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Abstract: For molecular diagnostics of lung cancer samples, often only a small amount of material is
available. The ever-increasing number of biomarker testing is in contrast to the amount of material
obtained. In that case, cytological specimens, such as serous effusion samples, are one possible option.
Effusion samples were prepared as sediment smears or cytospins or as a cell block if needed. Suitable
tumor cells areas were marked by a cytopathologist and used for molecular diagnostics, including
fast track analysis, parallel sequencing, and/or fluorescence in situ hybridization. In 62 cases of
malignant effusion with cells of pulmonary adenocarcinoma, molecular diagnostics were carried
out. A fast-track result with the high-resolution melting method for hotspot mutation of KRAS
Exon 2 and EGFR exon 21 and fragment length analysis of EGFR exon 19 was available for 43 out of
47 samples (92%). Parallel sequencing was successful for 56 out of 60 samples (93.3%). In the same
period, 108 FISH analyses were performed for MET amplification, followed by ROS1, RET, and ALK
translocation analysis. If only a limited amount of tissue/biopsy is available, a malignant effusion is
advisable to perform on the molecular diagnostics with a high success rate.

Keywords: lung cancer; pulmonary adenocarcinoma; serous effusion samples; molecular diagnostics;
fast-track analysis; parallel sequencing; fluorescence in situ hybridization

1. Introduction

Lung cancer is one of the most frequent malignancies and also one of the leading
causes of death from a malignant disease worldwide [1]. In the course of the disease,
serous effusions occur quite frequently, with pleural effusions being prevalent [2]. If cells
of a pulmonary adenocarcinoma are found in a serous effusion, an advanced stage of the
disease is diagnosed [3]. In these cases, rapid molecular diagnostics should be performed to
search for driver mutations which might provide an option for targeted therapy. Approved
drugs are available for the epidermal growth factor receptor (EGFR), proto-oncogene
B-Raf (BRAF), mesenchymal–epithelial transition factor (MET) or Kirsten rat sarcoma
viral oncogene homolog (KRAS) G12C mutations, anaplastic lymphoma kinase (ALK),
RET proto-oncogene (rearranged during transfection; RET) and c-ros oncogene 1 (ROS1)
translocations [4–10]. The molecular diagnostics were carried out with panel-based parallel
sequencing (NGS) and covered all kinds of mutations, e.g., point mutations, deletions, and
insertions [11–13]. Translocations, i.e., rearrangements of larger chromosome segments,
and amplifications were very well identified by fluorescence in situ hybridization (FISH)
analysis. Typical examples are the EML4::ALK translocation, ROS1 translocation and MET
amplifications [14].

In this study, we performed a retrospective analysis of all cases of malignant effusion
due to pulmonary adenocarcinoma, which were processed in our cytopathology lab in 2018
and 2019 and have undergone molecular diagnostics in our institution [15].

Far more molecular analyses of effusion preparations in cases of pulmonary adenocar-
cinoma have been performed than analyzed in this study. We have restricted this study to
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effusion samples that had been processed in-house to minimize variation in preanalytical
steps as far as possible [16,17].

2. Materials and Methods

Effusion samples were sent to the lab in containers of various forms and sizes depend-
ing on the sample volume and the preferences of the clinical department. The samples
were expected to be fresh and without any additives. After centrifugation, the technician
decided whether sediment smears or cytospins were prepared. Routinely, four slides were
prepared; one was immersed immediately into 96% ethanol for fixation, and the other
three slides were left air-drying. The alcohol-fixed slide was used for the Papanicolaou
stain, two of the air-dried slides were used for Hematoxylin and Eosin (H&E) stain and
May-Gruenwald-Giemsa (MGG) stain, and the fourth slide was left for additional stains
if needed. If immunochemistry was requested, a cell block was prepared following an
in-house protocol based on “Gautinger Protokoll” [18].

If the final diagnosis of standard cytomorphology was malignant effusion in advanced
pulmonary adenocarcinoma, comprehensive molecular diagnostics according to the na-
tional Network Genomic Medicine (nNGM) Lung Cancer were suggested to the attending
clinician and offered to the patient. After obtaining written informed consent, molecular
diagnostics were performed. Screening for ALK and for ROS1 rearrangement by immuno-
chemistry was performed on sections of a cell block, as this is part of the fast-track analysis
and our lung cancer routine diagnostics (results are not listed here). If positive, a confirm-
ing test by fluorescence in situ hybridization (FISH) was performed. If no cell block was
available or cellularity was too low, ALK and ROS1 were analyzed by FISH using smears or
cytospins (Supplementary Table S4).

