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Abstract: In this article, we propose an observational, narrowing-down approach to analysing social
media networks and developing research design by the joint use of computational algorithms and
researchers’ inductive exploration and interpretive explanations. The Brexit referendum on Twitter
study is used to illustrate how we applied this approach in practice. In this study, observation
helped us combine the strengths of computational statistical analysis and modelling and of inductive
inquiries. Computational algorithms and tools including Elasticsearch, Kibana and Gephi provided
us with an “ethnographic field” where we were able to inductively observe the relationships among
users and to reduce the amount of data down to a level in which we could intuitively understand
these relationships. In traditional observational studies, talking to human subjects and observing
their interactions in a research site are important to ethnographers. Likewise, it is useful for social
science researchers to dialogue with data, observe human relationships embodied in the data and
reconstructed by computational tools, and understand these relationships through closely examining
a small batch of meaningful data that is extracted from large-scale data. In this case study, adopting
the proposed approach, we found the importance of political disagreement leading to a tale of two
politicians, in which pro-Brexit users denounced @David_Cameron but legitimised @Nigel_Farage.

Keywords: Twitter; observation; computational algorithms; inductive analysis and approach; the
Brexit referendum; political disagreement

1. Introduction

Social media offers great potential for researchers to investigate how people com-
municate and connect. However, the increasing ubiquity and enormity of social data
have triggered debates among social science scholars in relation to how to study social
media networks.

Traditional qualitative research methods used to study human relations and networks,
such as observation, usually collect data about human interactions and involve an inductive
exploration of the data. An inductive approach is data-driven and exploratory with the
aim of building theory from exploring data. This means that by collecting and qualita-
tively exploring empirical data, researchers discover patterns in the data and interpret
their meanings and implications for theory (Bryman 2012). An inductive analysis means
“approaches that primarily use detailed readings of raw data to derive concepts, themes, or
a model through interpretations made from the raw data by an evaluator or researcher”
(Thomas 2006, p. 238). These methods and approaches have been adopted to collect and
examine social media qualitatively. In related studies, scholars saw social media as a virtual
site in which they qualitatively observed and interacted with their research objects (see, for
example, Paccagnella 1997; Postill and Pink 2012; Hine 2000; Kozinets 2010; McEwan and
Sobre-Denton 2011). These studies aim to find qualitative evidence and cultural meanings
from human interactions on social media. While they are welcome, their approaches may
not suit the analysis of large-scale social data. Computational tools are needed for induc-
tively observing social networks and human interactions captured in large-scale social data.
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In an iterative research process, through observation of human interactions and networks,
revealed and visualised by computational statistical analysis and modelling, researchers
can build up the knowledge of the research object under scrutiny. Their accumulated
knowledge facilitates their judgement and enables them to design the research in a way of
conducting close readings of data.

Scholars (see, for example, Lazer et al. 2009; Berry 2011, 2012) identify and celebrate
“the computational turn” in social sciences and humanities studies. Computational algo-
rithms have been developed to explore and statistically analyse large-scale social data.
They work quite well to model and detect patterns in data (Fortunato 2010; Huang and Sun
2014; Takahashi et al. 2015). In particular, in social network analysis, computer algorithms
can statistically calculate and model the connections between numerous users. However, in
the cases where these computational algorithms and modelling are used to test pre-defined
hypotheses scientifically from a deductive approach, the results of computational inquiries
may be too rigid to reveal the compelling aspects of the dataset. A flexible, iterative research
process and an inductive exploration of the data will be needed to mitigate the rigidity
of hypothetico-deductivism. Qualitative, inductive inquiries can allow researchers the
flexibility to develop and refine the research design in the process of data exploration and
help them gain a rich understanding of the meanings of the interactions between users
revealed by computational inquiries. Therefore, it would be helpful if we can combine the
use of computational algorithms and the involvement of researchers’ inductive exploration
and interpretive explanations in researching social data. A question arises as to how to
combine them.

With this in mind, in this article, we propose an observational, narrowing-down
approach to analysing social media networks by the joint use of computational applications
and inductive inquiries. The Brexit referendum on Twitter study will be used to illustrate
how we used this approach in practice. We will first review the related work conducted in
the field about social network analysis before introducing the proposed approach. We will
then discuss the case study and how the approach was applied. The article concludes with
reflections on this approach’s usefulness and limitations and outlines some suggestions for
future research. This research contributes to the literature of social network analysis and
big data analysis by contending the importance of involving qualitative, inductive inquiries
and reasoning along with the use of computational algorithms through observation and
data reduction in large-scale social media analysis.

