors containing hM3D (Gq) or Human synapsin (hSyn)-hM4D(Gi) into dif-
ferent sites of the basal ganglia significantly improved motor performance in a
6-hydroxydopamine (OHDA) injected animal model of PD [101]. A prominent experi-
mental suppression of the hyper neural activities by infusion of Adeno-associated virus
(AAV) vectors encoding hM4Di-DREADD into the subarachnoid space and hippocampus,
followed by CNO treatment, has been reported to decrease Amyloid-β aggregation in
a transgenic animal model of AD [102]. Functional neuroimaging and behavioral stud-
ies revealed that injection of an adenoviral vector carrying a hM3Dq DREADD into the
vitreous-induced abnormal neural activates and anxiety-like symptoms in association with
altered signatures of circadian rhythm in Opn4Cre/+ mice expressing Cre-dependent
melanopsin in the RGCs [103]. While synthetic ligands have been known to cross the
blood–brain barrier (BBB), intracranial injections of recombinant AAV vectors encoding
Gq-DREADDs have initially been considered for selective neuronal transfection in the
human brain [104]. To overcome stereotactic injection-related adverse issues, non-invasive
AAV delivery by microbubble-enhanced focused ultrasound (FUS) waves used at spe-
cific locations in the brain has been proposed [105]. In addition, a non-invasive in vivo
retrograde gene delivery strategy modulates neuronal subpopulation in the brain from
the periphery, using AAV vectors encoding chemogenetic receptors [106]. Furthermore,
in chemogenetic platforms, positron emission tomography (PET) has been used for the
non-invasive measurement of the expression and anatomic site of chemogenetic receptors,
as well as the detection of radiolabeled clozapine and other ligands [28]. The chemogenetic
approach has an advantage over deep-brain stimulation, which is presently used to treat
symptoms of parkinsonism, as it eliminates the need for a permanent stimulating electrode
implant while maintaining scalable control over neuromodulation via the dosage of the
chemogenetic effector drug [28]. Considering the aforementioned facts, FUS and retrograde
gene delivery strategy-based chemogenetics can be non-invasively implemented to restore
the defects in the circadian rhythm (Figure 4).
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The figure indicates the different strategies of chemogenetics. Designer receptors
exclusively activated by designer drug (DREADD) based human M3 muscarinic (hM3)
receptor (hM3Dq) are inserted into the viral vector and surgically injected into the brain.
The entry of DREADD into specific brain regions can be improved by focused ultrasound.
The DREADD-infected neurons can be activated by clozapine N-oxide (CNO), which is
given orally or via injection. This can result in increased neuronal firing, neural stem cell
(NSC) proliferation, and neuroplasticity, thereby improving mental health and behavioral
outcomes along with selective effects on the circadian clock.

6. Discussion

Chemogenetic-innervation of VIP neurons as a subtle therapeutic strategy to rectify
aberrant clock gene pathways and GABAergic system to boost neurogenesis in HD.