Since the result of the molecular diagnostics is of immediate clinical relevance for the
choice of therapy, we perform a rapid analysis for EGFR exon 19 and 21 and KRAS exon 2
(also called “fast-track” analysis) with a very fast turnaround time. Analyses were carried
out with high resolution melting or fragment length analysis, which detects a positive or
negative result but does not provide the exact mutation description (Supplementary Method
Description 1; Supplementary Table S1). Next-generation sequencing-based analysis of
several genetic markers was performed using a panel approach. Validated gene panels with
14 genes using AmpliSeq gene panels for poor DNA quality or low DNA content samples
(Thermo Fisher Scientific, Waltham, MA, USA; LUN3, 14 genes) or GeneRead gene panels
for good DNA quality samples (Qiagen, Hilden, Germany; LUN5 panel) including 19 genes
were used (Supplementary Method Description 2; Supplementary Tables S2 and S3 [19,20]).
In many cases, a cell block of sufficient cellularity was available. In cases in which no cell
block was available or the cellularity of the block was too low, stained sediment smears
or cytospin preparations were used either for FISH analyses or for sequencing or for both
assays. One of the cytopathologists reviewed the slides and decided which slides were
used for the requested assays and marked the relevant areas on the glass slides (Figure 1).
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Figure 1. Marking of suitable areas for DNA extraction (area (A)) or FISH analysis (area (B) by a
cytopathologist. Left: sediment smear of pleural effusion of pulmonary adenocarcinoma, MGG stain.
Two areas are marked up, area (A) for DNA extraction and parallel sequencing and area (B) for
FISH analysis. Right: area (A): dense tumor cell clusters, suitable for DNA extraction and parallel
sequencing; area (B): flat sheets of tumor cells, suitable for FISH analysis.

2.1. Preanalytics of Cytological Preparations

Cytological preparations can be sent in air-dried (not covered) or covered (coverslip
or coverslip film) and already stained for analysis. In both cases, appropriate areas to
be used for further analytical tests must be marked by an experienced cytopathologist
(Figure 2A). For the uncovered specimen, the areas were marked on the back of the slide
with a waterproof pen. Depending on how the cells were distributed, there may be one or
more areas on a slide. If the marking was on the front side (coverslip or coverslip film), the
marking was transferred to the back side of the slide. For all cytological preparations, the
mark on the back of the slide was scratched into the glass with a diamond stylus (Figure 2B).
This mark was then traced again with a waterproof pen. The smallest color pigments,
which were not washed away by the xylene, were caught in the grooves (Figure 2D). These
color traces and the traces of the diamond pen make it easier to find the marked area
again afterwards.

An air-dried smear or cytospin was placed in water for one minute for DNA extraction.
Subsequently, the marked area can be scraped off by macrodissection with a scalpel. The
dissected material was transferred with the scalpel tip into a reaction vessel containing
lysis buffer. The mixture was shaken overnight at 70 ◦C and further processed according
to the manufacturer’s instructions. The extracted DNA was suitable for all subsequent
PCR-based assays.
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Figure 2. Preanalytical steps on cytological preparations. Preanalytical steps on cytological prepara-
tions. (A) Suitable smear with two areas, one area for DNA extraction and one area for FISH analysis;
(B) use of a diamond stylus, scratching the marking on the back of a slide; (C) uncovering the slide in
xylene; (D) trace the diamond scratches with a waterproof pen.

If the samples sent in were covered, the coverslip or coverslip film had to be removed
first. A preparation that was covered with a coverslip was placed in xylene overnight. If
the coverslip could not be removed the next morning, the smear or cytospin was placed in
a −80 ◦C freezer for 30 min. The smear or cytospin was then placed back in xylene, and
the coverslip should then be removable. If the submitted samples were covered with film,
they were placed in acetone for 3.5 min, in an acetone/xylene mixture (1:2) for 1 min, and
again in xylene for 1 min to completely remove the coverslip film (Figure 2C). It should
be noted here that even markings made with xylene-resistant pens do not always adhere.
The labeled area of the preparation was then “scraped off” with a scalpel and placed in a
reaction tube filled with lysis buffer for DNA extraction.