1.1. Social Network Studies and the Current Challenges

With a root in sociology, social network analysis (SNA) examines human relationships
and interactions (connections) between actors (nodes) in order to understand the social
structure and the roles of actors in that structure (Wasserman and Faust 1994). Qualitative
research methods such as observation are commonly used in social network analysis in
disciplines such as sociology and anthropology (Scott 2017). Recently, with the rise of social
media, scholars increasingly applied SNA to analysing social media with the assistance
of computer tools, although SNA has been criticised for only offering “static snaps while
neglecting the networks dynamics” (Bruns and Stieglitz 2013; Bruns 2011). The literature is
mostly based in the field of computer science. Over recent years, it has gradually expanded
to that of social science.

There are three ways of using SNA in a small but growing number of social media
studies. Firstly, SNA is used to understand social actors’ influence and roles on social
media (see, for example, Jörgens et al. 2016) or to identify opinion leaders in networks (see,
for example, Dubois and Gaffney 2014; Wukich and Steinberg 2013; Xu et al. 2014). SNA
studies also explore social media users’ social networking strategies during events such as
elections, crisis and disasters (see, for example, Yoon and Park 2014; Murthy and Longwell
2013; Samuel-Azran and Hayat 2017; Ogan and Varol 2017). Finally, SNA is employed to
identify and comprehend the formation of networks, communities or campaigns on social
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media (see, for example, Chatfield et al. 2015; Grandjean 2016; Antonakaki et al. 2016;
Himelboim et al. 2017; Bonini et al. 2016; Lin et al. 2008).

These social network studies used computational algorithms to measure network
metrics, such as density, modularity, degree, betweenness, centralisation, and clustering
coefficient, so as to identify and understand communities formed on social media (see, for
example, Himelboim et al. 2017; Hansen et al. 2011; Grandjean 2016). In terms of method-
ological approaches, a group of studies took a deductive approach, i.e., they developed
research questions and hypotheses from the literature review and used them to guide their
research design and data analysis. In these studies, while the design of these inquiries was
research problem-oriented, the results of the network metrics were intended to answer
specific research questions effectively or test hypotheses, as exemplified in the studies of
predicting opinion leaders (Xu et al. 2014; Samuel-Azran and Hayat 2017; Wukich and
Steinberg 2013; Yoon and Park 2014; Dubois and Gaffney 2014; Murthy and Longwell
2013). However, deductive studies are criticised for being too prescriptive, and there is
a risk that the priorly determined conceptual frameworks or specific research questions
may be invalid for understanding the data (Eriksson and Lindström 1997). They may also
be unable to interpret unanticipated but meaningful patterns observed in data analysis
(Quinn and Dunham 1983). This problem may even be worse in social data analysis, as
the large scale of social data may restrict researchers from understanding what is most
worth researching.

Some studies took a more explorative approach, exemplified by those that used sta-
tistical measures to form ideas about communities and networks (Dugue and Perez 2014;
Antonakaki et al. 2016). Although stressing on the importance of exploring data, these
studies mostly rely on computational methods and largely exclude the involvement of
researchers’ inductive reasoning. Other studies adopted mixed methods, comprising com-
putational social network analysis and qualitative methods such as content analysis of a
small number of tweets, so as to gain a deep understanding of the topic (Jörgens et al. 2016;
Bonini et al. 2016; Chatfield et al. 2015). However, these studies still mainly test their
research models or assumptions arising from the literature review (see, for example,
Chatfield et al. 2015). They are not genuinely exploratory or inductive studies, which
require scholars to be data-driven and develop research based on the exploration of empiri-
cal evidence in data analysis. Given the complexity of social networks and relationships,
an inductive approach will be useful. It enables researchers to explore the data to grasp the
meanings and discover the knowledge of the relationships. Therefore, it will be helpful to
develop an approach that can accommodate inductive inquiries and apply computational
algorithms in research.

1.2. The Promise Offered by an Observational, Narrowing-Down Approach

Some more recent studies (see, for example, Burgess and Matamoros-Fernández 2016;
Bruns et al. 2020) have combined the use of computational tools and qualitative content
analysis methods in exploring large-scale social media data. We would like to further take
this explorative approach by arguing for the importance of both observation and data
reduction in researching large-scale social data. They are important not only for data mining
and analysis but also for research design. Observation is one of the common methods
that are used to collect data about and understand the relationships and interactions
among actors in social network analysis (Wasserman and Faust 1994). In traditional
observational studies, observation happens in the stage of data collection. Observation
means researchers—either as “a participant observer or a direct observer”—observe the
social relations of a group and its members and record and analyse their observation
systematically (Scott 2017). Although substantial time is required for fieldwork, observation
enables researchers to obtain “an understanding of the cultural meanings of relationship”
(Scott 2017, p. 45).