GABAergic synaptic input plays a significant role in refining and regulating circadian
rhythms in the SCN [24,107]. Interestingly, VIP neurons that are present in the SCN receive
direct glutamatergic input from the RGCs of the retina and transmit the photic inputs to
other neurons through the co-secretion of VIP and GABA [108]. VIP has been known to
synchronize the circadian rhythm by regulating the expression of the core clock genes, Per1
and Per2, in the SCN of the brain [19]. Similarly, GABA appears to play a crucial role in
the regulation of clock gene expression in the SCN [24,107]. While VIP has been reported
to enhance the synaptic transmission of GABA in different areas in the normal brain, the
expression of mutant HTT gene has been reported to decrease the synthesis of VIP, thereby
leading to a defect in the GABAergic input in the brain of subjects with HD [69]. To note,
an in situ hybridization study of the post mortem human HD brain indicated reduced
transcriptional levels of VIP in the SCN [109]. Considering the aforementioned facts, it can
be presumed that the decreased levels of VIP responsible for abnormal GABAergic neuro-
transmission in the SCN of the brain might be an underlying basis for the dysregulation of
the circadian rhythm. Recent experimental evidence strongly advocates that VIP expres-
sion prevents neurodegeneration by mitigating microgliosis and producing neurotrophic
factors in the brains of neurodegenerative experimental models [110,111]. Therefore, the
restoration of the VIP-mediated signaling pathway in the brain might mitigate the sleep
disorders seen in many diseases, including HD. The VIP-expressing neurons have also
been known to co-express the muscarinic acetylcholine receptors [112,113]. Therefore,
the implementation of chemogenetic receptors such as hM3Dq-DREADD can be used
to activate the VIP neurons in the SCN, through which the aberrant GABAergic inputs
and dysregulation of the clock gene pathway in the SCN can be restored in HD. Many
studies have demonstrated the implementation of chemogenetics in pre-clinical models of
neurological disorders, including PD and epilepsy [114,115]. The ligands of chemogenetic
approaches such as clozapine and CNO are clinically approved for human trials [116].
AAV vectors are approved for phase I and phase II clinical trials by the Recombinant
DNA Advisory Committee and the Food and Drug Administration (FDA) [117]. While the
chemogenetic regulation of neural transmission has been an intense scientific focus, the
implementation of recombinant AAV vectors encoding Gq-DREADDs for the regulation of
circadian rhythm in HD has not been proposed yet. Further, the proposed chemogenetic
approach to re-establish the circadian rhythm via the activation of VIP neurons can be
expected to facilitate enhanced neurogenesis in the brains of the subjects with HD. With
careful use, chemogenetics-based treatment would be expected to provide a potent spatial
and temporal resolution for the exact manipulation of the brain functions related to specific
behavior. Thus, the chemogenetic approach can effectively be translated to treat sleep
disorders, movement disorders, and dementia in HD (Figure 5).
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The graphical representation illustrates the neuropathological abnormalities and de-
fects in the vasoactive intestinal peptide (VIP) neurons and gamma aminobutyric acid
(GABA)-ergic system, abnormal expression of clock genes, and aberrant hypothalamic
neurogenesis in HD (Right side). The figure indicates the hypothesis that the activation
of VIP neurons by chemogenetics approach through the retrograde route might restore
neuroregeneration via GABAergic inputs in HD (Left side).

7. Conclusions and Future Directions

At present, the progressive pathogenic progression of HD appears to be genetically
unstoppable by any sort of treatment or medication. The currently available medications
and treatments are useful for the management of the clinical symptoms, while there is
no complete cure established for HD. While the treatment strategy that suppresses the
expression of mutant HTT gene is underway, the available gene-modifying techniques
appear to alter the expression of wild-type HTT gene leading to further adverse effects.
Thus, targeting the pathogenic consequences resulting from mutant HTT gene and boosting
the neuroregenerative potentials of NSCs can be highly beneficial at the moment. The
abnormal expression of mutant HTT gene induces hypothalamic pathology through the
aberrant expression of clock genes. The altered circadian rhythm appears to be associated
with the disturbed sleep–wake cycle, hormonal imbalance, and depression which lead to a
considerable decline in cognitive performance, eventually leading to impaired neuroregen-
erative plasticity. Recent advancements in chemogenetic and optogenetic-based approaches
represent a conceivable strategy to rectify the aberrant expression of clock genes in the
brain. While defects in VIP neurons appear to be a key pathogenic event associated with
abnormal GABAergic transmission, implementing chemogenetics could be a promising
therapeutic attempt to enhance the activity of the VIP neurons in the hypothalamus, as
well as the hippocampus, by which it could be possible to realign the clock genes and the
circadian rhythm that are impaired in HD. Eventually, this approach could effectively aid
in reinstating neuroregenerative plasticity in HD, as the expression of clock genes facilitate
the cell-cycle regulation of NSCs, provoking neurogenic process in the brain. Like other
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treatments, limitations that arise from unknown adverse effects related to chemogenet-
ics could not be ignored completely. Thus, the implementation of chemogenetics under
proper safety guidelines would be an achievable target in humans. The proposed approach
could be translated to treat many other human diseases that are connected to abnormal
sleep–wake cycles and aberrant neuroregenerative plasticity.
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