2.2. Preparation for FISH Analysis

The cytological slides must be marked on the reverse side with a diamond pencil and
then uncovered for FISH analysis. For FISH analysis, the smallest possible areas with at
least 100 tumor cells that do not overlap were marked. If different FISH analyses have
to be performed on one slide (smear or cytospin), the distance between the areas should
be as large as possible. The pretreatment of the slides was automated using the VP2000
from Abbott and was identical to the pretreatment of formalin-fixed, paraffin-embedded
(FFPE) sections. Slides that were already H&E, MGG, or Papanicolaou stained are well
suited for FISH analysis. These preparations were decolorized by pretreating the slides for
hybridization. After pretreatment, the 1st probe (3 µL) was applied and covered with a
round coverslip (13 mm). The coverslip was sealed with Fixogum (Marabu). If the desired
areas were close together, coverslips could be divided. After sealing the 1st area with
Fixogum, the 2nd probe was applied to the 2nd area, covered, and sealed with Fixogum.

2.3. DNA Extraction from Cytological Preparations

For DNA extraction and subsequent PCR (polymerase chain reaction)-based analysis,
at least one hundred malignant cells are required, which should be present “pure”, i.e.,
as little as possible mixed with benign epithelia and/or inflammatory cells. The tumor
cell content should be at least 10% of the total cells for parallel sequencing. For other
PCR-based assays, such as Sanger sequencing, the tumor cell content must be 20%, as this



J. Mol. Pathol. 2022, 3 82

method is less sensitive. The percentage of tumor cells should be specified in order to be
able to make a statement about an allelic fraction in case of a mutation detected by parallel
sequencing. To increase the probability of mutation detection, it is useful not to extract
all cells of a slide but to enrich the tumor cells in the number of cells that are extracted.
Therefore, all available slides are stained (H&E) and reviewed microscopically. For DNA
extraction, the cytopathologist marked a section of the preparation with a waterproof pen
on the slide in which larger quantities of tumor cells are stored, if possible, without mixing
with benign cells or inflammatory cells. Overlaying of the tumor cells themselves is not a
problem (Figure 1).

Cytologic specimens may be air-dried or covered when labeled by the cytopathologist.
Therefore, marking of the specimen may occur either on the coverslip or coverslip film or
on the back of the slide. The mark was then transferred as described in the preanalytics
section, see Figure 2. If a cell block was available from malignant effusions, molecular
pathology studies were usually performed on the cell block. Marking of suitable areas was
performed in the same way as on a biopsy. If necessary, additional sections, e.g., for FISH
analysis, can be prepared. In our institution, the simultaneous sequencing of 14/19 genes
and gene regions in a “lung cancer panel” using parallel sequencing is established as a
routine method. The isolated DNA is measured for amplifiability and concentration by
quantitative PCR (qPCR). If available, 10 ng of genomic DNA is used per primer pool.
Since the “lung cancer panel” for parallel sequencing consists of four primer pools, a total
of 40 ng of DNA must be used (Supplementary Table S1). According to the result of the
parallel sequencing and depending on the request, different FISH analyses follow.

2.4. Fluorescence In Situ Hybridizations on Cytological Preparations

For FISH analysis, at least one hundred malignant cells are required in the preparation,
which are well spread out (Figure 1). If possible, they should be without the overlay and
well distinguishable from benign cells. An advantage of cytological preparations for FISH
analysis is the intact cell nuclei, which are not partially incised as in a tissue preparation by
cutting the FFPE blocks. However, the evaluation of FISH analyses can be more difficult
because a whole-cell nucleus means that one has to look through the slide under fine focus.
This diagnostic procedure is time-consuming but is worthwhile if a patient’s material is low.
One problem with cytology slides is the residual stain from prestained slides, which cannot
be completely destained during pretreatment for hybridization. Residues can elicit strong
background autofluorescence so that the FISH analyses cannot be evaluated. For each FISH
analysis, such an area in the preparation with one hundred well-spread, well-delineated
cells is necessary (Figure 1). If sufficient suitable slides are available, a separate slide was
used for each FISH examination. In the case of cell-rich, high-quality smears, several FISH
analyses can be performed on the same slide (Figure 1). Especially with sediment smears
of effusion fluid, this is often possible (Supplementary Method Description 3, [21–25].