Observation has been used in studying interactions and relationships on the Internet in
general and on social media in particular (Hine 2000; Postill and Pink 2012; Kozinets 2010).
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These studies see social media as a research site where researchers virtually observe or
participate in the activities of the observees; they recognise the intertwinement of the online
and offline activities and the relationships of these participants. Therefore it is “digital
socialities” that virtual ethnographic researchers should analyse (Postill and Pink 2012,
p. 127). In other terms, researchers observe online interactions and relationships, such as
“following”/“followed”, “sharing” and “like”, on particular social media platforms and on
some occasions they engage with online interactions, such as getting into the “following”
relationship or sharing posts posed by participants.

These virtual ethnographic studies and approaches are suitable for qualitative re-
searchers to collect data through observation qualitatively—either online or offline—and
analyse the data to form an understanding of the behaviours of their participants. These
studies point to the importance of virtual observation. We contend that, for social network
studies involving the analysis of large-scale social data, it is also vital to use observation in
the data exploration and analysis process for the purpose of data mining, data reduction
and research design.

In the virtual ethnographic studies discussed above, researchers observe interactions
and relationship presented on the Internet by experiencing or witnessing them. However,
when analysing large-scale social data, the interactions and relationships among social
media users are captured by the data but remain invisible to researchers, unless they
use computer tools to model, map, and then observe them. Such observation occurs in
the data mining and analysis stage rather than in the stage of data collection. Besides,
observation is aimed not only at understanding relationships but also at developing and
refining research design.

The mapping and modelling process is dynamic, recursive and inductive. In the
iterative process, the interactions occur between researchers and data. In other terms, the
data has already been collected, and the objects of the observation are social networks
and statistical figures generated and presented by computational tools in iterative queries.
Therefore, researchers need to identify and understand such interactions among partic-
ipants captured in the data by observing the findings from the statistical analysis and
modelling generated by computer application tools. They can then use this understanding
to inform their research design, formulate research questions and narrow down the scale
of the data to focus on a small batch of data which they can handle qualitatively. This
narrowing-down process is that of data reduction, which refers to a process of reducing
the amount of data so that researchers can make sense of the data (Bryman 2012). Data re-
duction is crucial for both quantitative and qualitative research. In social network analysis,
part of the aim of observation is to gradually narrow down the data to a manageable scale,
which allows researchers to have detailed, interpretive readings of data.

There are two noticeable benefits of using observation in analysing large-scale social
data. Firstly, it enables researchers to inductively explore the data and have the flexibility
to design the research. That is to say, researchers can develop the next step’s analytical
tasks and research questions based on their understanding obtained from the observation
of the results of previous computational inquiries. This flexibility releases researchers
from being prohibited by pre-decided research questions or theoretical frameworks but to
be led by the data to raise research questions and identify meaningful relationships and
interactions. Secondly, while observing the relationships and interactions visualised by
computer tools, researchers are able to use their inductive reasoning to identify and focus
on the relationships and interactions of a relatively small group of users, which are deemed
as meaningful.

1.3. Six Stages to Dialogue with Data by Using Computational Tools

This article proposes six stages to interact with and narrow down data by using
computational methods and inductive inquiries so that researchers can develop an in-
ductive understanding of social networks in large-scale social data. As the research goes
on, researchers can use the knowledge gained in the process to design research aimed at
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answering research questions that can help the researchers interpret the data meaningfully.
These stages are discussed below.

1. Overall exploration of data

In this stage, data exploration aims to gain a general understanding of data. Key
aspects of the data should be explored and observed, such as trends over time in the data,
volumes of posts, most popular posts, most popular users, most active users, and average
retweets and likes.

2. Identifying key social media users

The findings from the first stage should be able to direct us to key social media users.
The analysis of the most popular and active users, for example, can tell us who they are so
that we can focus on them for the social network analysis in the next stage. The data of the
identified key users need to be manually checked and cross-checked against information
coming from other sources such as media coverage, to determine whether or not these are
users most relevant to the topic under scrutiny and are not spammers. If some of them
are irrelevant or even spammers, the related data need to be removed from the database,
followed by repeating the analysis in the first stage, so that “genuine” key users can be
identified.

3. Initial social network analysis

After identifying and selecting key social media users, researchers can conduct an
initial social network analysis. In this stage, some exploration needs to be made so that
researchers can observe the overall interactions between users. The exploration aims to
identify key nodes in these networks. Among others, key metrics include weight (of a node
or an edge), in-degree, out-degree, betweenness centrality, clustering coefficient, graph
density (Gama and Gama 2012; Cherven 2015). The values of weight and degree tell us
about the levels of activity and popularity of a node. Betweenness centrality shows the
extent of a bridging role played by a node in the network, while the values of clustering
coefficient and graph density reveal the level of completeness and the density level of
a network.

4. Key node identifier

By observing the above-discussed key statistics, such as the weight of a node and an
edge, and the out-degree and the in-degree scores, researchers should be able to identify key
nodes in these networks. In this stage, the manual checking and cross-checking conducted
in the first stage should be repeated to spot nodes, which are prominent but irrelevant to
the topic or are actually spammers. By now, the understanding of the data gained should
be able to help shape and formulate the research questions.

5. Mapping the networks surrounding identified key nodes

After having decided key nodes, researchers can focus on analysing and observing
these key nodes’ networks. This analysis can give researchers more information about the
users who closely follow or interact with these key nodes. In this stage, researchers draw
attention to a subset of data, embodying these networks and nodes, extracted from the
original large-scale dataset.

6. Qualitative analysis

To gain a more qualitative understanding of the nature of the networks and key nodes’
followers, researchers can conduct a qualitative analysis of the background and tweets
of those who followed and interacted with key nodes. Depending on the project’s need,
researchers can choose to use appropriate qualitative methods such as thematic analysis
and discourse analysis to analyse the content of the tweets. If necessary, researchers may
also want to use computational analysis to complement the qualitative analysis.

After going through the proposed six stages, researchers will be able to extract small-
scale, meaningful data from large-scale social data and focus on it so that they can answer
research questions developed in the whole process. This subset of data can map the core
structure of social networks surrounding key users captured in the entire dataset. As being
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small-scale, this batch of data can be explored in great detail. However, a focus on key
users may rule out the data associated with less prominent users from the analysis. Besides,
it would be wrong to assume and claim that this small batch of data can represent all data
in the dataset.

These six stages resemble an observational process, where researchers can dialogue
with data and zoom in to explore a smaller size of data with the assistance of computa-
tional applications. Their inductive inquiries and observation of the outcome of statistical
calculations and modelling can help them develop intuitive insights into the relationships
and interactions between users captured in the data. Their gained insights can help design
their research. In the process, researchers are observers, whose judgement is led by data,
while the objects of their observation are the patterns found in the data. In so doing,
researchers can combine the practical and theoretical dimensions of “the computational
turn” (Burgess and Bruns 2015), and gain a meaningful understanding of the data.

1.4. The Brexit Referendum on Twitter Study1

1.4.1. Data Description

To illustrate the six stages in practice, in this section, we present our study of analysing
tweets about the United Kingdom (UK)’s 2016 EU referendum as a case study. The refer-
endum took place on 23 June 2016. Its result was 51.9% in favour of Leave against 48.1%
voting for Remain, with a profound impact on global politics. We collected and archived
tweets in real-time through the Twitter Streaming Application Programming Interface (API)
between 24 May and 23 June 2016. Only tweets that were open to the public were collected,
and they contain any of the seven hashtags, i.e., “#Referendum”, “#VoteLeave”, “#VoteIn”,
“#EUref”, “#VoteOut”, “#VoteStay”, and “#Brexit”. The choice of hashtag was made based
on our analysis of the use of hashtags in a small batch of tweets collected manually and our
related observation on Twitter at the start of data collection. We acknowledge that our data
may be influenced by our hashtag choice, and our data are not representing nor containing
all data on this topic generated on Twitter one month prior to the referendum. After several
rounds of cleaning, there are 12,644,199 tweets in the dataset used for analysis.

1.4.2. Research Procedure

We wanted to understand the nature of social networks captured in the data. However,
given that we had little knowledge of the data before actually analysing it, at the beginning
of the research, we did not want to decide our focus and research questions. Therefore,
we wanted to keep the options open and wanted to determine our focus and develop and
complete the research design in the process of exploring and observing the data.

In stage 1, in our initial exploration of the whole dataset, we used the combination of
Elasticsearch2 and Kibana3 to outline the overall trends and the most popular users. The
number of tweets—including the number of original tweets published by an account and
that of retweets its tweets had received in the dataset—determines the level of popularity
of that account.

When we moved to Stage 2, after observing users appearing in the top 1000 most
popular users, we decided to focus on the Twitter handles of nine British politicians and
the thirteen Twitter accounts of British news outlets (Table 1). This is because they were
the most prominent, popular users in terms of receiving retweets and likes. The nine UK
politicians were important members of their political parties and had different attitudes
towards the referendum (Table 2). By doing so, our attention was drawn to the networks
surrounding these politicians and news media.

1 A detailed report of this case study can be seen in our forthcoming book: The Brexit Referendum on Twitter: A mixed-method, computational analysis,
which will be published by Emerald Publishing Limited in 2021. Some content in this section, particularly that under “1.4.3. Findings of the Case
Study”, will be included in the book.