3. Results

By searching the archived files, we identified 5702 samples of pleural effusions, ascites,
and pericardial effusions, which were processed in the cytopathology lab of the Institute
of Pathology of the University Hospital Cologne from January 2018 to December 2019.
Of these, 288 cases with a final diagnosis of pulmonary adenocarcinoma with malignant
effusion were identified. Among these cases were 256 pleural effusions, 15 ascites, and
17 pericardial effusions. For further analysis, the location of the effusion was not taken
into account. In 62 cases of malignant effusion with cells of pulmonary adenocarcinoma,
molecular diagnostics were performed. Of these, 40 cases were primary diagnoses of
pulmonary adenocarcinoma in advanced stage. Cell blocks were available for molecular
diagnostics in 53 out of 62 cases (Table 1).
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Table 1. Samples for molecular diagnostics.

2018 2019 Total

Cell block only 25 26 51

Smears/cytospins only 5 4 9

Cell block and smears/cytospins 2 0 2

Total 32 30 62

Evaluation of Molecular Pathological Examinations of Cytological Specimens

In the period between 2018 and 2019, 62 cytological lung cancer preparations (pleural
effusion, pericardial effusion, ascites) from the pathology department of the University
Hospital Cologne (in-house) were used for molecular diagnostics. Enough DNA for a fast-
track analysis for hotspot mutation of KRAS Exon 2, EGFR exon 19 and 21 was available
for 47 out of 62 samples (76%). Only four samples were not feasible for fast-track analysis,
although they had a sufficient DNA concentration. A fast-track result was available for
92% (43 out of 47 samples). If DNA samples have a concentration of less than 5 ng/µL, the
fast track is omitted, and only parallel sequencing is performed. In our study, 15 out of
62 samples did not reach this concentration limit (too low).

In 60 out of 62 samples of this series, parallel sequencing has been performed with a
successful evaluation of 56 samples (93.3%, Figure 3A). Of the two remaining cases, in one
of them, only fast track diagnostics had been performed before any further diagnostics had
been cancelled because of clinical reasons. In the other case, only FISH analysis had been
ordered by the clinician, as parallel sequencing was being performed simultaneously using
a smear of a bronchial washing. As expected, most of the samples carried a KRAS mutation
followed by TP53 as a co-occurring mutation. In 4 out of 60 samples, no amplicons could
be obtained in parallel sequencing, and coverage was insufficient.

Figure 3. Cont.
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Figure 3. Molecular profiling of serous effusion samples with fast-track analysis, parallel sequencing
and fluorescence in situ hybridization from 2018 to 2019. (A) Number of mutated and non-mutated
samples for fast-track and parallel sequencing analysis. KRAS exon 2 and EGFR exon 19 and 21 within
the fast track were analysed with high resolution melting and fragment length analysis. Too low:
samples did not have >5 ng DNA/µL and were only analysed by parallel sequencing. N.n.: not
detectable. In the parallel sequencing, 14/19 genes were analysed, of which the genes BRAF, KRAS,
EGFR, ERBB2, MET, and TP53 were mutated most frequently; only TP53: the sample had no mutation
other than a TP53 mutation; TP53 co-mut: the samples had an additional mutation to the TP53
mutation; other: the samples had a mutation outside the before mentioned genes. (B) Diagram
of the number of fluorescence in situ hybridization on cytological preparations for ALK, RET, and
ROS1 translocations and MET amplification. no event: no translocation or amplification, event:
translocation or amplification, low/intermediate/high: low/intermediate/high amplification for
MET. n.n.: not detectable.

In the same period, 108 FISH analyses were performed. The majority (n = 54) of FISH
were MET amplification analysis (Figure 3B), followed by ROS1 (25), RET (24), and ALK
translocation (5) analysis. We detected two ALK translocations (40%), three MET high-level
amplifications (5.6%), and one ROS1 translocation (4%).

4. Discussion

Of a cohort of more than 5700 samples of pleural effusion, ascites, and pericardial
effusion, which were processed in-house in 2018 and 2019, in 62 samples, molecular
diagnostics for assessment of lung cancer were performed, 40 of these being primary
diagnoses of pulmonary adenocarcinoma in advanced stage.