2 See “What is Elasticsearch” at https://www.elastic.co/what-is/elasticsearch (accessed on 7 July 2020).
3 See “What is Kibana used for” at https://www.elastic.co/what-is/kibana (accessed on 7 July 2020).

https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/kibana
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Table 1. Twitter handles of 9 key British politicians and their political affiliations.

Names Political Parties Twitter Handles

Boris Johnson Conservative @BorisJohnson
Caroline Lucas Green @CarolineLucas
David Cameron Conservative @David_Cameron
George Osborne Conservative @George_Osborne
Jeremy Corbyn Labour @jeremycorbyn

Nick Clegg Liberal Democrats (LibDem) @nick_clegg
Nicola Sturgeon Scottish National Party (SNP) @NicolaSturgeon

Nigel Farage United Kingdom Independence Party (UKIP) @Nigel_Farage
Sadiq Khan Labour @SadiqKhan

Table 2. Thirteen Twitter handles of key British news media.

News Media Twitter Handles

BBC @BBCNews
Channel 4 @Channel4News

ITV @itvnews
Sky @SkyNews

Daily Express @Daily_Express
Daily Mail @DailyMailUK

Daily Mirror @DailyMirror
Guardian @guardian

Independent @Independent
Daily Telegraph @Telegraph

Sun @TheSun
Sunday Times @thesundaytimes

Times @thetimes

In stage 3, we then did a network analysis on Gephi4 based on the retweeting rela-
tionship between these users. Gephi is an open-source Java application that has been used
in analysing social networks on social media such as Twitter (Bruns 2011; Bingham-Hall
and Law 2015; Burgess and Matamoros-Fernández 2016). We observed the statistic figures,
such as those of the weight of nodes, out-degree and in-degree. Take the out-degree scores
for example. If we did not use out-degree5 to focus on the core networks, the networks
were very complicated and intricate. Although we can see some hub-and-spoke clusters,
the networks overall are too complex to understand (see Figure 1). We repeated the tests
again and again by adjusting different out-degree scores. For example, if we set the out-
degree score threshold at 30, we had the core networks between users with out-degree
≥30 (see Figure 2). Compared with Figure 1, Figure 2 is more accessible and easier for us
to make sense of the relationship between these users. Figure 2 shows that, except for
@BBCnews and @SkyNews, none of the other news media’s Twitter accounts played a
key role in these networks. Most of them were even isolated or excluded from the core
networks, the backbone of the networks surrounding these politicians and news media.
Three politicians, @NicolaSturgeon, @David_Cameron and @Nigel_Farage, stayed in the
core networks. However, when we further increased the out-degree score threshold, we
found that only @David_Cameron and @Nigel_Farage were left on the core networks.

4 https://gephi.org/.
5 The value of out-degree is the amount of times/frequencies of users’ retweeting of the messages sent by the Twitter account under examination.

https://gephi.org/
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Figure 1 

 

 

 

 

  

Figure 1. Networks surrounding 13 news media handles and 9 politician handles.

In stage 4, we needed to choose our focus. After consulting the related literature on
political communication on the Internet, we decided to focus on analysing the networks
surrounding @David_Cameron and @Nigel_Farage. We tried to find out how Twitter
users retweeted them, in particular, whether and to what extent the two politicians were
surrounded by supportive networks on Twitter. Our decision was partly based on our
observation (gained at the previous stage) of the core networks surrounding the Twitter
handles of these news media and politicians, which suggests a clear opposition between the
core networks of Nigel Farage and those of David Cameron. In other terms, Nigel Farage
and David Cameron were the two most influential nodes in the networks surrounding
the news media and politicians. The fact that the two politicians held opposite attitudes
towards the Brexit referendum was another reason for our focus on them.

Then, in stage 5, we analysed the core networks (out-degree ≥30) surrounding
@David_Cameron and @Nigel_Farage (see Figure 3). We coded the attitudes of the users,
identified in the core networks, toward the referendum. We, thus, had the attitudinal graph
of core networks of the two politicians’ Twitter handles. The graph clearly shows us that
most users in the core networks were pro-Brexit users. At last, in order to understand
the nature of the networks surrounding the two politicians on Twitter, we conducted a
thematic analysis of the tweets published by the key users in the networks identified.
The coding and analysis process proposed by Braun and Clarke (2006) was used in our
thematic analysis carried out in Nvivo. The tweets were coded with a focus on the users’
attitudes toward and comments on the politicians and the referendum. When we deter-



Journal. Media 2021, 2 22

mined their referendum stances and attitudes towards the two politicians, we also took
into consideration other features of their tweeting activities such as the use of hashtags.
 

Figure 2 

 Figure 2. Core networks surrounding 13 news media handles and 9 politician handles (out-degree ≥30).
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Figure 3 

 

 

  
Figure 3. The attitudinal graph of the core networks surrounding @David_Cameron and @Nigel_Farage
(purple: pro-Brexit; orange: pro-Remain; green: neutral).

1.4.3. Findings of the Case Study

An established argument in the literature about social media communication is that
politically alike people tend to connect with one another (Gerber et al. 2013; Huber and
Malhotra 2017; McPherson et al. 2001). The findings of this study partly resonate with this
argument. The findings, however, also point to the importance of political disagreement
among Twitter users.

In @David_Cameron’s core networks, most of the key users (seven out of eight users)
were pro-Brexit users, who criticised and delegitimised David Cameron (see Figure 3). The
language of these users was (negatively) emotional with inadequate reasonable arguments.
Some tweets even contained personal attacks against David Cameron. The qualitative
thematic analysis of their tweets reveals seven themes (see Table 3), which suggest their
evident ideological confrontation with David Cameron and his Remain arguments. What
is interesting is, while seeing David Cameron as a failure and loser, these key users, who
frequently retweeted @David_Cameron, instead hailed Nigel Farage as a hero and winner,
as exemplified in this tweet: Michael Gove made @David_Cameron suffer this week.
@Nigel_Farage will finish you next week! YUMMY!! #InOrOut #VoteLeave (rephrased).

Table 3. Themes in the tweets published by (key) Leave users in @David_Cameron’s core networks.

Theme Numbers Themes Example Tweets (All Rephrased Except the First Tweet)

1 Self-declaring to be Brexiteers; calling to leave and
take back control to “restore democracy”

No @David_Cameron Britain doesn’t give up. We are determined to
bring back democracy to this country #VoteLeave (by
@Vote_LeaveMedia) (7 June 2016)

2 Labelling David Cameron as a traitor, liar
and scaremonger what a liar David Cameron is (22 June 2016)

3 The failure of David Cameron and the EU @David_Cameron finally failed to reform the EU which could not be
fixed #InOrOut #VoteLeave (2 June 2016)

4 Poor media performance of David Cameron @David_Cameron is suffering and cracked on Friday #BBCdebate
#IndependenceDay #VoteLeave (21 June 2016)

5 Only David Cameron and rich people wanted
to remain

@David_Cameron Your policy is to let the rich benefit from Remain, but
leave the poor to suffer austerity. I distrust you. I #voteleave!
(17 June 2016)

6 David Cameron failed to keep immigration under
control and lied about immigration

@David_Cameron is a liar: four years ago, (he) knew he would not meet
the immigration target (22 June 2016)

7 David Cameron helped Turkey join the EU
@David_Cameron @Conservatives You did not spend our money on
our NHS; instead you used it to help Turkey join the EU #VoteLeave
(9 June 2016)
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In @David_Cameron’s core networks, only one key user (@StrongerIn) supported
Remain and David Cameron and condemned the Leave Campaign. For example, it ap-
plauded David Cameron’s performance in TV debates for making “a passionate case for
why we’re better off IN Europe” (30 May 2016). By contrast, this account criticised the
Leave campaign as they “‘just don’t know’ what happens after if we leave” (30 May 2016).

By contrast, in the networks surrounding @Nigel_Farage, 7 out of 8 key users sup-
ported Nigel Farage and his Brexit stance (see Figure 3). He was thanked and praised for
saving democracy and bringing hope to the UK. These key users were his ardent support-
ers, and some were members of the UKIP. Their tweets, highly praising Farage, contain six
main themes (see Table 4).

Table 4. Themes in the tweets published by (key) Leave users in @Nigel_Farage’s core networks.

Theme Numbers Themes Example Tweets (All Rephrased)

1 Self-declaring to be Brexiteers (and even UKIP
members) and calling to vote leave

Nigel, well done for being a real patriot! Being a member of the UKIP
makes me feel proud. Thank you (10 June 2016)

2 Excellent performance of Farage in debates and his
successful campaign

@Nigel_Farage outperformed David Cameron. In contrast to his open,
honest responses, those of David Cameron and George Osborne were
aggressive, suggesting them seeing (us) inferior to them #VoteLeave
(12 June 2016)

3 Farage is a hero who tells the truth @Nigel_Farage, a star, always tells the truth. This is the way of setting
us free from the control of the EU #VoteLeave (10 June 2016)

4 Remainers want to betray our country and give
it away

@Nigel_Farage Remainers are unfaithful to this country and nation,
which we built, defended and sacrificed our lives for. I vote #Brexit
(23 June 2016)

5 The advantages of Brexit @Nigel_Farage YES, after Brexit, the exports will be cheaper #BREXIT
(12 June 2016)

6 Condemning immigrants, immigration,
and Muslims

#Brexit #UKIP #VoteLeave @Nigel_Farage Muslims pose a threat, like
what we have found in India, Leave #EU (6 June 2016)

The core networks of @Nigel_Farage only had one pro-Remain account: @StrongerIn-
Press, which criticised Nigel Farage for ignoring the ramifications of Brexit for “working
families”, tariffs, “the single market”, “the economy” and “sterling” and for lacking knowl-
edge and being unable to answer questions appropriately.