In 93.3% of these samples, parallel sequencing was successful. Fast-track testing for
hotspot mutations of KRAS and EGFR gene was successful in a lesser proportion of 69.4%
(43/62) of cases. Insufficient quantity of extracted DNA was the main reason for this
draw-back. In cytology specimens, there is much more preanalytical variability than in
histological specimen [26]. Different types of fixatives, sample recovery techniques from
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different companies, and previously stained slides are used, which increases the diversity
of the samples. To our knowledge, there are no standardized preanalytical protocols for
cytological specimens. Since optimizing protocols can be very challenging in everyday
work, standardized protocols may discourage laboratories from continuing to perform their
preanalytical methods according to long-established patterns. In this study, we could show
a very high success rate for samples that were processed in-house due to our optimized
preanalytical protocols. Reviewing the cytological slides and choosing adequate areas for
DNA extraction and for FISH analysis is time-consuming but essential for the high success
rates. In preanalytics, only small modifications are required for integrating cytological
preparations into the workflow. The extracted DNA from these samples is suitable for all
subsequent PCR-based assays. The evaluation of the sequencing data proceeded according
to the quality criteria given in the Supplementary Materials. The cytological preparations
used here all had at least a tumor cell content of 10%. Nevertheless, special care must be
taken when evaluating the analyses: The variant table of parallel sequencing is evaluated
at a very low tumor cell content, even below an allele frequency of 5%. Visual inspection
reduces the risk of false-negative results [27].

As a limitation of the study, the molecular results from the effusion samples were not
compared with a histological specimen from the same patient to evaluate any possible
discordance in mutation or fusion detection. Thus, the possible risk of false negative or
false positive findings in the cytological specimen was not investigated. We could show
earlier that parallel sequencing on biopsy and smear material, respectively, had a complete
concordance with the parallel sequencing results [28].

If already stained slides were used for molecular diagnostics and sacrificed, it is recom-
mended that they must be digitally scanned before usage to record the most representative
and diagnostic slide [26]. Other entities, such as serous high-grade carcinoma, also benefit
from the investigation of the BRCA status on cytologic specimens [29]. This may result in
reduced risks and costs associated with additional surgical biopsies and faster turnaround
times, which in turn influence therapy options and clinical management.

FISH testing for ALK and ROS1 rearrangement has been decreasing in the last years
due to the implementation of immunochemistry using cell block preparations for screening
for ALK or ROS1 rearrangement. FISH is still required for testing for MET amplification
and for RET translocation as well as for ALK and ROS1 translocation if no cell block is
available or if immunochemistry screening is positive for one of the markers.

Other research groups have shown that ALK FISH on cell blocks compares favorably
to immunohistochemistry and that cell blocks are not always absolutely necessary [30].
Smears and cytospins are equally suitable [31]. The result of immunohistochemistry is
faster and cheaper to obtain in terms of probe and personnel costs compared to FISH.
Therefore, cases are first stained by immunohistochemistry and FISH analysis is performed
if positive. The same procedure applies to ROS1 translocations.

In the future, RNA-based fusion detection on cytological specimens will play an in-
creasingly important role [32]. It is a good complement to DNA-based and FISH diagnostics
as described here and is now standard on FFPE material [11,33]. In our experience, fusion
detection on cytological specimens is challenging but not impossible. For RNA-based fusion
detection, the already stained preparations are less suitable than the native preparations.

Testing rates for lung cancer patients in Germany are high and good by international
comparison. Nevertheless, only three out of four patients are tested for alterations in EGFR,
ALK, ROS1, and BRAF [34]. Cytological preparations may potentially help to increase the
testing rate, as they are less invasive than biopsy or surgery.

We could show that DNA-based genomic profiling of lung adenocarcinoma is feasible
using routine preparations of effusion samples and has a high success rate. Careful marking
of cytological preparations contributes to the success of molecular pathological analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmp3020008/s1, Method Description 1: Fast Track Analysis,
Method Description 2: Next Generation Sequencing, Method Description 3: fluorescence in situ

https://www.mdpi.com/article/10.3390/jmp3020008/s1
https://www.mdpi.com/article/10.3390/jmp3020008/s1
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hybridization, Table S1: Primer Design Fast Track Analysis for KRAS Exon 2 and EGFR exons 19 and
21, Table S2: Parallel sequencing panel design, Table S3: Primer design for parallel sequencing of
lung cancer; Table S4: FISH probes for ALK, MET, RET and ROS1.
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