Our analysis reveals that, in this case of profound political polarisation, political
disagreement led to an ideological confrontation in users’ responses, particularly those
of pro-Brexit users, to the two politicians. Hailing @Nigel_Farage as a hero, pro-Brexit
users put @David_Cameron under siege and denounced him as a “liar”. The techno-
logical affordances of Twitter enabled them to actively declare stance, legitimising Nigel
Farage, but delegitimising David Cameron. They frequently retweeted and mentioned
@David_Cameron in their tweets because they disagreed with him. The strategic Twitter
practice of pro-Brexit users gives rise to questions about the social media platform’s role in
the referendum.

2. Discussion

In this case study, we took an observational, narrowing-down approach to identifying
the influential actors and their connections to other users in the dataset; the understanding
obtained in this process helped us develop our research design. With the use of compu-
tational tools such as Elasticsearch, Kibana and Gephi, we brought inductive reasoning
and judgement into the statistical calculation and modelling process of data analysis. The
computational statistical analysis, modelling, and visualisation of the data enabled us to
observe and intuitively understand users’ relationships and interactions. Observation in
our study was an approach in which we could combine the strengths of both computational
statistical analysis and inductive inquiries through interacting with data.

Elasticsearch, Kibana and Gephi were the “ethnographic field” where the observation
took place. The combination of Elasticsearch and Kibana, which are usually used for data
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analysis in the information industry, provides us with a useful, user-friendly platform for
exploring and observing the overall trends of the data as the starting point of data explo-
rations. Gephi, which is designed for exploratory data analysis, is a good platform through
which to observe the networks revealed in data. It enables researchers to interact with
the visualisation of networks.6 It allows researchers to explore different features of social
networks by iteratively running different algorithms and metrics in Gephi and examining
the visualisation of the outcomes. Important algorithms and metrics in Gephi include
ranking (ranking can be done by various measures, e.g., degree, betweenness centrality
and weight), attributes of nodes and edges, layouts, statistics, and filters. Computational
data exploration in Gephi can be complemented and supported by manual data analysis
such as profile categorisation.

In data exploration and analysis, the use of different algorithms and metrics, comple-
mented by manual data analysis, contributes to observation in two ways. First, visualising
the outcome of every data analysis query (in Kibana and Gephi) can construct and model
the relationships among nodes (users) by highlighting specific features of the relation-
ships. The visualisation thus presents the different attributes of the relationships so that
researchers can intuitively observe how nodes are connected and gain in-depth insights of
these relationships.

Second, in the observation process, exploring Twitter networks by using different
algorithms and metrics can direct researchers’ attention to key actors in the networks. It
can narrow large-scale data down to “small” data. Due to the inclusion of too many nodes
and edges, the social networks of large-scale social data can be incredibly complicated
and difficult to examine and understand. For a social network analysis of large-scale
social data, it is thus crucial to identify “small” but “key” data as an important means of
data reduction. In this specific context, “small” refers to small pieces of facets that are
extracted, derived and reasoned from the repository of large-scale data. By “key”, we
mean such facets can provide meaningful data insights for researchers. For example, in
the case study, @David_Cameron’s and @Nigel_Farage’s core networks were mapped
from the “small” data extracted from the large-scale referendum dataset, and this “small”
data was considered to be “key”. The visualisation of these core networks was vital for
understanding the networks surrounding them in the dataset. Although we cannot regard
the extracted “small” data as representative of the whole dataset, it can offer us an insightful
understanding of the dataset. The judgement of which “small” data to extract is gained
from the previous observations of the patterns emerging in the data analysis, as getting this
“small” data was a result of the process of narrowing down data through the six stages.

These two contributions of the observational approach make it possible to design and
conduct an inductive exploration of large-scale social data. The patterns presented through
visualisations and the explicit representation of the relationships between key social actors
in the core networks need to be interpreted by contextualising them. Partly this is because
users’ use of Twitter is socially constructed: for example it is influenced by the UK’s existing
politics. Partly it is because users’ social capital and their social positions affect the level
of attention they can receive from other users in terms of how many times their tweets
can be retweeted, forming the retweeting connections among users. The observational
approach allows researchers to find the patterns in the data, contextually interpret them
and feedback the interpretations into the next round of data mining and analysis, looking
for more patterns. This whole process shapes the research design.

The observational, narrowing-down approach used in the present study comes in a
context where “the computational turn” in social science research coexists with its critiques
due to the rising recognition of the need for thick social data for social science research
(Hand 2014). We agree that it is essential to bring in researchers’ inductive reasoning
to grasp the cultural meanings created in the context where the data are produced and
negotiated. Thus, while computational applications and methods are necessary for large-

6 See detailed introduction to Gephi and its features in https://gephi.org/features/.

https://gephi.org/features/
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scale social data analysis, their use should not exclude the involvement of human intuitive
reasoning and judgement. The insights into an observed object should come from the
combination of applying both. We acknowledge the value of observation and contend that
it is essential to turn the data exploration and analysis process into an observational one
where human intuitive reasoning can be involved along with the use of computational tools.
It is crucial to immerse researchers in data by interacting with the data via computational
applications and observing the results from every single data query, as if we were observing
human subjects in ethnographic fieldwork.

Our study’s findings echo the arguments of previous studies about the usefulness of
employing both computational and qualitative techniques in analysing media and social
media content (see, for example, Lewis et al. 2013; Starbird et al. 2019; Bruns et al. 2020;
Burgess and Matamoros-Fernández 2016). Besides, our study takes these arguments further.
It contends that the combination of computational and qualitative methods enables social
science researchers to dialogue with data and reduce data to a level in which researchers can
conduct their inductive inquiry of large-scale data and design research to find a meaningful
story from the data.

Our findings also confirm the importance of “computational reflexivity” and inter-
disciplinary collaboration (Ophir et al. 2020). In Ophir and his collaborators’ study, this
importance is shown in the computational analysis process, particularly in terms of bringing
in the insights of social scientists—the ethnographer—in interpreting the results generated
by the computer algorithms. Unlike their study, our research also stresses the role of the
joint use of human intuitive reasoning and computational algorithms in the research design
and data-reduction process. This is a process of narrowing down large-scale data and
directing to meaningful subsets of the data that can be analysed in detail to answer research
questions developed as the analysis goes along. Identifying small batches of data is thus a
must-have for inductively analysing large-scale data. With the assistance of computational
tools and algorithms, social science researchers’ observations make this achievable. At this
point, their capability of using computational tools and methods is crucial. Ideally, social
science researchers need to be able to explore data themselves rather than mainly relying
on computer or data scientists to feed them with the findings from the analysis.

However, this observational, narrowing-down approach to social network analysis
has two major limitations. Firstly, it may be limited by computational ability. For example,
in our study, we only mapped the core networks—rather than the entire networks—of users
in the whole dataset. The networks presented in our analysis were, therefore, merely part
of the whole networks. While whether the rest of the networks are important and worth
researching is debatable, one thing for sure is that it would require extensive time and
infrastructure resources to map the full networks. Secondly, although based on the statistic
calculations and modelling which is assumed to be objective, researchers’ insights depend
on how the data are explored, the design and choices of algorithms and metrics, and the
interpretations of the patterns found in the analysis. In this approach, using computational
algorithms and metrics has at least one thing in common with using any other social
science methods such as interviewing: the interpretive nature of the research. In interviews,
we interview people trying to understand what they think about or do and the reasons
behind their thoughts and actions. Likewise, in social data analysis, we use computational
algorithms and metrics with an attempt to understand the studied object and to find a
story in the data. The gained understanding, however, is influenced by human choices
of algorithms and metrics and contextual interpretations. That is to say, the knowledge
discovered in the process is not “the truth” but just one version of “the truth”.

Through a case study of Twitter communication, this article has demonstrated how
this observational, narrowing-down approach works. When it comes to other social media
platforms, in terms of the importance of involving inductive reasoning in the analysis
process and research design, the principles of observation and data reduction should still
apply. However, the technical structures of social media platforms such as Facebook and
Instagram are slightly different from that of Twitter. For example, Facebook requires users
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to confirm request connections. Therefore, its networks may more likely reflect users’
relationships in their offline lives than those of Twitter, which does not have this connection
requirement (Bossetta 2018). Accompanying these structural differences are variations in
relation to the privacy levels of different social media platforms, users’ interactions and
purpose of using a particular social platform. These variations may influence social science
researchers’ research focus and criteria for meaningful findings. In each of the six stages
the actual research tasks may need to be adjusted to suit the research aims. Therefore,
the question of whether, and if so, the extent to which, the approach can be applied to
other social media environments awaits to be tested in future studies. Other questions
arising from the present study are how meaningful computational queries can be and how
much human experience and inductive reasoning are needed in social media research in
particular and in general big data analysis. The need to explore these questions comes
not only from the patchy nature of (social media/big) data but also from the urgency of
understanding how to make the best of big data and create new knowledge for society.
These questions and problems however are beyond the discussion scope of this article and
thus require future studies to explore.
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